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High-throughput laboratory evolution reveals
evolutionary constraints in Escherichia coli
Tomoya Maeda 1,4✉, Junichiro Iwasawa 2,4, Hazuki Kotani1, Natsue Sakata1, Masako Kawada1,

Takaaki Horinouchi1, Aki Sakai1, Kumi Tanabe1 & Chikara Furusawa 1,2,3✉

Understanding the constraints that shape the evolution of antibiotic resistance is critical for

predicting and controlling drug resistance. Despite its importance, however, a systematic

investigation of evolutionary constraints is lacking. Here, we perform a high-throughput

laboratory evolution of Escherichia coli under the addition of 95 antibacterial chemicals and

quantified the transcriptome, resistance, and genomic profiles for the evolved strains. Uti-

lizing machine learning techniques, we analyze the phenotype–genotype data and identified

low dimensional phenotypic states among the evolved strains. Further analysis reveals the

underlying biological processes responsible for these distinct states, leading to the identifi-

cation of trade-off relationships associated with drug resistance. We also report a deceler-

ated evolution of β-lactam resistance, a phenomenon experienced by certain strains under

various stresses resulting in higher acquired resistance to β-lactams compared to strains

directly selected by β-lactams. These findings bridge the genotypic, gene expression, and

drug resistance gap, while contributing to a better understanding of evolutionary constraints

for antibiotic resistance.
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The emergence of antibiotic resistance and multidrug-
resistant bacteria is a growing global health concern1–4,
and alternative strategies for suppressing the emergence of

resistant bacteria are actively being sought. Various mechanisms
for antibiotic resistance have been identified, including the acti-
vation of efflux pumps, modifications of specific drug targets, and
shifts in metabolic activities5–10. Quantitative studies of resistance
evolution showed that these mechanisms for resistance are tightly
interconnected, as demonstrated by the complicated networks of
cross-resistance and collateral sensitivity among drugs11–15,
which is the phenomena whereby the acquisition of resistance to
a certain drug is accompanied by resistance or sensitivity to
another drug. Such interactions among resistance mechanisms
result in constraints on accessible phenotypes in evolution16–18.
For example, the cyclic or simultaneous use of two drugs with
collateral sensitivity, to which pathogens did not easily acquire
resistance simultaneously, were demonstrated to suppress resis-
tance evolution19,20. Thus, elucidating evolutionary constraints
are crucial for predicting and controlling the evolution of anti-
biotic resistance; however, despite its importance, a systematic
investigation of evolutionary constraints for antibiotic resistance
evolution is still lacking.

Laboratory evolution associated with genotype sequencing and
phenotyping is an effective approach to investigate constraints in
adaptive evolution21–23. Here, we perform high-throughput
laboratory evolution of Escherichia coli under 95 heterogeneous
stressors (Supplementary Data 1). To analyze the expanded cross-
resistance/collateral sensitivity network, including both antibiotic
and non-antibiotic stressors, while elucidating the molecular
mechanisms associated with resistance acquisition, we choose a
variety of antibacterial chemicals, including antibiotics with var-
ious mechanisms of action, and non-antibiotic toxic chemicals,
against E. coli. We quantify changes in the transcriptome, geno-
mic sequence, and resistance profile in the evolved strains, pro-
ducing a multiscale dataset for analyzing stress resistance. By
analyzing the gene expression-resistance map through machine-
learning techniques, we show the emergence of low dimensional
phenotypic states in the evolved strains, indicating the existence
of evolutionary constraints. We then analyze the underlying
biological processes corresponding to each state by introducing
the representative mutations to the parent strain. To examine
whether the whole population or only a subset of cells are phe-
notypically resistant, we conduct a population analysis profile
(PAP). Heteroresistance is a common phenomenon for several
bacterial species, and antibiotic classes, in which a subpopulation
among susceptible cells exhibits increased resistance24–27. We
identify many heteroresistance-conferring mutations, as well as
known repressors for multidrug efflux pumps. We also report
decelerated evolution, in which the resistance of the evolved
strains in a certain stressor is overtaken by strains evolved in a
different stressor. Herein, we demonstrate how our experimental
system could provide a quantitative understanding of evolu-
tionary constraints in adaptive evolution, leading to the basis for
predicting and controlling antibiotic resistance.

Results
Laboratory evolution of E. coli under 95 stress conditions. To
systematically investigate drug-resistant phenotypes, we per-
formed high-throughput laboratory evolution using an auto-
mated culture system (Fig. 1a)28 for 95 stressors covering a wide
range of action mechanisms (Fig. 1b and Supplementary Data 1).
To evaluate the reproducibility of the evolutionary dynamics, six
independent culture lines were propagated in parallel for each
stressor. In total, 576 independent culture series were maintained
(95 stressors plus a control without any stressor × six replicates)

for 27 daily passages corresponding to ~250–280 generations.
Figure 1a shows examples of the time course of half-maximal
inhibitory concentrations (IC50s) during laboratory evolution,
while all-time courses of IC50s are shown in Supplementary Fig. 1.
Among the 95 stressors, a significant increase in IC50 was
observed for 89 stressors (Mann–Whitney U test, false discovery
rate (FDR) < 5%). For further phenotypic and genotypic analyses,
we selected 192 evolved strains, i.e., four evolved strains isolated
from 47 stressors plus a control without any stress. These
47 stressors were selected from the initial 95 stress environments,
due to the limitation of experimental capacity. Selections were
made based on the degree of increased IC50 values; to ensure a
variety of stressors with different action mechanisms, and based
on the predicted novelty of the expected results. For further
analysis, we selected the top four independent culture lines
showing higher IC50 values among the six.

Phenotypic and genotypic changes in evolved strains. To
explore phenotypic changes in the 192 evolved strains, we first
quantified changes in the stress resistance profiles by measuring
the IC50 of all 47 chemicals for each evolved strain (9024 mea-
surements in total), relative to the parent strain (Supplementary
Data 2 and “Methods”). The resistance profile measurements
allowed us to study how common cross-resistance, a phenom-
enon where an evolved strain in certain stress gains resistance to
another stress, occurs. Here, cross-resistance refers to both cross-
genetic resistance and cross-heteroresistance. By comparing the
four evolved replicates and the parent strain, we found that 336
and 157 pairs of stressors exhibited cross-resistance and collateral
sensitivity, respectively, within the possible 2162 combinations
(Mann–Whitney U test, FDR < 5%, Supplementary Fig. 2).

To investigate genetic alterations underlying the observed
resistance, we performed genome resequencing analysis of the
192 evolved strains (Supplementary Data 3). Although some of
these strains carried more than 20 mutations, 147/192 evolved
strains (76.6%) harbored fewer than five. To show the variation in
the number of mutations among strains evolved in the same
environment, the mean number and standard deviation of
mutations for the four strains are shown in Supplementary Fig. 3.
Among the 47 stressors, the highest number of mutations was
observed in glutamic acid γ-hydrazide (GAH) evolved strains
carrying 157 ± 67 mutations (Supplementary Fig. 3), which was
significantly more than the number observed in evolved strains
against known mutagens (e.g., 4-nitroquinoline-1-oxide (NQO,
23±5 mutations) and mitomycin C (MMC, 27 ± 4 mutations)),
indicating a high mutagenic activity of GAH. Excluding strains
evolved in GAH, NQO, and MMC, which harbored more than 18
mutations on average per stressor, 21 and 307 mutations were
identified as synonymous and nonsynonymous mutations,
respectively (Fig. 1c). For strains evolved in stresses other than
GAH, NQO, and MMC, the ratio of nonsynonymous to
synonymous mutations per site was 5.26, implying that
approximately 80% of the nonsynonymous mutations were
beneficial29,30.

