
REVIEW
published: 29 September 2020

doi: 10.3389/fimmu.2020.571951

Frontiers in Immunology | www.frontiersin.org 1 September 2020 | Volume 11 | Article 571951

Edited by:

Jian Wang,

University of Bergen, Norway

Reviewed by:

Jiajun Fan,

Fudan University, China

Bozena Kaminska,

Nencki Institute of Experimental

Biology (PAS), Poland

*Correspondence:

Gregor Hutter

gregor.hutter@usb.ch

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Cancer Immunity and Immunotherapy,

a section of the journal

Frontiers in Immunology

Received: 12 June 2020

Accepted: 26 August 2020

Published: 29 September 2020

Citation:

Martins TA, Schmassmann P,

Shekarian T, Boulay J-L, Ritz M-F,

Zanganeh S, vom Berg J and Hutter G

(2020) Microglia-Centered

Combinatorial Strategies Against

Glioblastoma.

Front. Immunol. 11:571951.

doi: 10.3389/fimmu.2020.571951

Microglia-Centered Combinatorial
Strategies Against Glioblastoma

Tomás A. Martins 1†, Philip Schmassmann 1†, Tala Shekarian 1†, Jean-Louis Boulay 1,2,

Marie-Françoise Ritz 1,2, Steven Zanganeh 3,4, Johannes vom Berg 5 and Gregor Hutter 1,2*

1Department of Biomedicine, University of Basel, Basel, Switzerland, 2Department of Neurosurgery, University Hospital

Basel, Basel, Switzerland, 3 Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States,
4Department of Chemical and Biomolecular Engineering, New York University, New York, NY, United States, 5 Institute of

Laboratory Animal Science, University of Zurich, Schlieren, Switzerland

Tumor-associated microglia (MG) and macrophages (M8) are important components

of the glioblastoma (GBM) immune tumor microenvironment (iTME). From the recent

advances in understanding how MG and GBM cells evolve and interact during

tumorigenesis, we emphasize the cooperation of MG with other immune cell types of

the GBM-iTME, mainly M8 and T cells. We provide a comprehensive overview of current

immunotherapeutic clinical trials and approaches for the treatment of GBM, which in

general, underestimate the counteracting contribution of immunosuppressive MG as a

main factor for treatment failure. Furthermore, we summarize new developments and

strategies in MG reprogramming/re-education in the GBM context, with a focus on ways

to boost MG-mediated tumor cell phagocytosis and associated experimental models

and methods. This ultimately converges in our proposal of novel combinatorial regimens

that locally modulate MG as a central paradigm, and therefore may lead to additional,

long-lasting, and effective tumoricidal responses.

Keywords: glioblastoma, immunotherapy, microglia modulation, glioma-associated microglia, glioma- associated

macrophages, immune tumor microenvironment

DEVELOPMENT AND CLASSIFICATION OF GLIOBLASTOMA

Glioblastoma (GBM) is the most aggressive and common primary brain tumor. Despite current
treatment modalities, consisting of surgical resection followed by chemo-irradiation, the median
overall survival of GBM patients remains only 15 months (1). These tumors arise from astrocytes
or their precursors within the central nervous system (CNS) and are genetically and phenotypically
heterogeneous (2). World Health Organization (WHO) grade IV glioma that arises de novo is
designated primary GBM while that developing from the progression of previously diagnosed
lower-grade glioma is named secondary GBM (3).

In the course of primary GBM development, chromosome 7 gain and chromosome 10 loss have
led to the identification of platelet-derived growth factor subunit A (PDGFA) and phosphatase and
tensin homolog (PTEN) as driver genes (4). Based on genomic, transcriptomic, and proteomic
profiles, primary GBM has been further subclassified into classical (CL), proneural (PN), or
mesenchymal (MES) subgroups (5–8). While CL-GBM shows frequent epidermal growth factor
receptor (EGFR) amplification and cyclin-dependent kinase inhibitor 2A (CDKN2A) homozygous
deletion, PN-GBM is associated with amplification of platelet-derived growth factor receptor
alpha (PDGFRA) and tumor protein p53 (TP53) mutations. Finally, MES-GBM, is associated with
additional loss of neurofibromin 1 (NF1) gene, and co-mutated PTEN and TP53 tumor suppressor
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genes (4, 5). In sum, the genetic alterations that distinguish
all 3 GBM subgroups commonly hit the same three
major glioma signaling pathways: the RTK/RAS/PI3K
(proliferation), TP53 (apoptosis) and RB (cell division)
pathways (9). At the clinical level, MES-GBM shows the
shortest median survival (11.5 months), compared to
CL- and PN-GBM (14.7 and 17 months, respectively)
(10) (Figure 1). Within these 3 GBM subgroups, limited
therapeutic benefit has been observed (5, 6). Additionally, NFKB
inhibitor alpha (NFKBIA) deletion confers radio-resistance in
MES-GBM (20, 21).

Secondary GBM and its precursors harbor isocitrate
dehydrogenase [NADP(+)] 1 (IDH1) and 2 (IDH2)
mutations (collectively IDHmut), in addition to either TP53
mutations in low-grade astrocytoma (LGA) and high-grade
astrocytoma (HGA), or co-deletion of chromosome 1p/19q
in oligodendroglioma (ODG) (11, 22). In contrast to IDHwt,
glioma patients retrospectively identified as IDHmut showed
improved survival upon standard of care temozolomide
(TMZ) treatment (23). Together with histopathology, IDH
mutation and 1p/19q co-deletion statuses are now used
resulting in the current integrated WHO classification
(12). The classification of brain tumors into IDHmut (HGA,
LGA, and ODG) or IDH wild type (IDHwt; CL-, MES-, and
PN-GBM) has been further supported by methylomics (8)
(Figure 1).

