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Abstract: Silica nanoparticles (G-SiNPs) blocked with 3-glycidoxypropyl trimethoxysilane (GPTS)
were newly applied to hydrogel films for improving film coating properties and to distribute the
epoxy groups on the film surface. The effects of the content of epoxy-functionalized G-SiNPs on the
crosslinking features by photo-induced radical polymerization and the surface mechanical properties
of the hydrogel films containing poly(ethylene glycol) dimethacrylate (PEGDMA) and glycidyl
methacrylate (GMA) were investigated. The real-time elastic modulus of various PEG hydrogel
mixtures with prepared particles was monitored using a rotational rheometer. The distribution of
epoxy groups on the crosslinked film surface was directly and indirectly estimated by the elemental
analysis of Si and Br. The surface mechanical properties of various hydrogel films were measured
by nano-indentation and nano-scratch tests. The relationship between the rheological and surface
properties of PEG-based hydrogel films suggests that the use of small amounts of G-SiNPs enhances
the surface hardness and crosslinked network of the film and uniformly distributes sufficient epoxy
groups on the film surface for further coating applications.

Keywords: silica nanoparticles; epoxy group; PEG hydrogel; UV crosslinking; rheological properties;
surface properties

1. Introduction

Hydrogels contain three-dimensionally crosslinked polymeric networks capable of
absorbing large amounts of water or soluble solvents [1]. Owing to their excellent char-
acteristics (softness, bioactivity, and biocompatibility), they have been widely applied in
various industrial fields, such as tissue engineering, drug delivery, sensors, optic devices,
and coatings [2].

Among the various hydrogel polymers, poly(ethylene glycol) (PEG) hydrogels have
been utilized in many applications because of their attractive features (non-toxicity, high
water solubility, and biocompatibility) [3,4]. Representatively, the molecular weight and
monomer concentration of the polyethylene glycol dimethacrylate (PEGDMA)-thiol hy-
drogel system were elaborately tuned by Gavin et al. [5]. The combination of PEGs and
biological molecules generally contributes to the elevated biological activity, which in-
creases the resistance of PEG surfaces to cell and protein adsorption [6]. In addition, the
structural and gel properties of various PEG hydrogels have been shown to correlate with
the gelation dynamics and rheological behavior during ultraviolet (UV) irradiation [7–9].

Recently, various studies to impart target-oriented characteristics to PEG hydrogel
systems have been attempted by combining functional agents [10,11]. Hybrid PEG hydro-
gels functionalized with epoxy units have been specifically developed to enhance surface
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properties for the effective screening of contaminations or corrosions caused by marine
organisms on the coating surfaces [12,13]. For example, the ring opening of the epoxy
groups on film surfaces can be easily treated using various biomaterials, such as amino
acids (cysteine, lysine, and serine) [14]. Certain epoxy groups can be converted to ligands to
specifically adsorb the target protein, and the remaining epoxy groups can be transformed
into diol groups to reduce nonselective adsorption. Furthermore, an epoxy unit on the film
surface can be changed into hydrophobic or hydrophilic brushes in amphiphilic coating
fields [15]. Kim et al. [16] investigated the effect of glycidyl methacrylate (GMA) with an
epoxy group on the chemo-rheological behaviors of PEG-based hydrogel mixtures. It was
observed that a proper portion of GMA contributed to the formation of densely crosslinked
networks in PEG hydrogel films, exhibiting enhanced rheological and mechanical proper-
ties. However, it was difficult to expose epoxy groups on the film surface in proportion to
the amount of the GMA.

A possible strategy for properly distributing epoxy groups onto a hydrogel film surface
is to incorporate epoxy-functionalized inorganic nanoparticles in the coating formulation
as a building block [17]. In particular, silica nanoparticles (Si-NPs) play an important
role as reinforcing extenders in polymeric composites [18,19]. Moreover, attaching any
active functional group (amine, carboxyl, thiol, or epoxy) to the Si-NP surface allows the
interaction between the inorganic NPs and polymers to tune the surface properties of
polymeric composite films [20,21]. Representatively, epoxy-functionalized Si-NPs com-
bined with 3-glycidoxypropyltrimethoxysilane (GPTS) have been elaborately synthesized
and demonstrated to exhibit outstanding surface mechanical properties in industrial and
commodity products [22,23].