Supervised principal component analysis (PCA) reveals mod-
ular phenotypic states. Phenotypic changes of the evolved strains
were quantified by transcriptome analysis to examine gene
expression levels responsible for stress resistance (Supplementary
Data 4). In the transcriptome analysis, all evolved strains were
cultured without the addition of stressors to standardize the
culture condition. To explore the relationship between gene
expression changes and resistance evolution, we performed
dimension reduction on the gene expression data using super-
vised PCA, which enables the extraction of a subspace in which
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the dependency between gene expression and stress resistance is
maximized31. First, to exclude genes with unchanged or noisy
expression in the evolved strains, we used random forest regres-
sion to screen the genes that contribute to the prediction of
resistance changes (Fig. 1d), which resulted in the selection of 213
genes with high correlations to resistance levels. Supervised PCA
based on the expressions of these genes revealed the existence of
clusters of evolved strains in the dimension reduced gene
expression space (Supplementary Fig. 4). To clarify the clusters,
we applied hierarchical clustering to the evolved strains (Fig. 2a
and Supplementary Fig. 5), which demonstrated modular classes
of expression profiles. Intriguingly, strains within the same class
were not necessarily evolved in the same stress, nor stress cate-
gory. Similar phenotypic convergence of drug-resistant strains
has recently been reported for Pseudomonas aeruginosa18. To
elucidate characteristic gene expression for each class, we applied
linear discriminant analysis (LDA), which allowed us to extract
the most discriminative set of genes for each class, through the
observation of each decision boundary (Fig. 2b).

To investigate how the classes of gene expression profiles
correspond to stress resistance, we observed the relative IC50 for
each of the 47 stresses of each evolved strain sorted based on the
hierarchical clustering of gene expressions (Fig. 2c). As shown in
the figure, the classes in the supervised PCA space correspond
well with the stress resistance patterns. To evaluate how accurate
the neighboring relationship in the resistance space corresponds
to that of the supervised PCA space, we computed the class
dissimilarity (Wn) in the resistance profile for the classes in the
dimension reduced gene expression space. For comparison, we
computed Wn for classes based on the resistance space, the whole
gene expression space, and the genotype space (Supplementary
Fig. 6). This metric revealed that clustering in the supervised PCA
space corresponds well with the resistance space, and better than
that of the whole expression space and genotype space. This
indicates that topological relationships between the strains in the

resistance space could be accurately represented in a subspace of
the gene expression space. In contrast, direct clustering in the
resistance space did not necessarily correspond with characteristic
gene expression profiles. When we calculated the class dissim-
ilarity Wn in the gene expression space based on the clustering
result in resistance space, the value approached that of random
clustering (Supplementary Fig. 6b). This was likely due to the
effective degrees of freedom in the resistance space not being
sufficient to recover necessary information in the gene expression
space, while the supervised PCA space obtained good representa-
tions conserving information for both the expression and
resistance space (Supplementary Fig. 6).

Relationship between mutations and supervised PCA classes.
We next sought to determine how the identified classes in the
supervised PCA classes could be characterized. To our surprise,
relatively clear relationships between the genome, transcriptome,
and resistance profiles were observed for the modular classes in
the supervised PCA space. Figure 2d shows a subset of the
commonly mutated genes within the 192 evolved strains. As
shown, the patterns of fixed mutations coincide well with the
modular classes in the gene expression space, although no gen-
otypic information was used for the hierarchical clustering. This
suggests that the identified mutations play a meaningful role in
the modular gene expression classes. For example, all evolved
strains in class 1 had mutations in mprA, which encodes a
repressor for multidrug-resistance pump EmrAB, while all strains
in class 11 had mutations in prlF, which encodes the antitoxin for
the PrlF (SohA)-YhaV toxin–antitoxin (TA) system.

Although strains in the same class had similar gene expression
levels, they did not necessarily share the same mutations. For
example, evolved strains in class 5 showed an increased
expression of acrB, which encodes a component of the AcrAB/
TolC multidrug efflux pump, while most of the strains (26/28) in
class 5 had mutations in acrR, which encodes a repressor for
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Fig. 1 Laboratory evolution of E. coli under 95 stress conditions. a Schematic of the experimental setup (automated culture system for laboratory
evolution). b Stress categories for the environments used in the half-maximal inhibitory concentration (IC50) measurements. c Distribution of mutation
events for the evolved strains according to its mutation type, except for strains evolved in glutamic acid γ-hydrazide (GAH), 4-nitroquinoline-1-oxide
(NQO), and mitomycin C (MMC). Other point mutations include those in intergenic/noncoding regions. Source data are provided as a Source Data file.
d A random forest regression model was constructed to predict IC50 values using the gene expression levels (“Methods”). Supervised principal component
analysis (PCA) was applied to the 213 gene expression levels selected by the random forest algorithm.
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Fig. 2 Supervised principal component analysis (PCA) reveals distinct clusters in the genotype, expression, and the resistance (IC50) space. a
Dendrogram of the result of hierarchical clustering performed in the 36-dimensional supervised PCA space. One cluster and three singletons were omitted
due to visibility. The full version is presented in Supplementary Fig. 5. b Gene expression levels of representative genes for each cluster, relative to the
parent strain. The genes were selected from the intersection of the top two gene weights for the linear discriminant analysis (LDA) axis and differentially
expressed genes (“Methods”). c IC50 values relative to the parent strain. Colors for the tick labels correspond to the stress categories. d Characteristic
mutated genes for each class. Mutated genes enriched for each cluster clarified by Fisher’s exact test (P < 0.01) are presented. Mutated genes that were
identified in more than seven strains are also presented. Genes are sorted based on gene ontology categories. Source data are provided as a Source
Data file.
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acrAB (Fig. 2b, d). Interestingly, the other two strains also showed
an increase in acrB expression without an acrR mutation.
Meanwhile, strains in class 8 consistently had increased
expression of tnaA-encoding tryptophanase, whereas four out
of five strains had mutations in genes encoding DNA gyrase
subunit A or B (gyrA or gyrB, Fig. 2b, d). We further confirmed,
through quantitative reverse transcription-polymerase chain
reaction (qRT-PCR) analysis, that the introduction of the
observed H45Y mutation in gyrA to the parent strain leads to
an 11.1 ± 6.6-fold increase in tnaA mRNA level. Consistent with
these results, a previous study suggested the involvement of a
mutation in gyrB for increased TnaA production and quinolone
resistance32. Note, NVAE5, which did not have a mutation in
gyrA nor gyrB, also showed an increased expression of tnaA.
These results suggest the existence of multiple paths in the
genotypic space for E. coli to reach desired expression and
resistance levels.

Commonly decreased expression of ompF, which encodes the
outer membrane porin, was observed in several classes (class 2, 9,
and 10, Fig. 2d) and was associated with resistance to cell wall
inhibitors and other stresses. A decrease in ompF expression can
be caused by either inactivation of the OmpR/EnvZ two-
component system or RssB, which is a regulator of the alternative
sigma factor RpoS33–35. Indeed, all strains in class 2 and class 10
had mutations in either ompR or envZ, and four out of nine
strains in class 9 had mutations in rssB. Although these strains
commonly had a decrease in the ompF expression level, they have
been assigned to different classes based on their consistently
different gene expression profiles for genes such as the ompC,
encoding a porin, and rygB, encoding a small RNA involved in
the regulation of the outer membrane composition (Fig. 2b).
Interestingly, although all three classes showed resistance to β-
lactams (e.g., carbenicillin (CBPC), and cefmetazole (CMZ)),
resistance levels to stresses such as sulfisoxazole (SXZ) and DL-3-
hydroxynorvaline (NVA) differed between classes (e.g., strains in
class 2 and 10 exhibited resistance to SXZ, while strains in class 9
did not, Fig. 2c, Supplementary Fig. 2). This suggests that
different classes in the supervised PCA space correspond to
different stress resistance mechanisms.

Moreover, evolved strains derived from the same selection
pressure were not always categorized in the same class. For
example, none of the four SXZ evolved strains shared the same
supervised PCA class (SXZE2 in class 1, SXZE4 in class 2, SXZE1
in class 4, and SXZE5 in class 11), and each strain showed
different expression and resistance patterns, indicating a rugged
fitness landscape with multiple local peaks. This ruggedness was
observed for the four norfloxacin (NFLX) evolved strains as well.
Intriguingly, these local peaks were accessible not only by SXZ
and NFLX evolved strains but also by strains that evolved in other
stresses (for example, see class 2). These results suggest that
evolution under the same selection pressure does not necessarily
lead to the same phenotype36,37 and that these local peaks in the
fitness landscape are shared by different stresses. Overall, the low
dimensional phenotypic states revealed by our high-throughput
measurements loosely corresponded with the genotypic space,
suggesting the existence of various genotypic pathways to reach
local optima in the fitness landscape, which were shared by
strains evolved in diverse stresses.