FIGURE 1 | Classification of GBM based on histological, clinical, genetic, -omic, and immune features. IDHmut and IDHwt glioma subtypes are indicated in shades of

blue and red, respectively. Arrows indicate tumor progression. The definition of iTME composition is described in the relevant publications. Median survival of ODG

and diffuse astrocytoma is based on WHO grade II (3, 5–8, 10–19).

IMPLICATIONS OF GBM SUBTYPE ON
IMMUNE CELL INFILTRATES

GBMs frequently contain high proportions of non-neoplastic
immune cells that collectively form the immune tumor
microenvironment (iTME). The considerable number of
immune cells within these tumors may account for the gene
expression variability observed between GBM patient biopsies
(24). Tumor-associated immune cells primarily enrolled for
cytotoxicity against tumor cells, are typically hijacked by the
tumor to promote its progression through mutual tumor-
immune cell paracrine interactions and genetic reprogramming.
Furthermore, the high content of macrophages (M8) and
microglia (MG) and low frequency of lymphocytes in the
GBM-iTME classify GBM as a lymphocyte-depleted tumor
(25). Since studies describing the immune cell composition of
glioma biopsies in situ have used distinct methodologies and
calculation modes, interstudy comparison is not quantifiable.
Nevertheless, the superimposition of those data shows consistent
trends. First, IDHwt primary GBM patients, having shorter
overall survival relative to IDHmut secondary GBM patients,
show globally higher MG, M8, and T lymphocyte composition
(13). Then, among IDHmut, fromWHO grade II to IV secondary
GBM, progressively reduced patient outcome correlates with
increased MG, M8 and T cell contents (14). Finally, primary
GBM subgroups show differences in their immune composition,
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again linking tumor progression and reduced patient survival
with higher proportions of immune cells (15–17). Importantly,
NF1 loss (MES subtype) resulted in increased glioma-associated
microglia and macrophage (GAM) infiltration, which was even
more pronounced in recurrent GBM (10) (Figure 1). Thus,
there is convincing evidence of increased recruitment of tumor-
associated immune cells during brain tumor development,
suggesting an oncogenic contribution of the iTME. Hampering
this paracrine symbiotic association may lead to greater control
of tumor progression. Mechanistically, the accumulation of
2-hydroxyglutarate resulting from IDH mutations suppresses
the accumulation and activity of infiltrating T cells by impairing
the nuclear factor of activated T cells (NFAT) expression in
a paracrine manner (26, 27). Further, NF-κB activation of
GAMs mediates PN- to MES-GBM transition, while NF1
inactivation, a hallmark of MES-GBM, results in higher numbers
of infiltrating, anti-inflammatory, M2 GAMs and CD4+ memory
T cells (10, 21).

In parallel to IDHmut tumors and their hypermethylator
phenotype, GBM can acquire a hypermutator phenotype
resulting from TMZ-based chemotherapy (18, 28–31).
Concurrently, the accumulation of neoantigens stimulates
the recruitment of CD8+ T cells into the tumor (10). Thus,
the occurrence of spontaneous or TMZ-induced tumor-
specific neoantigens represents a potential modulator of iTME
composition and T cell-mediated anticancer cytotoxicity in
GBM. Altogether, the crosstalk between tumor and infiltrating
immune cells suggests possible therapeutic interventions to
redirect immune cells against neoplastic cells to further control
glioma progression.

CHARACTERIZATION OF THE GBM-iTME

The brain has historically been considered an immune-privileged
organ (32, 33). This concept was long supported by three main
observations: (a) the existence of a specialized vasculature in
the brain, termed the blood-brain barrier (BBB) (34), (b) the
lack of a conventional lymphatic system, (c) and a poorly
characterized brain-specific immune cell population—MG. This
classical dogma has been challenged by several studies that
demonstrated that the CNS is in fact actively interacting with
the immune system (35). Increasing evidence suggests that
inflammation is the prime cause of many neurodegenerative
diseases, and it is now generally accepted that the CNS undergoes
constant intrinsic and peripheral immune surveillance (36–
38). One such mechanism of immunosurveillance has been
elucidated by the discovery of a CNS-specific lymphatic system.
This study established that antigens and T cells can reach
the cervical lymph nodes through cerebrospinal fluid-filled
channels (39). In addition, antigens may also enter the cerebral
arteries and cervical lymph nodes through the Virchow Robin
perivascular spaces, and immunoglobulins are able to cross the
BBB via carrier-mediated transport (40, 41). Taken together, these
observations point toward the existence of important interactions
between the CNS and the immune system, and underscore the
role of the immune system in the induction and progression

of brain cancers. Moreover, they emphasize the potential for
immunotherapeutic approaches in the treatment of brain tumors.

The complex GBM-iTME is dominated by
immunosuppressive cytokines such as prostaglandin E2
(PGE2), transforming growth factor beta 1 (TGFB1), and
interleukin (IL)−6 and−10 (42, 43). Important “hubs of
immunosuppression” such as high expression of STAT3 or
FGL2 by GBM cells might directly act as paracrine mediators
on the pleiotropic iTME, and could be universally targeted
(44). In parallel, regulatory CD4+ T-helper cells (Tregs) are an
important immune population in the GBM-iTME (45). Both
natural Tregs (nTregs)—naturally occurring in the thymus—and
induced Tregs (iTregs)—induced by activation with antigen
or by antigen-presenting cells (APCs)—have been reported to
contribute to GBM-mediated immunosuppression, with nTregs
reportedly having a dominant role in the GBM-iTME (46).
Cytotoxic CD8+ T cells are very rare, accounting for under
20% of all CD3+ lymphocytes, and appear loosely distributed
in the GBM parenchyma (47). In an immunohistochemical
(IHC) study of tissue microarray cores from 284 gliomas,
the number of CD8+ tumor-infiltrating lymphocytes (TILs)
correlated negatively with tumor grade whereas the number of
CD4+ TILs displayed a positive correlation (48). Another recent
study reported that GBM-TILs increased their expression of
indoleamine 2,3-dioxygenase (IDO1), an enzyme that catalyzes
tryptophan (TRP) degradation, resulting in the depletion of TRP
in the local iTME and consequent inhibition of T cell responses
(49). Moreover, another study demonstrated that GBM patients
and GBM-graftedmice may harbor peripheral blood CD4+ T cell
counts as low as acquired immune deficiency syndrome subjects
and show T cell-deficient lymphoid organs. Concomitantly,
large numbers of T cells were instead found sequestered in the
bone marrow (BM), accompanied by tumor-imposed loss of
sphingosine 1 phosphate receptor 1 (S1PR1) from the T cell
surface (50).

