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a b s t r a c t 

Bone tissue is regenerated via the spatiotemporal involvement of various cytokines. Among them, the bone mor- 
phogenetic protein (BMP), which plays a vital role in the bone regeneration process, has been applied clinically 
for the treatment of refractory orthopedic conditions. 

Although BMP therapy using a collagen carrier has shown efficiency in bone regeneration over the last two 
decades, a major challenge —considerable side effects associated with the acute release of high doses of BMPs —has 
also been revealed. To improve BMP efficiency, the development of new carriers and biologics that can be used 
in conjunction with BMPs is currently underway. 

In this review, we describe the current status and future prospects of bone regeneration therapy, with a focus 
on BMPs. Furthermore, we outline the characteristics and molecular signaling pathways involving BMPs, clinical 
applications of BMPs in orthopedics, clinical results of BMP use in human spinal surgeries, drugs combined with 
BMPs to provide synergistic effects, and novel BMP carriers. 
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Several cytokines, including bone morphogenetic proteins (BMPs),
ransforming growth factor (TGF)- 𝛽, fibroblast growth factor (FGF), vas-
ular endothelial growth factor (VEGF), platelet-derived growth factor
PDGF), insulin-like growth factor (IGF), Wnt, Hedgehog, Notch, and
nterleukins (ILs), are spatiotemporally involved in bone regeneration
1] . Many common pathways and crosstalks are involved in these cy-
okine signaling pathways that regulate bone formation in vivo . In this
eview, we describe the recent advances in bone regenerative therapy in
onjunction with these cytokines, with a focus on BMPs, which exhibit
otent osteogenic effects. 

haracteristics of BMPs and the associated molecular signaling 

athways 

Dr. Urist first reported that BMP can induce bone generation in ec-
opic sites in 1965 [2] . BMPs belong to the TGF- 𝛽 superfamily and play
 crucial role in embryogenesis, cell differentiation, and skeletal devel-
pment [ 3 , 4 ]. More than 20 BMP family members have been identified,
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mong which BMP-2, BMP-4, BMP-5, BMP-6, BMP-7, and BMP-9 con-
ribute to bone formation [ 3 , 4 ]. BMP-2 is essential in the fracture heal-
ng process because it induces periosteal cells to differentiate into chon-
rocytes (an early process in fracture healing) and then strongly pro-
otes osteogenic differentiation and mineralization [5] . BMP-7 induces

steoblast maturation and accelerates fracture healing. When rapid ossi-
cation occurs in vivo, BMP-7 expression also increases rapidly [5] . Ow-

ng to these beneficial factors, BMP-2 and BMP-7, with their potent bone
egenerative action, have been clinically applied. Interestingly, a BMP-
/7 heterodimer has more potent bone regenerative effects than a BMP-
 or BMP-7 homodimer without increasing the inflammatory response
6] . BMP-9 promotes osteogenic differentiation of mesenchymal stem
ells by activating the BMP/Smad and Wnt/ 𝛽-catenin signaling path-
ays [5] . Recently, the expected clinical application of BMP-9, which is

onsidered to have the most potent osteogenic effect, was suggested [7] .
BMPs bind to two types of serine-threonine kinase receptors, BMP

ype I and BMP type II receptors, and initiate signal transduction
hrough Smad and non-Smad signaling pathways ( Fig. 1 ) [8] . Smad 1,
mad 5, and Smad 8, which are phosphorylated by the activated BMP
ype I receptor, form a complex with Smad 4 and regulate transcription
s of bone regeneration therapy with a special focus on the bone morphogenetic 
ion process. 
raduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan. 

3 December 2022 

rican Spine Society. This is an open access article under the CC BY-NC-ND 

https://doi.org/10.1016/j.xnsj.2022.100193
http://www.ScienceDirect.com
http://www.elsevier.com/locate/xnsj
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xnsj.2022.100193&domain=pdf
mailto:takashikaito@ort.med.osaka-u.ac.jp
https://doi.org/10.1016/j.xnsj.2022.100193
http://creativecommons.org/licenses/by-nc-nd/4.0/