Commonly mutated genes provide the basis for chemical
resistance. Genome resequencing analysis revealed that several
genes were commonly mutated in multiple evolved strains, sug-
gesting the contribution of these mutations to the observed
resistance acquisition. Commonly mutated genes were defined as
mutations in the same gene identified in a minimum of two of the

four independent culture lines evolved under the same environ-
ment. The detailed description of these genes and mutations are
presented in Supplementary Discussion. To verify the effects of
the commonly mutated genes found in the evolved strains, we
introduced 64 of the representative mutations (Supplementary
Data 2) to the parent strain by multiplex automated genome
engineering (MAGE)38, and quantified changes in the IC50s of all
47 chemicals against each strain. We first asked whether the
cross-resistance and collateral sensitivities observed within the
evolved strains could be reproduced by the 64 reconstructed
mutant strains. Accordingly, we calculated Pearson’s correlation
coefficient R between the IC50s of all 47 stresses within the
evolved strains. We recognized that some stress pairs showed a
high correlation in their resistance of the evolved strains. For
example, evolved strains resistant to CBPC tended to exhibit
resistance to aztreonam (AZT) as well (R= 0.95, Fig. 3a), both of
which constitute β-lactam stresses. We then calculated correlation
coefficients for the reconstructed mutant strains. Certain stress
pairs, such as TET and B-Cl-Ala showed a negative correlation
not only for the evolved strains but also for the reconstructed
mutant strains (Fig. 3b). We then compared the coefficients of the
mutant strains with that of the evolved strains. The coefficients
for the evolved strains highly correlated with those of the
reconstructed mutant strains (R= 0.66, Fig. 3c, d), indicating that
the observed collateral relationships within the evolved strains
could be explained by the commonly mutated genes. Interest-
ingly, a high correlation was observed between the evolved strains
and mutant strains excluding transporter related mutations (e.g.,
acrR, ompF), indicating that the high correlation in phenotype is
not only caused by transport, which is a major mechanism of
resistance (Supplementary Fig. 7). These results allowed us to
further investigate the role of mutations in the context of cross-
resistance and collateral sensitivities.

To examine whether the commonly identified mutations
confer genetic resistance or heteroresistance, we conducted a
PAP of 33 drug combinations and the reconstructed mutant
strain pairs (Supplementary Fig. 8). These combinations were
selected according to the mutation and drug pairs exhibiting
>eightfold increase in IC50 value, the representative mutations in
the supervised PCA classes (acrR in class 5, gyrA in class 8, mprA
in class 1, ompF in class 2 and 10, prlF in class 11, and rssB in
class 9), and the resistance-conferring mutations that have not
been reported yet (gshA, ycbZ and yhjE). Heteroresistance strains
are defined as strains with resistant subpopulations growing at
frequencies of 1 × 10−7 or higher in antibiotic concentrations at
least 8-fold higher than the highest non-inhibitory concentration
of the wild-type27,39. Among the 33 combinations, 11 were
categorized as genetic resistance, including seven cross-genetic
resistances; while 15 combinations were categorized as hetero-
resistance, including 12 cross-heteroresistance pairs (Supplemen-
tary Fig. 8). Although seven combinations exhibited a twofold
increase compared to the highest non-inhibitory concentration,
there were no resistant subpopulations at antibiotic concentra-
tions eightfold higher. Regarding the supervised PCA classes, the
ompF mutant showed cross-genetic resistance, while the acrR,
mprA, prlF, and rssB mutant strains exhibited cross-
heteroresistance (Supplementary Fig. 8). Alternatively, the gyrA
mutant strains showed both cross-genetic resistance and cross-
heteroresistance (Supplementary Fig. 8). These results suggest
that heteroresistance is a common resistance phenotype among
our laboratory evolved strains, which agrees with the results of
previous studies using clinical isolates26,27.

Most of the evolved strains acquired cross-resistance from
mutations in genes encoding transporters and porins (Table 1
and Supplementary Data 5). Antibiotic resistance of E. coli can be
triggered by the overexpression of efflux systems and decreased
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production of porin proteins6,34,39. In this study, by expanding
the quantification of cross-resistance/collateral sensitivity net-
work to various stressors including antibiotics and non-
antibiotics, we confirmed the contribution of altered uptake/
efflux activities in cross-resistance relationships among them
(Fig. 2d, Table 1, and Supplementary Data 5). For example,
activation of the multidrug efflux pump AcrAB/TolC, through the
inactivation of its repressor AcrR, resulted in resistance not only
to previously described substrates such as tetracycline (TET) and
erythromycin (EM)6,40,41, which are both known as protein
synthesis inhibitors but also to substrates that have not been
reported yet such as NVA (threonine analog) and NQO
(mutagen) (for a detailed list see Table 1). The activation of
EmrAB/TolC is regulated by mprA, which is also an efflux pump,
and results in resistance to a previously identified substrate CCCP
(uncoupling agent)42, as well as to substrates that have not been
reported yet, such as chloramphenicol (CP, protein synthesis
inhibitor) and phleomycin (PLM, DNA intercalator) (Fig. 3e and
Supplementary Data 5). Since the reconstructed acrR, and the
mprA mutant strains, exhibited cross-heteroresistance to EM and
TET, or GAH and TET respectively (Supplementary Fig. 8), the
enhanced drug efflux caused by acrR or mprA mutations can
cause cross-heteroresistance. Similarly, it was previously reported
that overexpression of the efflux pump results in heteroresistance

in several pathogenic bacteria24. We also confirmed that
inactivation of the OmpF porin resulted in resistance to
previously described substrates such as CBPC (cell wall synthesis
inhibitor)5,43, and substrates that have not been reported yet such
as 1,10-phenanthroline (PHEN, chelator), puromycin (PUR,
protein synthesis inhibitor), and other chemicals (Fig. 3e and
Table 1). Our results suggest that mutations in the transporters
and porins above could lead to resistance to a wide spectrum of
drugs with different mechanisms of action. Since the recon-
structed ompF mutant strain showed cross-genetic resistance to
CBPC, FTD, and NVA (Supplementary Fig. 8), inactivation of the
OmpF porin can cause cross-genetic resistance. We also identified
the contribution of an uncharacterized transporter to chemical
resistance. Two D-valine (DVAL) evolved strains contained
mutations in yhjE, which encodes a putative transporter. The
contribution to resistance was confirmed through the recon-
structed yhjE inactivation mutant strain which showed a more
than twofold increased resistance to PLM, NVA, and DVAL
(Supplementary Data 2), suggesting uptake through YhjE.
Moreover, the DVAL and NVA resistances by yhjE inactivation
constituted heteroresistance (Supplementary Fig. 8). Taken
together, our results indicate that the effects of chemical uptake
and efflux are major mechanisms for cross-genetic resistance and
heteroresistance.
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Fig. 3 Commonly mutated genes provide the basis for chemical resistance. a, b Relationship between the IC50 values of carbenicillin/aztreonam (CBPC/
AZT) and tetracycline/β-chloro-L-alanine (TET/B-Cl-Ala) for the 192 evolved strains and 64 site-directed mutants, respectively. R denotes the Pearson’s
correlation coefficient. c Relationship between the corresponding pairwise correlation coefficients shown in panel d. d Pearson’s correlation coefficient for
all pairwise combinations of stress resistance for the evolved strains (upper right) and the site-directed mutants (lower left). The order of stresses was
determined by hierarchical clustering performed on the pairwise correlation values of the site-directed mutants. e Schematic illustration of stress resistance
acquisition mechanisms corresponding to the supervised principal component analysis (PCA) clusters. Typical stresses which exhibited resistance (red)
and sensitivity (blue) are shown. Source data are provided as a Source Data file.
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We have also identified mechanisms underlying cross-
resistance to chemicals. The increased expression of PrlF-YhaV
TA system along with mutations in prlF was observed in class 11
(Fig. 2b, d). Interestingly, all evolved strains carrying the prlF
mutation, including the 11 strains in class 11, had the same
mutation: i.e., duplication of TTCAACA sequences located 272
bp downstream of the start codon (Supplementary Data 3).
Although the contribution of PrlF-YhaV to stress resistance has
not yet been reported, these evolved strains, and the recon-
structed prlF mutant strain, commonly exhibited resistance to
CBPC, AZT, and DVAL (Fig. 2c and Table 1). Furthermore, the
prlF mutant strain showed cross-heteroresistance to 5-FOA and
CBPC indicating that the prlF mutation conferred heteroresis-
tance (Supplementary Fig. 8). All 11 strains in class 11 showed a
decreased expression of ompF (Fig. 2b), and the decrease in ompF
mRNA level by 0.52 ± 0.01 in the reconstructed prlF mutant
strain was confirmed by qRT-PCR analysis. These results indicate
that cross-resistance to CBPC, AZT, and DVAL by the prlF
mutation is at least partially caused by decreased expression of
ompF. Since YhaV is a translation-dependent RNase44, this
decrease in ompF expression might be caused by the alteration of
global gene expression.