Yet, perhaps the most notable aspect of the GBM-iTME is
its population of tumor-associated M8 and MG—collectively
referred to as GAMs. These are the most abundant GBM-
infiltrating immune cells and may contribute to up to half of
the total tumor mass (51, 52). In addition to the recruitment
of brain-resident MG to the tumor site, the high number
of GAMs in glioma is a cumulative result of the influx
of myeloid-derived M8 into the brain as a consequence of
tumor-induced neoangiogenesis and inflammatory stimuli. This
inflammatory iTME acts in an immunosuppressive manner
to promote tumor progression [e.g., via reprogramming of
GAMs to anti-inflammatory states by paracrine tumor cell-GAM
crosstalk (53–56)]. The contribution of GAMs to gliomagenesis
continues to unveil the complex interactions of GBM cells
with their microenvironment (53, 54, 57). Together, these
data suggest that in addition to T cells, GAMs represent an
attractive cell population with an intrinsic functional repertoire
that may be reprogrammed to target tumor cells. In the
Supplementary Information and Supplementary Table 1 of this
review, we provide a comprehensive overview of the most recent
clinical trials and their strategies in interfering with the innate
and adaptive GBM-iTME.
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DISTINCTION OF BM-DERIVED M8 FROM
BRAIN-RESIDENT MG

MG are dynamic and specialized CNS-resident immune cells.
Their name was first coined by Pío Del Río Hortega, then
a student of Santiago Ramón y Cajal, and published in the
Bulletin of the Spanish Society of Biology in 1919. MG are
constantlymonitoring the CNS and become activated in response
to pathogens or CNS injury (58, 59).

Various experiments including parabiosis, adoptive transfer
and fate mapping studies conducted in mouse models have
elucidated our understanding of MG and their distinction from
peripheral, BM-derived M8 (51, 60–65). MG and M8 are thus
distinct and ontogenically different cell populations (54).

Despite the separate origins of MG and M8, GAM
accumulation within and around GBM has raised interest
in dissecting the roles of these cells in tumor progression.
Many common chemoattractant factors have been identified
for MG and M8 (57). In the healthy brain, the CX3C motif
chemokine receptor 1 (CX3CR1) is mostly expressed by MG
and has been established as a reliable marker for MG imaging
(57). Notably, a polymorphism in the CX3CR1 gene has been
associated with reduced tumor infiltration by MG which led
to increased survival of GBM patients (66). Others reported
conflicting findings regarding the importance of CX3CR1 and its
ligand—CX3C motif chemokine ligand 1 (CX3CL1)—in tumor-
directedMGmigration (67, 68). However, infiltratingmonocytes,
differentiating into M8 express it as well, implying that CX3CR1
does not represent aMG-specificmarker, especially in the context
of glioma (67). Notably, a recent study identified perivascular,
meningeal, and choroid plexus M8 as non-parenchymal brain
M8 that mediate immune responses at the brain boundaries
and, like MG, express CX3CR1 in the healthy brain (69).
One of the first chemoattractant factors identified is CC motif
chemokine ligand 2 (CCL2) or MCP1. Ectopic expression of
CCL2 in rat glioma cells showed increased tumor growth, with
massive infiltration of MG/M8, resulting in reduced survival
(70). Interestingly, it has been recently described that in mice,
MG, in contrast to M8, do not express the CCL2 receptor, CC
motif chemokine receptor 2 (CCR2), providing a novel model
to investigate monocyte subset trafficking within the GBM-iTME
(71). In fact, Hutter and colleagues used a Ccr2 knockout mouse
model which limits M8 infiltration into the tumor site, enabling
the specific study of MG within the GBM iTME (72). Colony
stimulating factor 1 (CSF1) or M-CSF is another potent GAM-
recruiting cytokine. Blocking its receptor, colony stimulating
factor 1 receptor (CSF1R) reduced GAM density and attenuated
GBM invasion in vivo (73, 74). Similar results were reported
by a knockdown of its close relative, CSF2, which resulted in
reduced MG-dependent invasion in organotypic brain slices as
well as diminished growth of intracranial gliomas accompanied
by extended survival in animal models (75).

Approaches to distinguish these cell populations have
traditionally relied on the expression of the hematopoietic
marker CD45, with yolk sac-derived MG being CD45low and
infiltrating M8 of hematopoietic origin CD45high (76). This
paradigm has been recently challenged by a study using irradiated

chimeras with head protection which impeded the massive
unspecific influx of monocytes due to a disrupted BBB. The
authors showed that MG are able to upregulate CD45 and
represent an inherent part of the CD45high population in the
tumor context (77).

Therefore, better targets are needed to accurately distinguish
resident MG from infiltrating inflammatory monocytes and non-
parenchymal brain M8 to better understand their contribution
in glioma formation, maintenance, and progression.

In a traumatic brain injury model, in vivo time-lapse 2-photon
imaging of MG revealed their rapid and targeted migration and
process extension to the site of injury, establishing a barrier
between the healthy and injured tissue. This rapid chemotactic
response is mediated by the release of nucleotides following CNS
injuries (59). MG express several G protein-coupled receptors,
including the G protein-coupled purinergic receptor P2Y 12
(P2RY12), a putative primary site where nucleotides act to induce
MG chemotaxis. P2RY12 is also expressed on platelets and
required for normal platelet aggregation and blood coagulation
(78). In the brain parenchyma, its expression is well-limited
to MG, making it a very useful marker in MG identification
(79). Another useful marker to distinguish MG from infiltrating
M8 is integrin subunit alpha 4 (ITGA4) or CD49D, which was
specifically repressed in the MG of different mouse models of
glioma. Its translational relevance has also been shown in human
GBM biopsies (53).