Based on Kim et al. [16], this study attempted to improve the epoxy functionality on
the surface of PEG hydrogel films using a small amount of Si-NPs blocked with GPTS as a
coupling agent (G-SiNPs). Modified Si-NPs play a key role in exposing the epoxy groups
on the film surface to provide the required surface mechanical properties and amphiphilic
surface functionality of the hydrogel films. G-SiNPs were directly synthesized through
procedures established by Rosen et al. [22] and Chu et al. [23]. A small amount of G-SiNPs
was added to PEG hydrogel mixtures containing PEGDMA as a crosslinker, GMA as a
monomer, and 2,2-dimethoxy-2-phenylacetophenone (DMPA) as a photo-initiator. The
real-time viscoelastic properties of the hydrogel mixtures with an increasing amount of
G-SiNPs up to 7 wt% were measured using a rotational rheometer during UV irradiation.
The distribution of G-SiNPs on the surface of cured PEG hydrogel films was analyzed
by a field emission scanning electron microscope-energy dispersive X-ray spectrometer
(FESEM-EDS). The surface roughness caused by the ring opening reaction between the
epoxy group and 11-bromoundecanamide with bromine (0.01 M) in an acetone solvent
was observed through atomic force microscopy (AFM), confirming that the epoxy group
in GMA and G-SiNPs was sufficiently exposed to the surface. The surface mechanical
properties of the cured hydrogel films were characterized using nano-indentation and
nano-scratch testers.

2. Experimental Process
2.1. Preparation of Si-NPs Blocked with GPTS

Commercially available LUDOX AS-40 (Si-NPs) with silanol groups were modified
using the GPTS containing an epoxy group, following the synthetic procedure introduced
by Rosen et al. [22] and Chu et al. [23]. The reaction scheme for producing modified
Si-NPs with epoxy groups on the particle surface (G-SiNPs) is illustrated in Figure 1a.
For the surface modification of Si-NPs, the Si-OH groups in Si-NPs reacted with GPTS by
silanization in an acidic (pH~4) water/ethanol mixture for 24 h at room temperature. The
crude G-SiNPs were then purified by the centrifugation, followed by dialysis to completely
remove any unreacted GPTS. The final G-SiNP samples were dried under vacuum.
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Figure 1. (a) Preparation of G-SiNPs by silanization between Si-NPs and GPTS. (b) Schematic illustration of a cured hydrogel
film with epoxy rings on the surface after UV curing of the hydrogel mixture.

To verify the formation of the G-SiNPs, the chemical changes at the surfaces of the
Si-NPs and G-SiNPs were monitored via the attenuated total reflection-Fourier transform
infrared spectroscopy (ATR-FT-IR, Agilent Technology, Santa Clara, CA, USA) in transmit-
tance mode. Powder samples were spread on an ATR crystal to record specific IR spectra. In
addition, the hydrodynamic diameters of the particles for checking a physical change were
measured by dynamic light scattering (DLS, Brookhaven, Holtsville, NY, USA). The 20 mL
aqueous solution containing the prepared particles (Si-NPs and G-SiNPs) was illuminated
with a laser light source of 365 nm wavelength. The photon collector detected the intensity
of the scattered light at an angle of 45◦.

2.2. Formulation of UV Curable Hydrogel Mixtures

Poly(ethylene glycol) dimethacrylate (PEGDMA, Mw = 550 g/mol) and glycidyl
methacrylate (GMA, Mw = 142.15 g/mol) were used as a crosslinker and a monomer,
respectively. Based on previous studies [16], the molar ratio for PEGDMA and GMA was
fixed at 70:30 mol% (PEG-GMA30) in this study, to exclusively emphasize the role of epoxy
groups in G-SiNPs. For the radical polymerization process performed via UV irradiation,
2,2-dimethoxy-2-phenylacetophenone (DMPA) was slightly inserted into the hydrogel
mixtures (approximately 1 wt% based on the total weights of PEGDMA and GMA) as
a photo-initiator (PI). All materials were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Various amounts of G-SiNPs from 0 to 7 wt% (based on the total weights of PEGDMA
and GMA) were well dispersed in the PEG-GMA30 hydrogel mixture. The formulations
for the hydrogel mixtures are listed in Table 1. Noteworthily, G-SiNP contents exceeding
10 wt% induce severe particle aggregation that degrades the film performance. Figure 1b
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shows the schematic illustration of a cured hydrogel film with epoxy groups from both
GMA and G-SiNPs on the surface through the UV curing process of the hydrogel mixture.