The contribution of the uncharacterized protein YcbZ to cross-
resistance was also confirmed. YcbZ is a putative protease shown
to be involved in translation and ribosome biogenesis45. We
identified YcbZ mutations in three EM evolved strains and two
N-methyl-N-octylamine (NMNO) evolved strains. These strains,
as well as the reconstructed ycbZ inactivation mutant strain,
commonly exhibited resistance not only to EM and NMNO, but
also to ethylenediamine-N,N,N’,N’-tetraacetic acid, disodium salt,
dihydrate (EDTA), NVA, and 5-fluoroorotic acid monohydrate
(5-FOA; Fig. 2c and Table 1). Moreover, the ycbZ mutant strain
showed cross-heteroresistance to EDTA and NVA, indicating
that the ycbZ mutation confers heteroresistance (Supplementary
Fig. 8). Note, one out of four control experiments without any
additional stressor (M9E3 strain) also carried the ycbZ mutation
for EM. Additionally, ABUE6 evolved strains carried the ycbZ

mutation although the ycbZ disruption did not confer ABU
resistance (Supplementary Table S2). These mutations in M9E3
and ABUE6 strains may have arisen from the application of 1/10
IC50 erythromycin to all culture medium, to avoid contamination,
which may have caused adaptive evolution to occur in response to
the low concentrations of erythromycin.

Quantification of collateral sensitivities. The identified classes in
the supervised PCA space revealed collateral sensitivity relation-
ships for antibiotic resistance acquisition. For example, the
evolved strains in class 9 exhibited sensitivity to metabolic inhi-
bitors such as L-valine (LVAL), β-chloro-L-alanine (B-Cl-Ala), 6-
mercaptopurine monohydrate (6-MP), GAH, and 3-amino-1,2,4-
triazole (3-AT) (Fig. 2c and Supplementary Fig. 2). Since 4/9 of
the class 9 strains had mutations in rssB, we speculated that this
observed sensitivity is caused by rssB. This was confirmed
through IC50 measurements of the reconstructed rssB inactivation
mutant strain which showed a two- to fivefold change in sensi-
tivity to the stresses above (Supplementary Data 2 and Supple-
mentary Fig. 9). Moreover, since class 9 strains and the
reconstructed rssB strain both show resistance to cell wall inhi-
bitors and other stresses (AZT, CBPC, TET), our results indicate
a trade-off between these stresses and metabolic inhibitors. It has
been reported that while E. coli strains with higher rpoS levels
show increased resistance to several external stresses46, they also
exhibit decreased carbon source availabilities and poor competi-
tiveness for low concentrations of nutrients due to the competi-
tion between RpoS and the house-keeping sigma factor RpoD
(sigma 70)47. Since RssB facilitates the degradation of RpoS, the
collateral sensitivities to several metabolic inhibitors in class 9
evolved strains could also be caused by the sigma factor
competition.

Collateral sensitivities associated with the prlF mediated
resistance were also identified. All evolved strains in class 11,
which carry the same prlF mutation, exhibited collateral
sensitivity to hydrogen peroxide (H2O2), benserazide (BZ), and
NQO (Fig. 2c and Supplementary Fig. 2). Consequently, the same

Table 1 Representative cross-resistances and collateral sensitivities observed in the reconstructed strains.

Mutation Resistance Sensitivity

acrR Chloramphenicol, rifampicin, cefmetazole, aztreonam, acriflavine,
nickel (II) chloride, carbenicillin, mitomycin C, amitriptyline,
1,10-phenanthroline, DL-3-hydroxynorvaline, tetracycline, 4-nitroquinoline
1-oxide, promethazine, nitrofurantoin, sodium salicylate, furaltadone,
erythromycin, puromycin, 5-fluoroorotic acid, N-methyl-N-octylamine

D-cycloserine, L-homoserine, D-valine

mprA Chloramphenicol, rifampicin, 5-fluorouracil, aztreonam,
6-mercaptopurine, mitomycin C, phleomycin, DL-3-hydroxynorvaline,
tetracycline, DL-serine hydroxamate, promethazine, blasticidine S,
L-glutamic acid γ-hydrazide, erythromycin, CCCP, DL-2-aminobutyric acid,
puromycin, 5-fluoroorotic acid, N-methyl-N-octylamine

ompF Chloramphenicol, rifampicin, cefmetazole, aztreonam, nickel (II) chloride,
carbenicillin, norfloxacin, phleomycin, 1,10-phenanthroline, DL-3-
hydroxynorvaline, mecillinam, tetracycline, sodium salicylate, blasticidine
S, furaltadone, erythromycin, puromycin, N-methyl-N-octylamine

D-cycloserine, D-valine

prlF Chloramphenicol, aztreonam, kanamycin, carbenicillin, sodium dichromate,
D-cycloserine, phleomycin, mecillinam, puromycin, D-valine,
5-fluoroorotic acid

Rifampicin, hydrogen peroxide, nickel(II) chloride, benserazide,
4-nitroquinoline 1-oxide, DL-serine hydroxamate, L-glutamic acid
γ-hydrazide

rssB Chloramphenicol, rifampicin, cefmetazole, aztreonam, acriflavine,
carbenicillin, sodium dichromate, amitriptyline, phleomycin, tetracycline,
promethazine, sodium salicylate, blasticidine S, erythromycin, puromycin,
N-methyl-N-octylamine

L-valine, β-chloro- L-alanine, nickel(II) chloride, protamine sulfate,
D-cycloserine, 3-amino-1,2,4- triazole, 4-nitroquinoline 1-oxide,
DL-serine hydroxamate, L-glutamic acid γ-hydrazide, L-homoserine

ycbZ Chloramphenicol, aztreonam, 6-mercaptopurine, nickel (II) chloride,
carbenicillin, amitriptyline, phleomycin, DL-3-hydroxynorvaline, tetracycline,
EDTA, promethazine, sodium salicylate, blasticidine S, erythromycin,
puromycin, 5-fluoroorotic acid, N-methyl-N-octylamine

D-cycloserine, 4-nitroquinoline 1-oxide

yhjE Acriflavine, carbenicillin, norfloxacin, phleomycin, DL-3-hydroxynorvaline,
puromycin, D-valine

Nickel (II) chloride, DL-serine hydroxamate

Chemicals that were identified as significantly increased or decreased IC50 values (Mann–Whitney U test, FDR < 5%) in the reconstructed acrR, mprA, ompF, prlF, rssB, ycbZ, and yhjE mutant strains are
shown, respectively. For transport machinery (i.e., acrR, ompF, mprA, and yhjE), newly identified putative substrates are shown in bold letters. The full list of cross-resistances and collateral sensitivities
observed in all 64 reconstructed mutant strains are shown in Supplementary Data 5.
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collateral sensitivities were also observed in the reconstructed prlF
mutant strain (Supplementary Fig. 9). These results suggest that
DVAL, CBPC resistance, acquired through the prlF mutation,
leads to a trade-off for H2O2, BZ, and NQO. Previous studies
reported that E. coli mutant strains lacking superoxide dismutase
showed increased susceptibility to H2O2 mediated killing48.
Indeed, all strains in class 11 consistently exhibited a 0.45 ±
0.11-fold decrease in sodB expression, which encodes (Fe)
superoxide dismutase, in the transcriptome data. Through qRT-
PCR analysis, the decrease in sodB mRNA level by 0.46 ± 0.06 in
the reconstructed prlF mutant strain was also confirmed. This
suggests that the observed H2O2 sensitivity is caused by the
degradation of sodB through the YhaV toxin.