Recent advances in RNA sequencing and other cell profiling
technologies have enabled the discovery of cell-type-specific
signature genes. Among these, a transmembrane protein of
unknown function—transmembrane protein 119 (TMEM119)—
is exclusively expressed by MG in the human and mouse brain
(80). Hence, TMEM119-specific antibodies are now widely used
in IHC and flow cytometric (FC) applications. The ongoing
large-scale transcriptional profiling of MG further identified
novel cell lineage-specific genes like hexosaminidase subunit
beta (HEXB), which is highly expressed in MG and encodes a
subunit of the lysosomal enzyme hexosaminidase, that catalyzes
the degradation of gangliosides (81). These novel instruments
for cell-specific tracking and genetic modulation will enhance
the specificity and sophistication of MG studies as well as our
understanding of MG functions in the context of glioma.

MG ACTIVATION AND IMMUNE CELL
INTERACTIONS IN THE GBM-iTME

MG accumulated within GBM typically undergo amorphological
transformation from a ramified, resting phenotype, to an
amoeboid, activated state (51). For M8, different types of
activation have been defined following in vitro stimulation.
The pro-inflammatory M1 phenotype is typically acquired after
stimulation with IFNγ, alone or in concert with microbial cues
such as LPS. Whereas, anti-inflammatory molecules, such as IL-
4, -10, and -13, are inhibitors of M8 activation and induce
the alternative M2 phenotype (82, 83). These polarized M8

subpopulations differ in terms of receptor expression, effector
function, and cytokine and chemokine production (83). Given
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that these definitions of the different activation states are based
on in vitro conditions, and the M1 and M2 phenotypes represent
the extremes of a broader spectrum of functional states, they are
only to some extent translatable to the in vivo settings. In the era
of single cell sequencing and mass cytometry, and much more
detailed functional state analysis, this polarization classification
may soon become obsolete in the MG field. Nevertheless, several
studies have analyzed the expression of M1 and M2 markers
among GBM-associated GAMs and concluded that, similarly to
other solid tumor types, they predominantly exhibit an anti-
inflammatory M2 polarization and reduced phagocytic activity
(54, 84–87). It is believed that glioma-derived molecules such as
CSF1 induce the shift of MG and M8 toward the M2 phenotype
and thus create a favorable microenvironment for GBM growth
(86). In addition, GAM expression of CD163 and macrophage
scavenger receptor 1 (MSR1) or CD204, both of which are
considered M2 M8 markers, was significantly higher in grade
IV GBM when compared to low-grade glioma (LGG), indicating
that polarization of GBM-associated MG and M8 toward the
M2 phenotype correlates with a more malignant histological
grade (55). Accordingly, others identified the expression of
CD74, an M1 polarization marker, by human GAMs to be
positively correlated with the overall survival of GBM patients
(88). However, useful they may have been in establishing and
dissecting the functions of MG, the traditional M1 and M2
phenotypes, and the resulting classification of MG responses into
a binary system of pro- or anti-inflammatory has so far produced
an oversimplified insight to their complex roles in the context of
brain diseases (89, 90).

Studies of human and murine neurodegenerative diseases,
as well as brain tumors, have identified genes and their
encoded proteins previously known to be expressed in the
DC compartment of the peripheral immune system. Moreover,
transcriptomics data from diverse neurodegenerative disease
studies show MG upregulation of genes involved in APC-T cell
interactions (91). Interestingly, similar trends have been found
in MG isolated from GL261 syngeneic GBM mouse models as
well as in tumor biopsies of GBM patients. This upregulated gene
set included human andmouse homologs of immunosuppressive
modulators (C type lectin domain containing 7A, CLEC7A;
glycoprotein nmb, GPNMB; leukocyte immunoglobulin like
receptor B4, LILRB4; and PDCD1) as well as stimulators
(integrin subunit alpha X, ITGAX or CD11C; and secreted
phosphoprotein 1, SPP1) of the adaptive immune system.
Collectively, these studies show that MG derived from tumor and
neurodegenerative states both contribute to immunosuppression
and altered T cell responses in the brain (92–94).

In fact, a recent study showed that in the context of
Alzheimer’s disease (AD), chronically activated MG limit
CD3+/CD8+ T cell recruitment to the brain (95). Another
study with GL261 murine glioma models demonstrated that MG
are functional APCs and are required for complete antigen-
specific CD8+ T cell responses in an MHC class I-dependent
manner (96). Given the parallels between the inflammatory states
resulting from brain tumors and neurodegenerative diseases, a
better understanding of the link between innate and adaptive
immune responses in the brain in combination with an improved

characterization of MG heterogeneity, remain future directions
for targeted immunotherapies against GBM.

Recently, combined high-throughput technologies of
regionally annotated MG cells and intratumoral MG have
mapped specific functional differences of MG in healthy
vs. GBM-burdened brains. In non-neoplastic brains, nine
clusters of heterogeneous MG functional states were identified
whereas in GBM-associated MG, single-cell RNA sequencing
(scRNA-seq) revealed even more heterogeneity–15 clusters—
with upregulation of pro-inflammatory and metabolic genes,
including SPP1, and several type I interferon genes, including
apolipoprotein E (APOE) and CD163. By concurrent mass
cytometry, the upregulation of HLA-DR, triggering receptor
expressed on myeloid cells 2 (TREM2), APOE, adhesion G
protein-coupled receptor G1 (ADGRG1) or GPR56, solute
carrier family 2 member 5 (SLC2A5) or GLUT5, and Fc fragment
of IgG receptor Ia (FCGR1A) or CD64 was confirmed in GBM-
associated MG vs. normal control MG (97). This underscores
the diversity and plasticity of MG in the healthy brain and the
GBM-iTME, and reiterates the difficulty in targeting these cells
for treatment.