Table 1. Formulation of ultraviolet (UV)-curable PEG-GMA hydrogel mixtures containing synthe-
sized G-SiNPs.

Sample PEGDMA (g) GMA (g) DMPA (g) G-SiNPs (g)

PEG 0

0.90 0.10 0.01

0.00
PEG 1 0.01
PEG 2 0.02
PEG 5 0.05
PEG 7 0.07

2.3. Chemo-Rheological Properties of Hydrogel Mixtures during UV Irradiation

The real-time chemo-rheological behaviors of various UV curable hydrogel mixtures
in Table 1 were monitored in terms of the transient storage modulus (G′) and loss modulus
(G′′) using a rotational rheometer (MCR 302, Anton Paar, Graz, Austria). The measuring
gap between the disposable 8 mm upper plate and the lower quartz plate was set at 500 µm.
A strain of 1% within the linear viscoelastic region and an input frequency of 5 Hz were
applied in the small amplitude oscillatory shear (SAOS) mode. The hydrogel mixtures
were irradiated through the lower plate using UV light with a 365 nm wavelength and
1.25 mw/cm2 intensity for 5 min [24–26].

2.4. Surface Analysis of Crosslinked Hydrogel Films

To qualitatively understand the distribution of epoxy groups exposed on the surfaces
of crosslinked films of 500 µm thickness produced via rheological tests in Section 2.3, field
emission scanning electron microscopy (Quanta 250 FEG, FEI, Hillsbora, OR, USA) with
energy-dispersive X-ray spectrometry (FESEM-EDS) analysis was employed under high
vacuum conditions and a beam voltage of 10 kV. Using the EDS spectra, the elemental
chemical compositions (Si and Br distributions) on the film surface were interpreted [27,28]
and were closely related to the distribution of epoxy groups on the surface. Through the
FESEM-EDS mapping of Si and Br on the film surface, the amounts of elements relative
to the area were quantified. The Si distribution on the cured film surfaces was directly
detected. To confirm the Br distribution, a Br solution was prepared using an acetone
solvent (0.01 mM of 11-bromoundecanamide with an amine group attached to the end).
The crosslinked films were immersed in the Br solution for 24 h for the sufficient ring
opening reaction between the amine group in 11-bromoundecanamide and the epoxy
group on the surface [29,30]. Subsequently, the films were dried in the vacuum oven for
3 h at 50 ◦C. Afterward, to indirectly predict the epoxy groups on the film surface, the
reaction-induced surface roughness and Br distribution were visualized by atomic force
microscopy (AFM wide scan, Anton Paar Tritec SA, Corcelles, Switzerland) and FESEM-
EDS, respectively [31,32]. The AFM images were acquired with 256 scan lines for 256 s in a
square scan area of 77.1 µm × 77.1 µm. The contact-mode AFM probe scanned the film
surface to capture a three-dimensional surface image.

2.5. Surface Mechanical Properties of Crosslinked Hydrogel Films

The surface mechanical properties of the cured hydrogel films, such as the indenta-
tion hardness and scratch resistance, are strongly dependent on the physical state of the
crosslinked films after the curing process [33]. The nano-indentation test (NHT3) (Anton
Paar Tritec SA, Corcelles, Switzerland) provided the normal force-indentation depth curves
of the cured hydrogel films produced by rheological tests in Section 2.3. The normal force
was applied at a rate of 2000 nm/min until the Berkovich diamond indenter reached a
penetration depth of approximately 3 µm. Thereafter, after a pause of 30 s, the tip was
unloaded at the rate of 2000 nm/min from the indented surface. The indentation hard-
ness (HIT), which was determined from the maximum force divided by the calibrated
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contact area, was evaluated from a force-depth curve, according to the Oliver and Pharr
method [34].