Decelerated evolution against β-lactam antibiotics. In the
adaptive evolution to β-lactams (i.e., CMZ and CBPC), we found
that certain strains, evolved under specific stresses, acquired
higher resistances to β-lactams than strains that were directly
selected by β-lactams. Figure 4 presents IC50 values of CBPC and
CMZ observed in the 192 evolved strains, showing that evolved
strains under CBPC and CMZ (marked by blue and cyan) did not
exhibit the highest resistance levels to β-lactams, but rather,
evolved strains under other stresses, such as TET and NFLX,
showed much higher resistance levels (Fig. 4a, b). This “deceler-
ated” resistance evolution to β-lactams was reflected in the dif-
ference in the mutation profile among the evolved strains. We
found that the evolved strains that exhibited the highest resis-
tances generally had mutations in genes related to the membrane
porin protein OmpF, i.e., ompF, ompR and envZ (Fig. 4c). The
disruption of OmpF reportedly contributes to resistance acqui-
sition to β-lactams5, and in fact, we confirmed that the intro-
duction of the identified ompF mutations to the parent strains
significantly increased IC50 values of CMZ and CBPC (green
marker in Fig. 4c). In contrast, the strains evolved under CBPC or
CMZ had fewer mutations in OmpF related genes (one out of
eight evolved strains) in comparison with other strains with high
β-lactam resistance (P= 0.04, Fisher’s exact test, N= 32). This
result might suggest that in our laboratory evolution setup, the
fixation of mutations related to OmpF is suppressed under the
addition of β-lactams, even though they can increase their
resistance to the drug. Possible explanations for this decelerated
evolution against β-lactam could be the existence of a fitness cost
associated with ompF mutation, and/or negative epistasis between
ompF and prlF mutations. However, neither such fitness cost nor
negative epistasis was observed (“Methods” and Supplementary
Fig. 10). Since a link between mutation supply rate and adapta-
tion rate was reported49, it is also possible that decreased

evolution is caused by the difference in mutation frequencies
between β-lactams and other stresses. To address this possibility,
we measured mutation frequencies with β-lactams (CBPC and
CMZ), or other drugs showing higher β-lactam resistance (CP,
NFLX, TET); however, differences were not observed in mutation
frequencies (Supplementary Fig. 10). Therefore, at present, the
mechanism for the decelerated evolution against β-lactams
remains unclear.

Discussion
In this study, we performed laboratory evolution of E. coli under
various heterogenous stress conditions which allowed us to elu-
cidate the molecular mechanisms associated with resistance
acquisition to antibiotics and non-antibiotics stressors. Combined
with supervised PCA and hierarchical clustering, our high-
throughput phenotypic analysis led to the identification of
modular phenotypic classes both in the gene expression space and
the stress resistance space, suggesting close interactions between
changes in gene expression and stress resistance. Furthermore,
these classes included strains that evolved in a different type of
stresses, indicating the existence of evolutionary constraints that
do not necessarily depend on the stressor’s mechanism of action.

Our results include valuable information on evolutionary
constraints for antibiotic resistance, and thus, provide important
insights for alternative clinical strategies. For instance, we found
that various antibiotics with different action mechanisms exhib-
ited collateral sensitivity to metabolic inhibitors including L-valine
(LVAL), β-chloro-L-alanine (B-Cl-Ala), and glutamic acid γ-
hydrazide (GAH). We also found that strains that evolved in
various stresses showed collateral sensitivity to H2O2 and prota-
mine sulfate (PS) (15/47 and 14/47 stresses, respectively). Col-
lateral sensitivity to H2O2 was commonly observed for strains in
class 9 and 11 (Supplementary Fig. 2), which might have been
caused by the alteration of global gene expression by mutations in
rssB (class 9) and prlF (class 11) since H2O2 has many cellular
targets50. Meanwhile, collateral sensitivity to PS was commonly
observed for strains in class 2, 5, and 11 (Supplementary Fig. 2),
where enhanced drug efflux caused by acrR mutations (class 5),
or decrease drug uptake by ompF associated mutations (class 2
and 9), may have led to collateral sensitivity to PS, which has been
shown to target the cytoplasmic membrane in Salmonella typhi-
murium51. These results suggest that the perturbation of meta-
bolic activity, reactive oxygen species generation, and alteration of
cytoplasmic membrane permeabilization could serve as possible
strategies to suppress antibiotic resistance.

Based on the resequencing analysis of the evolved strains, we
clarified the effect of single mutations for resistance acquisition

a b c

Fig. 4 Decelerated evolution against β-lactam antibiotics. a, b Decelerated evolution observed within the evolved strains. Relative log2 (IC50) for evolved
strains in carbenicillin (CBPC) and tetracycline (TET) (a), and relative log2 (IC50) for evolved strains in norfloxacin (NFLX) and cefmetazole (CMZ) (b).
c Relative IC50 values for CBPC and CMZ for all 192 evolved strains. Many of the strains which exhibit resistance higher than the CBPC and CMZ evolved
strains had a mutation in ompF or its regulators ompR and envZ (orange). The CBPC and CMZ resistance of the ompF introduced strain also exhibited higher
resistance (green, green arrow) than the CBPC and CMZ evolved strains (blue, cyan, denoted by a blue arrow). Source data are provided as a Source
Data file.
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through the introduction of representative mutations to the
parent genome. The pairwise correlation coefficients between
stresses, indicating cross-resistance and collateral sensitivity,
observed in the reconstructed mutants agreed with those of the
evolved strains (Fig. 3c, d). Although correlation coefficients are
only capable of probing the averaged directionality evolution,
these results suggest that the observed evolutionary constraints
for resistance in the evolved strains were rooted in acquired
mutations.

The analysis of reconstructed mutant strains also provided
valuable information on the genetic basis of resistance acquisi-
tion. These results demonstrated that the pattern of resistance
acquisition observed in the evolved strains could be characterized
by known resistance-conferring genes, such as acrAB and ompF.
Furthermore, the analysis identified genetic mechanisms for the
stress resistance that have not been reported yet, such as CBPC,
AZT, and DVAL resistance through prlF mutation (Fig. 3e),
which is related to the TA system. We also discovered a con-
tribution made by uncharacterized genes to resistance acquisition,
such as the ycbZ and yhjEmutations causing EM, NMNO, EDTA,
NVA, and 5-FOA resistances, and PLM, NVA, and DVAL
resistances, respectively. Although we only highlighted a limited
number of resistance mechanisms, a comprehensive description
of the mutations identified in the stresses used in this study is
given in the Supplementary Discussion. We believe that sharing
our results in this manuscript, including identified mutations,
transcriptome changes, and resistance profiles in the evolved
strains, as well as phenotypic changes in the reconstructed
mutants, will provide clues for future studies and contribute to
the field of antibiotic resistance evolution. Of course, these find-
ings can be affected by various conditions, including the strength
of selection pressure, mutation frequency, and culture condition.
The problem of how the identified genotypic and phenotypic
alterations are affected by other conditions will be an important
topic and remain as future works.