MG IN GBM PROGRESSION

Early co-culture studies noted that the motility of murine glioma
cells was increased in the presence of MG, and that this glioma-
promoting effect could be further enhanced by MG-activating
substances like CSF2 (98). GBM cells are known to constitutively
release CSF1 and CSF2, which act as chemoattractants for MG
and convert GAMs to protumoral phenotypes (74). Consistent
with the tumor-promoting effect of CSF1, blockade of CSF1R
led to decreased expression of M2 markers in GAMs, resulting
in regression of established tumors and increased survival in a
mouse GBM model (74). To summarize, once MG and M8 are
recruited to the tumor site and re-educated to a protumorigenic
phenotype, mutual paracrine signaling between GAM and GBM
cells is established whereby glioma growth and invasion are
promoted. Similar effects on glioma cells could be shown by
using GAM-conditioned media instead of co-cultures (98).
Many of the soluble factors involved in GAM-glioma crosstalk
have been identified, such as epidermal growth factor (EGF),
which is released by MG and stimulates GBM cell migration
and invasion via the commonly upregulated epidermal growth
factor receptor (EGFR) on glioma cells (73). Other factors
include anti-inflammatory TGFB1 and IL-10, pro-inflammatory
molecules like TNF, IL-1B, and IL-6, as well as pro-angiogenic
factors like vascular endothelial growth factor A (VEGFA).
TGFB1 promotes the migration of glioma cells via processes
that likely involve the upregulation of integrin expression and
function (99). Furthermore, TGFB1 induces the release of matrix
metallopeptidase 2 (MMP2) in its inactive form—pro-MMP2—
which becomes activated upon cleavage by the membrane-bound
matrix metallopeptidase 14 (MMP14) (99, 100). GBM-associated
MG upregulate MMP14 and thereby facilitate the invasion of
glioma cells into the brain parenchyma by metalloproteinase-
mediated degradation of the extracellular matrix (100). A recent
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study by Walentynowicz et al. sought to assess the role of human
GBM conditioned media on human MG cell lines on the MG
transcriptome. TGM2 andGPNMBwere identified across various
datasets, but their relevance is awaiting further experimental
validation (101).

Along with this paracrine glioma-promoting effect, GAMs
also enable GBM engraftment and invasion by failing to
efficiently eliminate cancer cells by phagocytosis. Their role as
phagocytic innate immune cells is perturbed by glioma cells
rendering MG and M8 to an anti-inflammatory, antiphagocytic
M2 phenotype (102). Moreover, upregulation of the so-called
“don’t eat me” signals on the surface of glioma cells and masking
of antigenic sites by overexpressing sialic acid-rich glycoproteins
are both effective strategies to inhibit phagocytosis and evade
innate immune surveillance (103–105).

MODELING MG-GBM INTERACTIONS

The generation of a mouse strain in which the Cx3cr1 locus
was replaced by a green fluorescent protein (GFP) reporter gene
(Cx3cr1+/GFP) allowed for the first time the direct study of MG
in vivo using 2-photon-microscopy (106, 107). This mouse line
strongly labels MG and is the best-studied model in MG research
(106, 108). To further exploit the Cx3cr1 promoter activity, the
Cx3cr1 gene was replaced with sequences encoding either Cre
recombinase (Cx3cr1Cre) or a Cre recombinase fused to a mutant
estrogen ligand-binding domain that requires the presence of
the estrogen antagonist tamoxifen for activity (Cx3cr1CreERT2)
(109). These mouse lines enabled a conditional, MG-specific
constitutive or inducible gene knockout, which advanced the
specificity of MG research significantly (Table 1).

Even though CX3CR1 is highly expressed on MG, it is
expressed as well on M8, monocytes, and DCs (106). P2RY12,
on the other hand, was initially investigated for its function
as a regulator of platelet adhesion and activation. P2RY12-
deficient mice were therefore primarily used to study platelet
physiology and blood coagulation (110, 111). Eventually, P2RY12
was identified as a MG-specific marker in the brain parenchyma
and P2ry12−/− MG reporter mice were generated, allowing the
study of P2RY12-mediated MG chemotaxis to the site of BBB
injuries (79, 112) (Table 1).

Gene expression profiling not only identified MG specific
surface proteins but also MG signature genes such as spalt like
transcription factor 1 (Sall1), which encodes a transcriptional
regulator (113). Accordingly, the introduction of Sall1GFP and
Sall1CreERT2 knock-in mouse lines represent more distinct
models for MG tracking and genetic modulation in vivo
(114, 115). The ongoing efforts, mainly based on large-scale
transcriptional analysis of MG cells, will keep providing novel
targets for even more specific in vivo imaging and modulation.
Very recently demonstrated by the discovery of TMEM119
which was shortly followed by the introduction of a knock-
in Tmem119EGFP reporter mouse line and Tmem119CreERT2