D. Tateiwa and T. Kaito North American Spine Society Journal (NASSJ) 13 (2023) 100193 

Fig. 1. Bone morphogenetic proteins (BMPs) and osteogenic signaling pathways 
After BMPs bind to their receptors, phosphorylated Smad 1, Smad 5, and Smad 8 form a complex with Smad 4 to regulate transcription of osteogenic genes (Smad- 
dependent signaling pathway). Activated BMP receptors also activate non-Smad-dependent signaling pathways, including p38 mitogen-activated protein kinase 
(MAPK), extracellular signal-regulated kinase (ERK), and Jun-N-terminal kinase (JNK). 
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f target genes such as runt-related transcription factor 2 ( Runx2 ),
istal-Less Homeobox 5 ( Dlx5 ), and Osterix ( Osx ) in the nucleus
Smad-dependent signaling pathway) [4] . In addition, activated BMP
eceptors activate osteogenic signals via non-Smad-dependent signaling
athways such as p38 mitogen-activated protein kinase (MAPK),
xtracellular signal-regulated kinase (ERK), and Jun-N-terminal kinase
JNK) [9] . 

linical applications of BMPs in orthopedics 

Recombinant human BMP (rhBMP)-2 and rhBMP-7 have been ap-
roved by the United States Food and Drug Administration (FDA) and
re currently clinically applied for the treatment of orthopedic condi-
ions such as non-union, acute open fractures, and spinal fusion [ 10 , 11 ].
egarding these refractory conditions, autologous bone grafting is con-
idered the “gold standard ”; however, it is associated with complications
uch as donor site morbidity and limited availability [12] . RhBMP-2
s marketed as InFUSE® (Medtronic, MN, USA) in combination with
n absorbable bovine type I collagen sponge and has shown substan-
ial therapeutic efficacy as an alternative treatment to autologous bone.
n a study on anterior lumbar interbody fusion surgery, the group that
eceived rhBMP-2 treatment showed superior spinal fusion rates and
qual or better improvement in back and leg pain than the group that
eceived autologous bone treatment [ 13 , 14 ]. Therefore, the application
f rhBMP-2 as a therapeutic option has increased rapidly, especially in
pinal fusion surgery. 

However, side effects such as inflammatory edema, ectopic ossifi-
ation, seroma, and radiculitis associated with high-dose BMP use have
revented its widespread clinical application [15] . In addition, the costs
f tibial fracture nonunion and spinal fusion surgeries were higher in the
roup that received rhBMP treatment than in the group that received
2 
utologous bone treatment [ 16 , 17 ]. Therefore, to reduce BMP require-
ent, enhancers combined with BMPs and efficient drug delivery sys-

ems are currently being developed. 

linical results of rhBMP-2 use in human spinal surgery 

The efficacy of rhBMP-2 has been demonstrated in many human
linical trials over the last two decades. In a recent meta-analysis of
wenty randomized controlled trials evaluating the efficacy of rhBMP-2
n the treatment of lumbar degenerative disease requiring lumbar fu-
ion, the rhBMP group was superior to the autologous iliac crest bone
raft (ICBG) group in terms of the success rate of fusion, improvement in
he Oswestry Disability Index, and lower reoperation rate [18] . In adult
pinal deformity surgery, the use of rhBMP-2 reduced the pseudarthro-
is rate at 12 months postoperatively, but did not affect complication
ates either during hospitalization or at 30 and 90 days postdischarge.
urthermore, the use of rhBMP-2 did not increase the overall expense
t 24 months [19] . There have been several reports on the efficacy of
hBMP-2 in pediatric spinal fusion surgery [20–22] . Rocque et al. re-
orted that in 4650 pediatric patients who underwent thoracolumbar
usion surgeries, rhBMP-2 was used in 1752 patients, with no signifi-
ant differences in complication and reoperation rates [20] . However,
he cancer risk associated with the use of rhBMP-2 in pediatric patients
emains unclear [21] . In a small series of 50 pediatric patients, with the
ean age of patients being 11.4 years and the mean follow-up being 4

ears, there were no new malignancies or metastases of the existing ma-
ignancies [22] . The appropriate rhBMP-2 dosage for pediatric patients
s controversial owing to insufficient evidence [21] . In a meta-analysis
f pseudarthrosis following spinal fusion surgery, the time to fusion in
he rhBMP-2 group was reduced compared with that in the bone graft
roup, but this did not increase the complication rate [23] . 
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In a meta-analysis of the minimally effective dose of rhBMP-2 in pos-
erior lumbar interbody fusion and transforaminal lumbar interbody fu-
ion, no significant difference in fusion rates was observed across doses
f rhBMP-2, ranging from 1.28 to 12 mg/level, and it was concluded
hat 1.28 mg/level was the minimally effective dose [24] . The current
ose of rhBMP-2 used in the clinics may be too high, and more detailed
tudies will be needed in this regard in the future. 