Note, the analyses presented in this study are not without
limitations. First, the identification of distinct classes in pheno-
typic changes (Fig. 2) was based on gene expression changes, and
thus, the analysis did not detect resistance acquiring mechanisms
with small gene expression changes. For example, in the evolved
strains under 6-MP, mutations in the hpt gene, encoding
hypoxanthine phosphoribosyltransferase, were commonly fixed
(three out of four evolved strains), suggesting a contribution of
the mutation to the 6-MP resistance phenotype. However, these
6-MP resistant strains exhibited little expression changes com-
pared to the parent, and thus, we could not identify the common
phenotypic changes through gene expression-based analysis. Such
evolved strains with minor expression changes were assigned to
class 12 (Supplementary Fig. 5). Including mutations fixed in
these strains, a detailed description of the mutations conferring
resistance for each stress is given in Supplementary Data 3. Sec-
ond, the introduction of single mutations fixed in the evolved
strains was not always sufficient to explain the resistance changes
observed in the laboratory evolution. For example, all evolved
strains in class 1 (Fig. 2) had mutations in mprA, strongly sug-
gesting the contribution of this mutation to the common phe-
notypic changes in class 1. However, the reconstructed mutant
strain of mprA exhibited a similar, yet significantly different
resistance profile for certain stresses, such as SXZ (Supplementary
Data 2). The differences between the evolved strains and recon-
structed mutant strains might suggest the contribution of mul-
tiple mutations, and epistasis among them, to the resistance
changes since the evolved strains had several mutations that are
potentially involved in resistance acquisition. Moreover, the
ability of certain resistance-conferring mutations to impose a
different degree of drug resistance on different genetic

backgrounds52 might reflect the ubiquity of epistatic interactions
among genetic alterations. There may have also been a con-
tribution made by non-genetic adaptation, which is difficult to
explain by the phenotype-genotype mapping presented in this
study. Meanwhile, epigenetic changes e.g., methylation of bac-
terial DNA, can influence gene expression and/or mutation rates
resulting in resistance acquisition53. Future studies will likely
identify the effect of multiple mutations and non-genetic adap-
tations on stress resistance, which will enable a better under-
standing of phenotypic and genotypic constraints on resistance
evolution.

A third limitation of our study was the limitation of our
transcriptome analysis of the evolved strains to only non-stress
conditions. Of course, the expression of some genes would only
be induced or suppressed in the presence of a stressor. In such
cases, evolution would change such environment-dependent
regulatory responses to achieve resistance. However, in this
study, we neglected the environment-dependent expression
changes and collected gene expression profiles exclusively in the
non-stress condition, to compare expression profiles of the
evolved strains without environmental-dependent biases. An
alternate choice of experimental design would be to collect the
gene expression profiles under various stress conditions, to reveal
both the environment-specific regulatory responses and their
evolution. However, such analysis is costly, and thus, will serve as
our study’s future scope.

Finally, we identified the decelerated evolution against β-
lactams. At present, the mechanism for the observed decelerated
evolution remains unclear. We tested several hypotheses to
explain this phenomenon, including the effect of fitness cost,
negative epistasis, and alternation of mutation frequency by
adding β-lactams, and found that they were not sufficient to
explain it. However, we further hypothesize that the inhibition of
cell wall synthesis by β-lactams addition may disrupt membrane
protein synthesis, including OmpF porin. Since the addition of β-
lactams reportedly induces bulge formation leading to cell lysis54,
a decrease in ompF expression and disruption of OmpF function
by a mutation, may not contribute to β-lactam resistance during
such a deficient cell wall state. Nevertheless, this phenomenon is
clearly interesting, and we expect our observation and testing of
several hypotheses will contribute to future studies to unveil the
dynamics of antibiotic resistance evolution.

Methods
Bacterial strains and growth media. The insertion sequence (IS)-free E. coli
strain MDS4255 was purchased from Scarab Genomics (Scarab Genomics, Madi-
son, Wisconsin, USA) and utilized throughout this study. The use of the IS
elements-free strain facilitates reliable resequencing analysis results since the
determination of the precise position of IS element insertions is often difficult using
short-read sequencers. Although certain essential factors in resistance evolution,
including the effects of transposition and horizontal gene transfer, are difficult to
analyze in this experimental setup, the use of this strain enables us to identify the
precise correspondence between resistance acquisition and mutation fixation. E.
coli cells were cultured in modified M9 minimal medium containing 17.1 g/L
Na2HPO4·12H2O, 3.0 g/L KH2PO4, 5.0 g/L NaCl, 2.0 g/L NH4Cl, 5.0 g/L glucose,
14.7 mg/L CaCl2·2H2O, 123.0 mg/L MgSO4·7H2O, 2.8 mg/L FeSO4·7H2O, and
10.0 mg/L thiamine hydrochloride (pH 7.0)56 plus 15 μg/mL erythromycin. To
avoid contamination by other bacteria species, 15 μg/mL erythromycin (approxi-
mately 1/10-fold concentration of IC50 of E. coliMDS42) was added to the medium
throughout the experiments. To construct mutant strains, LB medium and Terrific
broth (TB) were used. LB medium contained 10 g/L Bacto tryptone, 5 g/L Bacto
yeast extract, and 5 g/L NaCl. TB contained 12 g/L Bacto tryptone, 24 g/L Bacto
yeast extract, 4 g/L glycerol, 2.32 g/L KH2PO4, and 12.54 g/L K2HPO4.

Laboratory evolution. Supplementary Data 1 list all of the chemicals used in this
study and the solvents in which they were dissolved to prepare stock solutions.
Chemicals that did not dissolve in the modified M9 medium were added at a > 20-
fold dilution. Cell cultivation, optical density (OD) measurements, and serial
dilutions were performed for each chemical using an automated culture system57

consisting of a Biomek® NX span-8 laboratory automation workstation (Beckman
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Coulter, Brea, California, USA) in a clean booth connected to a microplate reader
(FilterMax F5; Molecular Devices, San Jose, California, USA), a shaker incubator
(STX44; Liconic, Mauren, Liechtenstein), and a microplate hotel (LPX220, Lico-
nic). A movie of the automated culture system is available on YouTube (https://
www.youtube.com/watch?v=4k6qCN7ppsk).

Before laboratory evolution, the MDS42 strain was cultivated in a modified M9
medium without chemicals used for laboratory evolution for 96 h (~90
generations) to acclimatize them to the modified M9 medium. After 96-h
cultivation, a glycerol stock of the cells was stored as the parent strain at –80 °C for
further experiments. The specific growth rate of the parent strain in the modified
M9 medium was 0.25 (1/h), which is sufficient for the laboratory evolution setup.
Six independent culture lines were evolved in parallel for each chemical. These
cultures occurred in 384-well microplates containing 45 µL modified M9 medium
per well and a 20.25-fold chemical gradient in 22 dilutions. To initiate laboratory
evolution, MDS42 cells were inoculated from the frozen glycerol stock into the
modified M9 medium and cultivated for 24 h at 34 °C with shaking. The OD620

values of the precultures were measured using the automated culture system, and
precultured cells, calculated to have initial OD620 values of 0.00015, were inoculated
into each well (5 μL of diluted overnight culture into 45 μL of medium per well) of
the 384-well microplates and cultivated with agitation at 300 rotations/min at
34 °C. Every 24 h of cultivation, cell growth was monitored by measuring the OD620

of each well. A well with an OD620 > 0.09 indicated cell growth. The automated
culture system selected the defined well with the highest chemical concentration in
which cells could grow; the cells in the selected well were diluted to an OD620 of
0.00015 and transferred to fresh plates containing fresh medium and chemical
gradients. During and after laboratory evolution, cells were stored in glycerol stocks
at −80 °C. We also isolated a single clone on a modified M9 agar plate without
chemicals to use for laboratory evolution from the endpoint culture. We have
further confirmed that the IC50 of the isolated clone was nearly identical to that of
the corresponding population in the endpoint culture, where the mean of IC50

(isolated clone)− IC50 (endpoint culture) was 0.18 ± 0.22 (95% confidence
interval). The isolated single clones were used as the evolved strains for further
analysis.