mice (80, 116) (Table 1).
With the increased interest in M8-focused immuno-

oncology, assays that robustly and reproducibly determine the

prophagocytic effect of a therapeutic agent of interest, are
constantly evolving as well. While the first reports of the
beneficial effect of CD47 disruption in leukemia cells, were
mainly based on classical fluorescence microscopy, calculating
the phagocytic index by dividing ingested cells by the total
number ofM8, they were soon replaced by FC-based approaches
to better identify also smaller effect sizes in other tumor models
(103, 117–121). In these experiments, phagocytes were identified
by specific markers and co-incubated with cell-dye labeled tumor
cells. M8 that had successfully phagocytosed tumor cells were
also positive for the tumor cell stain. However, this method
lacks the optical confirmation that the tumor cell has been really
engulfed by the phagocytic cell, which is why many studies
still included a microscopic assessment or use more elaborately
time-lapse live-cell microscopy which offers not only spatial
but also temporal information (122). Technological advances
enable the better identification of phagocytic events as well, as
seen with the introduction of imaging FC, which combines the
high throughput analysis of FC with the detailed morphometric
information of fluorescence microscopy (123). Besides these
in vitro phagocytosis assays, many efforts are undertaken to
make the complex interplay between tumor cells and phagocytes
visible. In many studies, after a specific treatment in vivo, the
tumor mass is resected and dissociated and within the single-
cell suspension, phagocytosis is measured as the ratio of the
double-positive M8 population by FC (118, 120, 122). This
approach compared to in vitro models allows for a better
understanding of the complex interface between innate and
adaptive immune systems as they orchestrate the antitumor
immune response together (124). More sophisticated and direct
approaches employ specific reporter mice that enable in vivo
imaging using 2-photon microscopy. As shown in their recent
publication, Hutter et al. were able to demonstrate real-time
phagocytosis of living glioma cells by MG and M8 upon
CD47 disruption using Ccr2+/RFP Cx3cr1+/GFP reporter mice,
allowing the direct study of these cells in the TME (72). As new
targets in innate immunotherapy are emerging, sophisticated
methods will be needed to validate their prophagocytic capacity
and clinical potential in cancer therapy, such as 3D cultures
and tissue culture bioreactors for improved ex vivo tissue
preservation (125). Another promising technology to study
cell interactions, tissue composition, and spatial distribution of
the iTME is high-dimensional multiplexing—CO-Detection by
indEXing (CODEX)—that allows in situ tissue cytometry with
the detection of over 50 parameters (126).

MG TARGETING AND MODULATION

As the largest immune cell population and one that positively
correlates with glioma malignancy, invasiveness, and grade, MG
represent the primordial target for modulation and antitumor
immunotherapy. In this context, most strategies so far aimed
at impairing GAM recruitment to the tumor site, thereby
preventing their glioma-promoting effects. This included the
previously mentioned blockade of CSF1R, disruption of periostin
(POSTN), which is secreted by GSCs, and recruits GAMs
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through integrin αvβ3 signaling, or inhibition of the CXC
motif chemokine receptor 4 (CXCR4) chemotactic pathway
(53, 74). The latter has been mainly implicated in M8

mobilization through increased CXC motif chemokine ligand
12 (CXCL12) expression after radiation therapy (127). In
combination with radiotherapy, a small molecule inhibitor of
CXCL12/CXCR4 interactions prevented GAM infiltration and
tumor recurrence (128). Another approach aimed at reversing
the MG tumor-promoting effects and re-educating them to
an antitumor phenotype. One report showed that activated
NK cells combined with an antibody against chondroitin
sulfate proteoglycan 4 (CSPG4) on GBM cells, were able to
reverse the GAM phenotype (129). Osteopontin (OPN/encoded
by SPP1) is another promising candidate protein secreted
by GBM cells, which has prognostic implications and drives
the protumorigenic reprogramming of MG, which can be
therapeutically targeted (130, 131).

Recently, the focus has shifted toward the phagocytic role of
MG as part of innate immune surveillance, most often targeted
through the CD47/signal regulatory protein alpha (SIRPA)
and the sialic acid/sialic acid binding immunoglobulin like
lectin (SIGLEC) phagocytosis axes. CD47 is a widely expressed
transmembrane protein with numerous functions, among which
the inhibition of phagocytosis (132). Upon binding and activating
its receptor SIRPA on the surface of mononuclear cells, CD47
inhibits the phagocytic activity of M8 and MG (133). This
antiphagocytic signal is transmitted via phosphorylation of the
immunoreceptor tyrosine-based inhibitory motif (ITIM) on the
cytoplasmic tail of SIRPA. Subsequent binding and activation of
the protein-tyrosine phosphatase non-receptor type 6 (PTPN6)
and 11 (PTPN11) blocks phagocytosis, putatively by preventing
the accumulation of myosin-IIA at the phagocytic synapse (134).
However, CD47 expression is best characterized for its role in
hematopoietic cell homeostasis, particularly in red blood cells
and platelets, where it is required to prevent their elimination by
splenic M8. CD47 is thus considered a marker of self (133). In
pathological processes, inflammation-mobilized hematopoietic
stem cells protect themselves from phagocytosis by upregulating
CD47 on their surface (117). This CD47 overexpression is co-
opted by tumor cells and represents a common feature of
hematologic and solid tumors, allowing them to evade innate
immune surveillance (103, 117–119).

As a major “don’t eat me” signal, CD47 is highly upregulated
on the surface of nearly all human tumor cell types, including
GBM cells. Transcriptional analysis of glioma patients revealed
that high CD47 mRNA expression levels were associated with
decreased progression-free and overall survival, suggesting that
CD47 expression levels may serve as a clinically relevant
prognostic factor (103). Willingham et al. were the first to
describe the GAM re-educating effect of CD47 blockade in
models of GBM. Using targeted monoclonal antibodies against
CD47 enabled M8-dependent phagocytosis of patient-derived
GBM neurospheres in vitro. Furthermore, the administration
of anti-CD47 antibodies inhibited tumor growth and increased
the survival of orthotopic immunodeficient mice transplanted
with patient derived GBM cells, providing the first preclinical
validation of CD47 as a therapeutic target in GBM (103).

TABLE 1 | Current MG mouse models.