one regeneration drugs and their combined effects with BMPs 

Various cytokines, including BMPs, are spatiotemporally involved
n the bone regeneration process ( Fig. 2 ). The bone regeneration pro-
ess (e.g., fracture healing) involves the following stages: the inflamma-
ory stage, endochondral bone formation stages (cartilage formation and
ineralization), and remodeling stage [ 1 , 25 ]. Several cytokines play an

ntegral role in each process, and BMPs in particular are strongly in-
olved in all the processes. In the initial inflammatory stage, inflamma-
ory cells and platelets in the hematoma at the fracture site release vari-
us cytokines. Inflammatory cytokines (TNF- 𝛼, IL-1, IL-6), BMPs, TGF- 𝛽,
nd PDGF-BB stimulate inflammatory responses and the recruitment of
esenchymal stem cells (MSCs) [1] . 

In the following endochondral bone formation stage, chondrogene-
is and extracellular matrix formation, such as soft callus formation, is
acilitated by TGF- 𝛽s, BMPs, PDGF-BB, IGF-1, and FGFs [ 1 , 26 ]. Further-
ore, VEGFs, BMPs, PDGFs, and FGF-2 stimulate angiogenesis [ 27 , 28 ].

ollowing angiogenesis, inflammatory cytokines, receptor activator of
uclear factor-kappa B ligand (RANKL), and osteoprotegerin cause car-
ilage resorption, and BMPs and Wnt ligands cause osteogenic differ-
ntiation of MSCs and bone deposition [1] . In the final remodeling
tage, healing bone gradually returns to its pre-injury shape and strength
ia the coupling of osteoclastic bone resorption and formation. BMPs
ctivate osteoclasts and osteoblasts via the following actions [ 29 , 30 ]:
rst, BMPs activate osteoblast differentiation, which in turn upregulates
ANKL expression in osteoblasts and osteocytes; second, BMPs directly
ctivate osteoclastic differentiation via BMP receptors on osteoclasts. 

Attempt have been made to use several growth factors and other
gents, in addition to BMPs, to assist bone regenerative therapy. Cer-
ain medications have been used in combination with BMPs to improve
he efficacy of BMP-induced bone regeneration. Although some of these
edications do not induce sufficient bone regenerative effects with sin-

le use, they can strongly enhance bone regeneration when combined
ith BMPs. Since the side effects of BMPs occur in a dose-dependent
anner [15] , reducing the required amount of BMPs in combination
ith other drugs could decrease the side effects and associated financial

osts. 

1) TGF- 𝛽

There are three types of TGF- 𝛽—TGF- 𝛽1, TGF- 𝛽2, and TGF-
3 —which are involved in inflammation, skeletal morphogenesis, can-
er, and bone metabolism [31] . TGF- 𝛽 binds to its receptor and regu-
ates transcription of target genes via the Smad2/3-mediated signaling
athway (the Smad-dependent pathway) and p38 MAPK- or ERK1/2-
ediated signaling pathways (the non-Smad-dependent pathway) [4] .
GF- 𝛽 has both positive and negative effects on osteogenesis. TGF-
promotes proliferation and early differentiation of osteoprogenitor

ells but inhibits osteoblast maturation and mineralization [32] . Using
on-mulberry silk fibroin grafted poly( ɛ -caprolactone)/hydroxyapatite
anofibrous scaffold as a carrier, the osteogenic effects were compared
n the following three groups: rhBMP-2 only, TGF- 𝛽 only, and rhBMP-2-
GF- 𝛽 combinations [33] . In the rat critical-size alveolar defect model,
he TGF- 𝛽3 and BMP-2 combination group had significantly increased
ew bone formation compared to that in the BMP-2 only group [26] . The
hBMP-2-TGF- 𝛽 combination group exhibited superior cell activity, pro-
iferation, calcium deposition, and osteogenic gene expression. TGF- 𝛽
timulates MSC recruitment and in particular promotes chondrogenesis
3 
26] . Thus, combining TGF- 𝛽 with BMPs could especially strengthen the
ndochondral bone formation stage during bone regeneration process. 