Total RNA purification. The total cellular RNA was isolated as follows. Cells were
inoculated from the frozen glycerol stock into 96-well microplates containing
200 µL of modified M9 medium without chemicals and cultivated for 24 h at 34 °C
with agitation at 900 rotations/min. The precultures were diluted to an OD620

of 3.3 × 10−5–4.0 × 10−4 into 200 µL of fresh modified M9 medium in 96-well
microplates and cultured. Cell growth was monitored by measuring the OD600 of
each well using the 1420 ARVO microplate reader (PerkinElmer Inc., Waltham,
Massachusetts, USA). After 12 to 21 h incubation, the cultures exhibiting expo-
nential growth (OD600 in the 0.072–0.135 range) were selected and treated imme-
diately by adding an equal volume of ice-cold ethanol containing 10% (w/v)
phenol to stabilize the cellular RNA. The cells were harvested by centrifugation at
20,000 × g at 4 °C for 5 min, and the pelleted cells were stored at –80 °C before RNA
extraction. Total cellular RNA was isolated using the RNeasy Mini kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. The total RNA was
treated with DNase I at room temperature for 15min and the purified RNA samples
were stored at –80 °C until the microarray experiments were performed.

Transcriptome analysis using microarrays. Microarray experiments were per-
formed as in previous study15 using a custom-designed Agilent 8 × 60 K array for E.
coliW3110 that included 12 probes for each gene. Briefly, 100 ng of each purified total
RNA sample was labeled using the Low Input Quick Amp WT Labeling kit (Agilent
Technologies, Santa Clara, California, USA) with Cyanine3 (Cy3) according to the
manufacturer’s instructions. Cy3-labeled cRNAs were fragmented and hybridized to
the microarray for 17 h at 65 °C in a hybridization oven (Agilent Technologies); the
microarray was then washed and scanned according to the manufacturer’s instruc-
tions. Microarray image analysis was performed using Feature Extraction version
10.7.3.1 (Agilent Technologies), and expression levels were normalized using the
quantile normalization method58. The microarray data have been submitted to the
National Center for Biotechnology Information’s Gene Expression Omnibus func-
tional genomics data repository under accession number GSE137348.

qRT-PCR. mRNA was quantified using the CFX96 Real-Time PCR Detection
System (Bio-Rad, Hercules, California, USA). qRT-PCR analysis was performed
using the following primer sets: (F) 5ʹ-CGACCTGTTAGACGCTGATT-3ʹ and (R)
5ʹ-GTTCAGCGGTAACACGGATT-3ʹ (gapA), (F) 5ʹ-CGCGCTTATCGTGAAG
AGGC-3ʹ and (R) 5ʹ-GTGCCGCTGTCGGTCAGTAA-3ʹ (tnaA), (F) 5ʹ-
GGCAATGGCGACATGACCTA-3ʹ and (R) 5ʹ-GCGCCTTCAGAGTTGTTAC
C-3ʹ (ompF), (F) 5ʹ-GGCAAGCACCATCAGACTTA-3ʹ and (R) 5ʹ-
CCAGACCTGAGCTGCGTTGT-3ʹ (sodB). A 50 ng RNA sample was used for
each RT-PCR with each primer pair using the iTaq Universal SYBR Green One-
Step kit (Bio-Rad) according to the manufacturer’s instructions. The target gene
transcripts were normalized to the reference gene transcript (gapA) from the same
RNA sample. Each gene was analyzed using RNA isolated from three independent
samples. The cycle threshold (CT) for each sample was generated according to the
procedures described in the CFX96 Real-Time PCR Detection System user guide.

Preparation of genomic DNA. Stock strains were inoculated in 5 mL of modified
M9 medium without chemicals in test tubes for 24 h at 34 °C and 150 rpm using
water bath shakers (Personal-11, Taitec Co., Nagoya, Japan). Next, 300 µg/mL of
rifampicin (RFP) was subsequently added, and the culture was continued for 3 h to
inhibit the initiation of DNA replication. The cells were collected by centrifugation
at 25 °C and 20,000 × g for 5 min and the pelleted cells were stored at –80 °C before
genomic DNA purification. Genomic DNA was isolated and purified using a
DNeasy Blood & Tissue kit (Qiagen) in accordance with the manufacturer’s
instructions. The quantity and purity of the genomic DNA were determined by
measuring the absorbance at 260 nm and calculating the ratio of absorbance at 260
and 280 nm (A260/280) using a NanoDrop ND-2000 spectrophotometer, respec-
tively. The A260/280 values of all the samples were confirmed to be greater than 1.7.
The purified genomic DNAs were stored at −30 °C before use.

Genome sequence analysis using Illumina HiSeq system. Genome sequence
analyses were performed using the Illumina HiSeq System following a previous
study59. A 150-bp paired-end library was generated according to the Illumina
protocol and sequenced using Illumina HiSeq (Illumina, San Diego, California,
USA). In this study, 192 samples with different barcodes were mixed and
sequenced, which resulted in ~140-fold coverage on average. The potential
nucleotide differences were validated using BRESEQ60.

Introduction of identified mutations into the parent strain. To construct mutant
strains, the identified mutations were introduced into the parental strain by
pORTMAGE38. pORTMAGE-4 was a gift from Dr. Csaba Pál (Addgene plasmid #
72679; http://n2t.net/addgene:72679; RRID:Addgene_72679). The introduced
mutations and the DNA oligonucleotides used in this study are listed in Supple-
mentary Data 3. MDS42 strain harboring pORTMAGE-4 plasmid was inoculated
into 5 mL LB media in the presence of 20 µg/mL chloramphenicol and incubated at
30 °C and 150 rpm. Overnight cultures were diluted 1:100 in chloramphenicol
supplemented LB media and grown at 30 °C with agitation at 1000 rotations/min.
After 1.5 h incubation, the exponentially growing cultures (OD600= 0.4–0.6) were
further incubated at 42 °C for 5 min at 1000 rotations/min to induce λ Red protein
expression. Cells were then immediately chilled on ice for 10 min. Electro-
competent cells were prepared by washing and pelleting twice in ice-cold sterile
MilliQ water. Each MAGE oligo (90-mer oligonucleotide containing the desired
mutation and four phosphorothioated bases at the 5ʹ termini) at 2.5 µM final
concentration was introduced by electroporation. For gene inactivation, with the
exception of acrR, NheI site containing the TAG stop codon was introduced
immediately downstream of its start codon and one base was inserted to introduce
a frameshift mutation. To construct the acrR mutant strain, a NheI site was
introduced 24 bp downstream of the start codon. After electroporation, 1 mL TB
medium was added, and cells were incubated at 30 °C for 1 h. At this point, cells
were subjected to additional MAGE cycles. After the fourth MAGE cycle, cells were
diluted 1:1000 and plated onto LB media. After 18 h incubation at 30 °C, single
colonies were picked, and corresponding genomic regions were amplified by PCR
and verified by Sanger sequencing or NheI digestion to select the desired mutant
strains. The selected mutants were further cultivated in TB medium to eliminate
the pORTMAGE-4 plasmid. The correctness of the constructed mutants was fur-
ther confirmed by Sanger sequencing.

Population analysis profile. PAP was conducted as previous study27 with specific
modifications. Cells were cultured overnight in the modified M9 medium and 10−1

to 10−6 dilutions were subsequently prepared. Next, 5 µL from each dilution and
the undiluted culture was dropped on the modified M9 agar plates with increasing
amounts of antibiotics (twofold increments). Plates were incubated at 34 °C for
48 h, and colonies were counted to determine the frequency of bacteria growth at
each antibiotic concentration. The highest non-inhibitory concentrations were
defined as the highest concentration that did not affect the colony-forming unit
(cfu) count at least 50% of those that grew on an antibiotic-free plate. A mutant
strain was classified as heteroresistant if subpopulations at frequencies of at least
1 × 10−7 grew at antibiotic concentrations at least eightfold higher than the highest
non-inhibitory concentration of the wild-type. Meanwhile, a mutant strain was
classified as genetically resistant if the highest non-inhibitory concentration was at
least eightfold higher than that of the wild-type strain.