Target gene Modifications References

Cx3cr1 Cx3cr1+/GFP (106)

Cx3cr1GFP/GFP

Cx3cr1Cre (109)

Cx3cr1CreERT2

P2ry12 P2ry12−/− Cx3cr1+/GFP (79)

Sall1 Sall1GFP (114)

Sall1CreERT2 (115)

Tmem119 Tmem119EGFP (116)

Tmem119CreERT2

Additional studies showed that anti-CD47 treatment repolarized
GAMs in vivo to an M1 phenotype and that both M1- and M2-
polarized M8 alike displayed a higher GBM cell phagocytosis
rate under anti-CD47 treatment (120). The therapeutic safety
and efficacy of anti-CD47 treatment was also demonstrated
in mouse models of murine high-grade glioma as well as
five aggressive and etiologically distinct human pediatric brain
tumors (medulloblastoma, atypical teratoid/rhabdoid tumor,
primitive neuroectodermal tumor, pediatric GBM, and diffuse
intrinsic pontine glioma) (121).

More recently, Hutter et al. dissected the response of MG and
infiltrating peripheral M8 upon anti-CD47 treatment in GBM.
Using amouse model with genetically color-codedM8 (Ccr2RFP)
and MG (Cx3cr1GFP), they showed that even in mice lacking
Ccr2-mediated M8 recruitment to the brain (Ccr2RFP/RFP

Cx3cr1GFP/+), MG-mediated GBM phagocytosis was sufficient
to reduce tumor burden and prolong survival under anti-CD47
treatment. This observation led to the identification of MG as
effector cells of GBM cell phagocytosis in response to CD47
blockade (72).

Comparable to CD47 overexpression, the aberrant
glycosylation of cancer cells represents a common feature
of malignant transformation (135, 136). These glycoproteins
and glycolipids are often terminated by negatively charged
sialic acids. Sialic acids are derivatives of neuraminic acid,
and the predominant sialic acid found in mammalian cells
bears at its amino site an acetyl group, therefore termed
N-acetyl-neuraminic acid. The addition of sialic acids is
mediated by sialyltransferases, a family of glycosyltransferases
(137). Hypersialylation, meaning the upregulation of sialic
acid-containing glycans (sialoglycan) on the cell surface
through altered sialyltransferase expression and the increased
introduction of non-human sialic acids like N-glycolyl-
neuraminic acid (xenosialylation) are, together with the altered
glycosylation itself, key changes of malignant tissue and
important for cancer progression (138, 139).

Sialic acids can modulate the iTME through SIGLEC
engagement. To date, 14 human and nine mouse SIGLECs have
been identified, differing in their sialic acid ligand specificity and
intracellular signaling cascades. SIGLECs are expressed on most
cells of the immune system and can transmit immunosuppressive
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signals upon binding to sialic acids. Similar to the inhibitory
SIRPA receptor—inhibitory SIGLEC receptors contain ITIMs
in their intracellular domain that signal negatively via the
recruitment of PTPN6 and 11 (140). The physiological role
of SIGLECs to recognize sialic acids as self-associated patterns
and therefore counter-regulate overshooting immune reactions
and limit tissue damage during inflammation can be exploited
by cancer cells (141). Hypersialylation of tumor cells can thus
contribute to tumor immune evasion (104).

Initially, immunoinhibitory SIGLECs in brain pathologies
were primarily associated with CD33 or SIGLEC3 as a genetic
risk factor for AD (142–144). Subsequent functional studies
showed that CD33 inhibits MG uptake of amyloid-β plaques
in diseased brains (145). More recently, CD22 or SIGLEC2 was
also identified as a negative regulator of phagocytosis that is
upregulated on aged MG. Inhibition of CD22 promoted the
clearance of myelin debris, amyloid-β oligomers, and α-synuclein
fibrils in an AD model (146). Other studies identified important
roles of SIGLECs in neuro-inflammatory diseases, where
immunoinhibitory SIGLECs convey neuroprotective functions
by alleviating especially MG neurotoxicity (147, 148).

With the paradigm shift in cancer therapy that came with
the discovery of immune checkpoint inhibitors, the sialoglycan-
SIGLEC pathway attracted recently a great deal of attention as
a novel target for cancer immunotherapy. This holds especially
true in brain malignancies, since phase II and III clinical trials
of classical immunotherapeutic agents like PDCD1 and CD274
inhibitors showed no significant improvement in the median
overall survival of GBM patients (149). Correlative single-cell
transcriptomic analysis, including The Cancer Genome Atlas
(TCGA) data, showed that most members of the SIGLEC
family are differentially expressed in glioma. Interestingly, several
SIGLEC receptors are predominantly expressed on M8 and
GAMs with higher expression levels observed in high-grade
gliomas (150).

In a more translational approach, others investigated the
role of immunomodulatory SIGLECs in the treatment with
glucocorticosteroids, including dexamethasone, which is
frequently used to control tumor-induced edema in brain tumor
patients. They found alterations in tumor cell surface sialylation
and SIGLEC recognition in response to dexamethasone
treatment (151). Specifically, MG showed an upregulation
of SIGLEC receptors together with induction of an anti-
inflammatory cytokine profile, indicating a crucial role of
SIGLECs in dampening the dexamethasone-induced antitumor
immunity (152). The first experimental evidence that linked
SIGLECs with whole tumor cell phagocytosis in glioma dates
back to 2013, when Siglec H, a MG-specific marker, was
suggested to be a phagocytic receptor for glioma cells (153–155).
Novel insights into the sialic acid-SIGLEC antiphagocytic axis
have recently emerged. In particular, SIGLEC10 was identified
as the receptor of CD24, an additional “don’t eat me” signal.
Tumor-expressed CD24 promoted innate immune evasion
through its interaction with GAM-expressed SIGLEC10 (122).
Another study focused on SIGLEC15 as an immune suppressor
and potential target for cancer immunotherapy. Using a genetic
mouse model and intracranial injection of murine glioma cells,

the authors found significantly slower tumor growth associated
with more M8 and CD8+ T cells in the TME upon genetic
ablation of SIGLEC15. Together with ex vivo restimulation
assays, their data support a role for SIGLEC15 in M8-mediated
suppression of tumor immunity (156). The mounting evidence
of SIGLEC engagement by cancer cells to evade the antitumor
immune response, especially innate immune response, make
sialic acid-SIGLEC interactions very attractive candidates for
potentiating antitumor immunity in GBM.