2) FGF 

FGF is a multifunctional growth factor involved in cell proliferation,
ngiogenesis, and embryogenesis, and more than 20 types of FGF have
een identified to date. FGF binds to the FGF receptor, resulting in sig-
al transduction via RAS/MAPK, phosphatidylinositol-4,5-bisphosphate
-kinase (PI3K)–protein kinase B (AKT), phospholipase C gamma (PLC),
nd signal transducer and activator of transcription (STAT) [34] . Among
he FGFs, FGF-2 shows superior osteogenic effects in combination ther-
py with BMPs. The combination of BMP-2 and FGF-2 using a nanocom-
osite fibrous scaffold promotes bone formation [35] . The combina-
ion of avidin surface-functionalized nanofiber with biotinylated FGF-
 and BMP-2 enabled efficient bone regeneration via sustained release
unction by avidin-biotin conjugation. FGF-2 stimulates the migration
f MSCs to bone regeneration sites. Furthermore, it is a potent angio-
enic inducer that enhances VEGF expression in vascular endothelial
ells [28] . Therefore, FGF-2 could enhance the BMP-induced bone re-
eneration process, especially from the inflammatory stage to the endo-
hondral bone formation stage. 

3) VEGF 

Bone is a blood-rich tissue; therefore, bone regeneration, maturation,
nd remodeling are highly dependent on the vascular supply. One of the
ost important growth factors in vascular development and angiogen-

sis is VEGF [27] , and the efficacy of combining BMPs and VEGF has
een previously reported [ 36 , 37 ]. 

The dual delivery of BMP-2 and VEGF using a silk fibroin-
anohydroxyapatite scaffold promoted angiogenesis at the early bone
ealing phase resulting in improved bone formation [36] . Hydroxyap-
tite composite scaffolds prepared by 3D printing at low temperatures
nd layer-by-layer assembly enabled the sustained release of BMP-2
nd VEGF and exhibited excellent osteogenic and angiogenic properties
37] . Combination of VEGF with BMP-2 enhances angiogenesis, leading
o efficient replacement of cartilage tissue with bone tissue during the
ndochondral bone formation stage, as well as subsequent bone remod-
ling maintenance. 

4) PDGF 

PDGF is secreted by platelet 𝛼-granules and is composed of five ho-
odimers (AA, AB, BB, CC, and DD) [38] . Among the PDGF homod-

mers, PDGF-BB has the most potent bone regeneration capacity and
as approved by the FDA for ankle and hindfoot fusion surgeries in 2015
 7 , 39 ]. The efficacy of the combination of PDGF-BB and BMPs has also
een previously reported; the co-delivery of PDGF-BB and BMP-2 using
eparinized titanium as a carrier increased the ALP activity and calcium
eposition compared to that of PDGF-BB or BMP-2 alone [40] . The com-
ination of low-dose BMP-2 with dual angiogenic growth factors (VEGF
nd PDGF) resulted in more potent angiogenesis than achieved with
EGF or PDGF alone, and significantly increased new bone formation
ompared to low-dose BMP-2 alone [41] . Compared to BMP-2 and BMP-
, PDGF has a several-fold stronger chemotactic effect to recruit MSCs
42] , which can synergistically enhance the osteogenic effect of BMPs
43] . 

5) IGF 

IGF is a growth factor that promotes the proliferation of various
ell populations. There are two types of IGFs, IGF-1 and IGF-2; IGF-1
s particularly involved in bone formation [ 44 , 45 ]. IGF-1 binds to its
eceptor and activates the PI3K-Akt, Ras-ERK, and MAPK pathways via
nsulin receptor substrate-1 signaling, thereby promoting osteoblast dif-
erentiation [ 44 , 46 ]. A dual delivery system of BMP-2 and IGF-1 using
lginate/collagen-based hydrogel achieved early healing with low dose
f BMP-2 in a rat cranial defect model [47] . The dual delivery system
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Fig. 2. Spatiotemporal involvement of various cytokines in bone regeneration 
The bone regeneration process consists of the inflammatory stage, endochondral bone formation stages (cartilage formation and mineralization), and remodeling stage. 
In the initial inflammatory stage, cytokines released from inflammatory cells and platelets in the hematoma stimulate the inflammatory response and mesenchymal 
stem cell (MSC) recruitment. In the subsequent endochondral bone formation stage (cartilage formation), cartilage and extracellular matrix formation and angiogenesis 
occur. Next, in the endochondral bone formation stage (mineralization), bone morphogenetic proteins (BMPs) and Wnt ligands cause osteogenic differentiation of 
MSCs and bone deposition. In the last remodeling stage, a coupling of osteoclastic bone resorption and formation occurs. 
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llowed efficient bone regeneration by sequentially releasing BMP2 and
GF1 in two different microparticles [47] . 