Determination of mutation frequencies. Mutation frequencies were determined
as the previous study61. The MDS42 strain was first inoculated in the modified M9
medium at 34 °C with shaking (150 rpm). The overnight culture was transferred
into 5 mL fresh modified M9 medium and incubated until OD600 of the culture
reached 0.5. Grows exhibiting exponential growth (108 cells/mL) were further
incubated without drugs or with IC50 of antibiotics (CBPC, CMZ, CP, NFLX, or
TET) for 4 h at 34 °C with shaking (150 rpm). Subsequently, 2.5 mL of these cul-
tures were centrifuged for 5 min at 10,000 rpm. The pellet was resuspended in 5 mL
of fresh modified M9 medium and incubated overnight at 34 °C with shaking.
Viable cells were determined by plating appropriate dilutions onto the modified
M9 medium agar plates. Mutation frequencies were calculated as the number of
colonies growing on rifampicin (100 mg/L) plates per viable colony. Three inde-
pendent experiments were performed for each condition.
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Prediction and gene selection using a random forest model. A random forest
model was constructed to predict the relative IC50s for each of the 47 stresses from
the 4492 gene expression levels for all 192 evolved strains. Here, the scikit-learn
implementation of the random forest regressor was used. The log10-transformed
gene expression levels were used for prediction. Since the relative IC50 values had
different scales, we normalized the data between stresses by multiplying 1, 0.5, or
0.25 depending on the maximum fold changes of the IC50s for the evolved strains
against the corresponding chemicals. This normalization corresponds to the che-
mical gradient dilution steps used for the experimental determination of the IC50s.
To avoid overfitting, we applied a grid search over the number of trees (16 values
between 10 and 40) and the max depth of each tree (60 values between 20 and
1200), using a fourfold cross-validation method. The set of hyperparameters that
provided the lowest mean squared prediction error, (number of trees, max depth)=
(300, 18), was selected for further analysis. Using the optimal hyperparameters, we
trained the random forest on the whole dataset to extract the ranking of relative
gene importance for IC50 prediction. The relative gene importance was evaluated by
the decrease in the mean squared prediction error at each branch of the tree through
the feature_importance attribute of the RandomForestRegressor function. The 213
genes which had high-feature importance deviating from the trend of exponential
decay were selected for supervised PCA (Supplementary Fig. 5).

Supervised PCA and hierarchical clustering. The expression profiles of the 213
genes, selected through the random forest model, were used for PCA (supervised
PCA). Hierarchical clustering was applied to the supervised PCA space using
Ward’s method. The number of classes was determined by the elbow method using

class dissimilarity (Wn) as a criterion. Wn was defined as Wn ¼ P

k

P

i2ck
ri � μck

�
�
�

�
�
�
2
,

where k, ck, μck is the class’s index, the set of elements for each class, and class k’s
centroid, respectively, and ri, i represents the location of each strain, and its index,
respectively. For each number of classes n, we calculated Wn, and its derivative
(Wn−Wn−1) in the resistance space and searched for the number of classes where
the derivative of Wn sharply decreased. As a result, the optimal number of classes
was determined to be 15. The results of hierarchical clustering including all 15
classes are given in Supplementary Fig. 5. Note, when we varied the number of
genes for supervised PCA, the minimum value of W15 in the resistance space was
observed when the number of genes was 213, which accounts for the precise
number of genes used for clustering in the supervised PCA space (Supplementary
Fig. 5).

Linear discriminant analysis. To investigate the representative gene expression
levels for each class, we applied LDA to the transcriptome data. LDA was per-
formed by using the LinearDiscriminantAnalysis function from the scikit-learn
package. The strains were assigned binary labels for LDA: one for the strains which
belonged to the class of interest, and zero for the other strains. To extract the
important genes that characterized each class, we looked for the top-weighted
genes in each LDA axis, which corresponded to the genes which contributed to the
decision boundary for the binary labeled strains. We further selected the genes that
had more than a twofold change in gene expression compared with the parent
strain, within the top-weighted genes in the LDA axis.

Comparing class dissimilarities. To evaluate how accurately the neighboring
relationship in the resistance space was conserved in the supervised PCA space, we
calculated W15 in the resistance space based on the clustering results in the
resistance space, supervised PCA space, mutation space, and the full expression
space. For the resistance space, hierarchical clustering was applied based on the 47
relative IC50s, to cluster the 192 strains to 15 classes. For the mutation space,
hierarchical clustering was applied based on the one-hot encoding which reflects
the information of the presence of a mutation. For the expression space, hier-
archical clustering was applied to the whole 4492-dimension gene expression space.
To construct a baseline, the class dissimilarity was calculated for randomly clus-
tered classes in the resistance space as well. The results are given in Supplementary
Fig. 6. We also performed the same procedure for W15 in the expression space to
determine whether the topological relationships in the expression space correspond
with that in the supervised PCA space and resistance space.

Estimating the ratio of beneficial mutations. To estimate the ratio of beneficial
mutations of the evolved strains, we used the ratio of nonsynonymous to synon-
ymous mutations per site (dN/dS) which was 5.26 for the current experiment. Here,
we followed the procedure introduced in the supplement of Tenaillon et al.29,30.
The ratio of beneficial mutations y can be calculated under the assumption that
dN/dS should be 1.0 under strict neutrality. This leads to our estimation of y=
(5.26−1.0)/5.26= 0.810.

Quantification and statistical analysis. To determine IC50s, serial dilutions of
each chemical were prepared in 384-well microplates using the modified M9
medium with 20.25-, 20.5-, or 2-fold chemical gradients in 22 dilution steps. The
chemical gradients depended on the maximum fold changes of the IC50s for the
evolved strains against the corresponding chemicals. Culture conditions for IC50

determination were the same as for laboratory evolution. After 24 h cultivation in
the 384-well microplates containing serially diluted chemicals, the OD620 of the
cultures was measured. Note, this IC50 measurement using OD620 can be affected
by changes in cell size among the evolved strains. To investigate this possibility, we
quantified the cell size of all 192 evolved strains cultivated without the stressor and
found that no evolved strains showed significantly elongated cell shape in the
absence of stressors. We present the measured cell sizes for all 192 evolved strains
and the parent strain in Supplementary Fig. 11 (see also “Quantifying single-cell
sizes of the evolved strains” below). To obtain the IC50 values, the OD620 values for
the dose-response series were fitted to the following sigmoidal model:
f ðxÞ ¼ a

1þexp½bðlog2x�log2IC50Þ� þ c, where x and f(x) represent the concentration of

antibiotics and observed OD620 values, respectively, and a, b, c, and IC50 are fitting
parameters. The fitting was performed using optimize.curve_fit in the SciPy
package62. The relative IC50 values were computed by comparing the IC50 of each
evolved strain to the mean of 13 independent measurements of the MDS42 parent
strain.

Cross-resistance and collateral sensitivities of stresses were investigated through
the Mann–Whitney U test. To detect collateral relationships between stress A and
B, we compared the IC50 values of stress B of the four strains that evolved in stress
A to that of the parent strain (13 independent replicas). The P values were obtained
using “wilcox.test” (correct=F, exact=T) in the stats package of R software. We
further applied the Benjamini-Hochberg FDR control to these p values so that
FDR < 5%.

Quantifying single-cell sizes of the evolved strains. To evaluate the cell sizes of
the parent and evolved strains, we acquired single-cell images through an inverted
microscope BX53 (Olympus, Tokyo, Japan). Single-cell sizes were quantified using
a custom ImageJ based code utilizing the “Threshold” and “Analyze Particles”
functions. The mean and standard deviation of the cell size of approximately 160
cells for each evolved strain and the parent strain are provided in Supplementary
Fig. 11.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All microarray data are available in the National Center for Biotechnology Information’s
Gene Expression Omnibus functional genomics data repository under accession number
GSE137348. The raw sequence data of genome sequence analyses are available in the
DDBJ Sequence Read Archive under the accession number DRA006396. All relevant data
in this study are available from the corresponding authors upon reasonable
request. Source data are provided with this paper.

Code availability
Our custom code for supervised PCA and hierarchical clustering is available at https://
github.com/jiwasawa/evolved-strain-analysis/63. The custom code is written in Python
3.6, relying on scipy, numpy, pandas, and scikit_learn. Any additional code can be
requested from the corresponding author.
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