The nano-scratch test (NST) (Anton Paar Tritec SA, Corcelles, Switzerland) was em-
ployed to evaluate the scratch resistance from the scratch depth profiles [35,36]. A diamond
sphero-conical tip horizontally scratched the coating surface along a 1 mm length at the rate
of 2 mm/min. During the scratch measurement, the normal force gradually increased from
0.1 to 2 mN. The surface resistance of the cured films was estimated using the penetration
depth profiles as a function of the normal force, following standard ASTM D 7187 [37].

3. Results and Discussion
3.1. Structural Features of G-SiNPs

The structural features of the prepared Si-NPs blocked with GPTS (G-SiNPs) were
compared with those of the reference Si-NPs (LUDOX) in the literature [22] using the FT-IR
and DLS measurements. Figure 2 shows the FT-IR spectra of the Si-NPs and G-SiNPs along
the wavenumber in the range of 650–1300 cm−1. The Si-O-Si stretching peak of the colloidal
silica particles was observed in both samples at 1049 and 795 cm−1. The silanol Si-OH
stretching peak in the Si-NPs at 973 cm−1 disappeared in that for the G-SiNPs because of
the silanization reaction between GPTS and silanol groups on the Si-NP surface. For the
G-SiNPs, the peak of the epoxy groups in GPTS attached to the particle surface was newly
found within the range of 855–903 cm−1 [22,23].
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Figure 2. Fourier transform infrared (FT-IR) spectra of SiNPs (black) and G-SiNPs (red).

The particle sizes of the Si-NPs and G-SiNPs were quantitatively compared using
DLS. Although the diameters measured (25.266 and 35.367 nm for the Si-NPs and G-SiNPs,
respectively) were slightly larger than those in the previous study considered (22.9 and
32.2 nm, respectively) [22], the size of the G-SiNPs was observed to be larger than that of
the Si-NPs, owing to the silanization reaction [22,38]. It was confirmed from the structural
results that the GPTS with the epoxy group was successfully attached to the surface of the
Si-NPs.

3.2. Real-Time Rheological Properties of Hydrogel Mixtures during UV Irradiation

To scrutinize the role of epoxy-functionalized G-SiNPs in the formation of crosslinked
networks in PEG hydrogel mixtures, the real-time storage modulus (G′) and loss mod-
ulus (G′′) were monitored during the specified UV curing operation in the SAOS mode.
Figure 3a shows the real-time G′ and G′′ of the hydrogel mixtures with varying G-SiNP
contents. Note that G′ is more focused here because G′ is at a much higher level than G′′.
In the given sets, the crosslinking between GMA and PEGDMA was practically completed
after 1 min of UV irradiation under a UV dose of 1.25 W/cm2. As the G-SiNP contents
gradually increased, the G′ was slightly enhanced while maintaining the initiation point of
the radical polymerization (Figure 3a). The increasing trend of the final G′ values for the hy-
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drogels with increasing G-SiNP content up to 7 wt% is shown in Figure 3b, indicating that
an increase in the particle-matrix interfacial area by the epoxy-functionalized nanoparticles
improved the viscoelastic properties of the hydrogels [39]. Notably, the G-SiNP content
was limited to less than 10 wt% because of unexpected particle aggregation, which can
degrade the properties of crosslinked hydrogel films [17].
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3.3. Distribution of Epoxy Units on Crosslinked Film Surface

First, FESEM-EDS analysis was performed to qualitatively determine the distribution
of epoxy groups in the GMA and G-SiNPs on the post-cured film surface. The mapping
images of Si designated as green dots are shown in Figure 4a, confirming that the G-SiNPs
in the hydrogels up to 7 wt% content were well dispersed on the film surfaces without
aggregation. The integrated area spectra and Si wt% among C, O, and Si on the film
surface are shown in Figure 4b. The Si wt% on the film surface proportionally increased
with the G-SiNP content in the hydrogel mixtures. It is expected that the distribution of
epoxy groups on the film surface can be effectively tuned by adjusting the G-SiNP content,
without further increasing the GMA content.

Further experiments were conducted to predict the exposure of epoxy groups (in
G-SiNPs or GMA) on the crosslinked film surface by the elemental analysis of Br and
the surface roughness after the sufficient amine-epoxy ring opening reaction on the film
surface. FESEM-EDS and AFM were employed. As the G-SiNP content increased, the
3D topographical AFM maps treated by the Image J program showed that the surface
roughness of the films became more severe (Figure 5a), representing the active ring opening
reaction of the epoxy and amine groups with increasing G-SiNP contents up to 7 wt%.