6) Other biological agents 

In addition to the growth factors, several biological agents have been
eported as BMP enhancers. The combination of rhBMP-2 and intermit-
ent administration of teriparatide (parathyroid hormone 1-34) not only
ncreased the spinal fusion rate but also improved the quality of new
4 
one in a rat spinal fusion model [48] . Teriparatide activates the Wnt
athway, which downregulates peroxisome proliferator activated recep-
or gamma and induces MSC differentiation toward osteoblasts rather
han adipocytes, resulting in improved BMP-induced bone quality [49] .

Retinoic acid, the active metabolite of vitamin A, plays a key role in
ell differentiation, embryogenesis, and skeletal development [ 50 , 51 ].
mong the three types of retinoic acid receptors (RARs), signaling via
AR 𝛾 is closely related to bone and cartilage formation [ 52 , 53 ]. Sys-
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Table 1 

Combination drugs with bone morphogenetic proteins (BMPs) and their mechanism of action. 

Drugs Mechanism of action in combination with BMPs 

TGF- 𝛽 Transforming growth factor (TGF)- 𝛽 promotes proliferation and early differentiation of osteoprogenitor cells. It stimulates the recruitment of 
mesenchymal stem cells (MSCs) and in particular promotes chondrogenesis. Thus, combining TGF- 𝛽 with BMPs would strengthen the endochondral 
bone formation stage during the bone regeneration process. 

FGF-2 Fibroblast growth factor (FGF)-2 stimulates the migration of MSCs to bone regeneration sites and enhances the expression of vascular endothelial 
growth factor (VEGF) in vascular endothelial cells. Thus, FGF-2 would enhance the BMP-induced bone regeneration process, especially from the 
inflammatory stage to the endochondral bone formation stage. 

VEGF VEGF is the most important growth factor in vascular development and angiogenesis; the combination of VEGF promotes angiogenesis, leading to 
efficient replacement of cartilage tissue with bone tissue during the endochondral bone formation stage, as well as maintenance of the subsequent 
bone remodeling. 

PDGF-BB Platelet derived growth factor (PDGF)-BB has a potent chemotactic effect (several times stronger than BMP-2) to recruit MSCs, which can 
synergistically enhance the osteogenic effect of BMPs. 

IGF-1 Insulin-like growth factor (IGF)-1 activates the PI3K-Akt, Ras-ERK, and MAPK pathways via insulin receptor substrate-1 signaling, thereby 
promoting osteoblast differentiation. 

PTH Parathyroid hormone (PTH) activates the Wnt pathway, induces MSC differentiation from adipocytes to osteoblasts, and improves bone quality 
through BMPs. 

RAR 𝛾
antagonist 
(7C) 

7C enhances not only the BMP/Smad signaling, but also the signaling pathways involved in cartilage formation (cAMP-PKA-CREB, HIF1a, and 
TGF- 𝛽 signaling). 7C particularly enhances cartilage formation in the early stage of BMP-induced endochondral bone formation. 
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emic administration of an RAR 𝛾 antagonist promoted BMP-induced ec-
opic bone formation in mice [52] . Furthermore, when 7C, a synthetic
AR 𝛾 antagonist, was loaded into polylactide nanoparticles (NPs), lo-
al administration of 7C-NPs significantly increased BMP-induced bone
ormation in a murine ectopic bone formation model [54] . Histological
nalysis showed that 7C particularly enhanced cartilage formation in
he early stage of BMP-induced endochondral bone formation. Molecu-
ar signaling pathway analysis revealed that 7C enhanced not only the
MP/Smad signaling, but also the signaling pathways involved in car-
ilage formation (cAMP-PKA-CREB, HIF1a, and TGF- 𝛽 signaling). Thus,
ince BMP is a potent inducer of endochondral bone formation in vivo ,
n approach that assists cartilage formation would be useful for BMP-
nduced bone regeneration. In endochondral bone formation, the ini-
ially formed cartilage tissue serves as a template for bone replacement
54–56] . A larger cartilage template allows for larger bone regeneration
 54 , 56 ]. 