DISCUSSION: EMERGING LOCAL AND
COMBINATORIAL APPROACHES FOR THE
TREATMENT OF GBM PLACE MG AT THE
CENTER STAGE

Despite advances in surgical techniques, radiation therapy,
and chemotherapy, effective treatment of GBM remains an
unresolved challenge. Today’s unspecific approach of alkylating
chemotherapy and radiation therapy causes major toxicities and
debilitating side effects. Better ways to control this devastating
disease are urgently needed.

We previously showed that modulation of MG within
GBM (e.g., by CD47-SIRPA disruption), can control GBM
progression by rendering MG tumor-phagocytic. Although
disrupting CD47-SIRPA modulates M8 and MG anti-GBM
activity and reprograms the immunosuppressive iTME, GBM
represents a heterogeneous tumor entity with a multitude of
deregulated cancer pathways. Therefore, a subset of tumor
cells will evade the MG-mediated antitumor response and
develop resistance. We are thus convinced that reprogramming
of MG within the tumor will not suffice by itself to halt
GBM entirely, especially in view of emerging insights into
MG heterogeneity. On the other hand, pure tumor-targeting
approaches, vaccinations with tumor antigens, monoantigenic
CAR T cells, or intratumoral cytokine deliveries are all prone
to failure because of the overwhelming immunosuppressive
contribution of the iTME, and specifically tumor-educated
MG. Therefore, more sophisticated combinatorial approaches
that target MG, adaptive immunity, and tumor cells at once
are mandated.

We believe that MG are at the centerstage for modulation
in the iTME, since this will also influence the antitumoral
capacity of other components of the iTME such as TILs [e.g.,
via enhanced antigen presentation (157)]. The capacity to of MG
to present antigens (e.g., after tumor cell phagocytosis) needs
to be evaluated further and with novel techniques in various
experimental contexts since this might offer key insights into
potential combinatorial strategies with vaccination studies or T
cell checkpoint inhibitor treatments. How MG modulation and
reprogramming is best achieved, and which—often redundant—
immune evasion mechanisms should be targeted to achieve a
durable induction of antitumoral activity is largely unknown.
On top, the additional M8 modulation and recruitment effects
caused by the treatments should be considered, since additional
recruitment of BM-derivedM8might cause increased unwanted
side effects such as enhanced edema. Prophagocytic pathways
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FIGURE 2 | Combinatorial approaches of local MG modulation and other treatment modalities against GBM. Means of local MG modulation (upper right): MG can be

targeted locally beyond the BBB by various approaches to influence MG phagocytosis, enhance antigen presentation, and revert generalized immunosuppression.

Prominent potential means to locally modulate MG include anti-CD47 or anti-Siglec treatments, intratumoral desialylation, application of pro-inflammatory cytokines,

“reprogramming” by blocking CSF1 signaling, or addition of immunomodulatory nanoparticles. Some of these modalities would also interfere with infiltrating BMDMs

(e.g., anti-CCL2 blockade). Overall, this would enable other tumor specific or immunotherapeutic regimens to exert their antitumorigenic activity. Combinatorial

approaches with MG modulation: Personalized vaccination, oncolytic viral therapy, or bacterial based approaches: the effect of tumor-specific vaccinations, oncolytic

viruses, or tumor-targeting bacteria might be significantly enhanced when tumor-associated MG is reverted to a less immunosuppressive phenotype. MG modulation

+ tumor-targeting CAR T cell therapy: combining MG modulation with tumor antigen-specific CAR T cell therapy poses another way to circumvent current obstacles

in GBM therapy. Local application of MG modulation and tumor-specific CAR T cells might result in better GBM control. Novel CAR T products could combine MG

modulation (e.g., by reprogramming MG and targeting the tumor at once). MG modulation + chemotherapy or targeted treatments: tumor cells respond to

established chemotherapy with increased expression of “eat-me” signals. Combinatorial strategies of already established chemotherapies with inducers of MG

phagocytosis could improve treatment responses. MG modulation + T cell checkpoint therapy: this dual strategy of targeting the major players of the

GBM-iTME—MG—and facilitating an intratumoral T cell response in addition to a putative MG-mediated T cell response might boost tumor regression. Further, the

thorough analysis of tumor-phagocytosing MG vs. non-phagocytosing MG, their MHC molecules and linked, presented antigens, could lead to the discovery of novel

tumor antigens and result in potential vaccination candidates. MG modulation + angiogenesis inhibition: anti-VEGFR treatment serves as a salvage therapy in

recurrent GBM. Additional MG activation might prevent development of early resistance. MG modulation + radiation therapy: in line with chemotherapy, radiation

therapy enhances immune responses and upregulates “eat-me” signals on tumor cells. Additional MG modulation could increase efficacy and long term treatment

responses. Created with Biorender.com.
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beyond CD47-SIRPA with higher MG specificity might be
particularly attractive to tailor the MG response. However, an
overshooting MG induction might as well-lead to deleterious
effects in the brain (e.g., via hyperphagocytosis), and treatment
effects, timing, and delivery need to be carefully validated in
future clinical trials. Since most systemic treatments in brain
tumors do not effectively reach the tumor because of the
BBB, local/continuous application of these treatment regimens
might be most effective, and application of these treatments
in the early phase of the disease would be preferable over the
post-treatment recurrent situation, where the iTME and tumor
resistance mechanisms are even more deranged. Besides that,
it remains to be studied, whether these treatments should be
applied before or after tumor resection, and whether targeting
of the peripheral invasion zone of the tumor, where presumably
a lot of iTME reprogramming happens, might be advantageous.
A multitude of strategies for MG modulation may unleash
the inherent antitumoral armamentarium of MG and have
translational potential; future translational research and clinical
trials should pave the way on how to optimally design these
approaches against GBM. In Figure 2, we summarize promising
combinatorial treatment strategies to overcome these challenges.
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