Figure 5b shows the images of the Br elemental distribution on the film surface scanned
by FESEM-EDS after the ring opening reaction. The integrated area spectra and Br wt%
among C, O, Si, and Br are shown in Figure 5c. Br was evenly distributed on the film surface
and the red spots, as the quantitative surface fraction of Br, increased with an increase in the
G-SiNP content. These results show that the G-SiNPs excellently distribute epoxy groups
on the cured film surface and enhance the crosslinking properties of hydrogel mixtures.
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3.4. Surface Mechanical Properties of Crosslinked Films

The surface mechanical properties such as the normal indentation force and scratch
resistance were measured on the surfaces of the crosslinked films through nano-indentation
(NHT3) and nano-scratch (NST) tests [34–36]. Normal indentation forces required for an
indentation depth of up to 3 µm were compared by NHT3, as shown in Figure 6a. As
expected from the rheological results, normal indentation forces were gradually enhanced
with an increasing G-SiNP content under the given indentation depth condition, owing to
the improved elastic modulus and rigidity of the film by the addition of the G-SiNPs. This
tendency was observed for the HIT values and maximum normal force data in Figure 6b.

An NST was performed to determine the scratch resistance of the films in terms of the
penetration scratch depth by applying a progressive normal force from 0.1 to 2 mN within
a 1-mm scanning length. Note that the level of normal force applied to the NST was very
similar to the normal indentation force in Figure 6a. Figure 7 shows that the penetration
scratch depth became shallower as the G-SiNP content increased. In general, the deeper the
penetration, the weaker the scratch resistance of the cured film. As indicated from the nano-
indentation data, the scratch resistance was remarkably enhanced by increasing the G-SiNP
content, although the penetration depths of PEG 1 (1 wt% of G-SiNPs) and PEG 2 (2 wt%)
appeared very similar to each other. The uniform distribution of G-SiNPs as hard materials
on the crosslinked film surface could improve the film resistance regarding external loads.
Consequently, the addition of a small amount of the G-SiNPs can effectively improve
the mechanical properties of the crosslinked films and the distribution of epoxy groups
that induce amphiphilic surface properties on the film for further coating applications.
Epoxy units on the film surface can effectively impart hydrophilic or hydrophobic coating
properties by the selective combination with amphiphilic biomaterials such as amino acids
(cysteine, lysine, serine, and so on). For instance, they can play an important role in creating
a low-fouling zwitterionic coating surface by reacting with the cysteines for nanomedicine
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applications [40] and also help to have good stability in bovine serum albumin (BSA) or
lysozyme protein solutions [22].
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4. Conclusions

To improve the surface hardness and sufficiently distribute epoxy groups on hydrogel
film surfaces, epoxy-functionalized silica nanoparticles (G-SiNPs) blocked with GPTS were
applied to PEG-based hydrogel mixtures. Crosslinking characteristics and surface proper-
ties of PEG-GMA30 hydrogel films with different contents of G-SiNPs were experimentally
compared. The rheological measurement during the UV curing showed that the real-time
rheological properties (i.e., elastic modulus) of PEG hydrogel film were enhanced while
maintaining the initiation point of the radical polymerization, as the amount of G-SiNPs
was increased up to 7 wt%. The elemental analysis of Si and Br by FESEM-EDS and AFM
proved an even distribution of epoxy groups in GMA and G-SiNPs on the hydrogel film sur-
face using G-SiNPs. The effect of the G-SiNPs contents on the surface mechanical properties
of various PEG hydrogel films was well interpreted by nano-indentation and nano-scratch
tests, representing that the addition of a small amount of G-SiNPs significantly improved
the surface mechanical properties such as indentation hardness and scratch resistance.
Based on the relationship between the real-time crosslinking characteristics and surface
properties of hydrogel films with varying contents of G-SiNPs, the optimal coating formu-
lation and UV curing condition for target-oriented hydrogel films can be favorably tuned.
In particular, the epoxy groups exposed on the film surface can be readily functionalized
using various biomaterials with amphiphilic properties in novel coating applications.
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