Relaxin belongs to the insulin family and is known as a pregnancy
ormone. In a rat calvarial defect model, the combination of relaxin re-
uced BMP-2 requirement by 50% [57] . Psoralen is a coumarin deriva-
ive extracted from Psoralen corylifolia L. and promotes the osteoblast
ifferentiation of MSCs [58] . In a femur fracture model in ovariec-
omized mice, the combination of rhBMP-2 and psoralen increased cal-
us consolidation and biomechanical strength. A summary of the mech-
nisms of action of combination drugs with BMPs is provided in Table 1 .

MP carrier development 

Scaffolds are important for the efficient action of various growth fac-
ors, including BMPs. An ideal scaffold in bone regeneration should be
ighly biocompatible, gradually degradable, and completely replaceable
y new bone. It should also have sufficient mechanical strength for load
earing, while possessing the porosity and pore size necessary for cell in-
ltration and angiogenesis. Most importantly, growth factors and other
iological agents should be delivered to the target site with the ideal
elease kinetics, that is, sufficient “spatiotemporal control ” of the deliv-
red drugs [ 1 , 59 ]. 

Different BMP release kinetics (burst or sustained release) also cause
ifferent bone formation patterns. Burst release of BMPs induces a strong
steogenic effect at the graft site, allowing for early bone regeneration.
owever, rapidly released BMPs cause bone formation not only at the

arget site but also in the surrounding area (ectopic ossification at un-
ntended sites), resulting in poor quality new bone with abundant fatty
arrow in the central region [ 60 , 61 ]. In addition, burst release is more

ikely to produce side effects such as concentration-dependent inflam-
atory reactions [ 54 , 62 ]. In contrast, sustained release of BMPs attenu-
5 
tes the spread of the inflammatory response to the surroundings in the
arly stages of the bone formation process, resulting in the induction
f new bone that does not differ substantially from the size of target
ites [ 62 , 63 ]. In addition, long-term release of BMPs can lead to the for-
ation of a substantial amount of new bone in the center of the grafted

ite [61] . However, sustained release takes a longer time to achieve ade-
uate bone formation. A summary of the advantages and disadvantages
f the two BMP release kinetic models is provided in Table 2 . 

Representative BMP carrier materials are classified as polymers (nat-
ral and synthetic), inorganic materials (mainly ceramics), and compos-
tes ( Table 3 ) [59] . Recently, the development of composite materials
hat combine the properties of multiple materials has become a trend. 

Polymers 

Polymers are generally divided into natural or synthetic polymers.
atural polymers include collagen, hyaluronic acid, gelatin, fibrin, and
lginate [59] . While these have good biocompatibility and biodegrad-
bility, they present drawbacks such as mechanical weakness and im-
unogenicity [59] . Mechanically weak collagen sponges are easily com-
ressed by the surrounding tissue and cause rapid leakage of the rhBMP-
 solution [64] , such that approximately 60–80% of BMP-2 is released
fter only 1 day of implantation [ 61 , 63 ], and only approximately 5% of
hBMP-2 remains in vivo , 2 weeks after implantation [ 65 , 66 ]. 

Synthetic polymers include polylactic acid, polyglycolic acid,
oly(D,L-lactide-coglycolide), and polyethylene glycol [59] . In contrast
o natural polymers, a major advantage of synthetic polymers is that by
hanging the polymer structure, handling properties (injectability and
oldability), degradability, mechanical strength, and adhesiveness can

e adjusted according to the requirement for clinical application [67–
9] . However, a drawback is presented by the acidic degradation prod-
cts of synthetic polymers that lower the local pH and cause excessive
nflammatory response [59] . 

Recently, polymer materials have been developed that are excep-
ional for the “spatio-temporal control ” of BMPs. Heparin microparti-
les (HMPs), that consist of cross-linked heparin methacrylamide, have
 strong-affinity interaction with BMP-2 (1000 times more than that
ith other heparin materials) [63] . Therefore, HMPs spatially control
MP-2-induced bone formation by prolonged retention of BMP-2 at the
arget site, resulting in reduced heterotopic ossification at unintended
ites. 

2) Inorganic materials 

The most commonly used inorganic materials are ceramics (calcium
hosphates), namely hydroxyapatite (HA), tricalcium 𝛽-phosphate
 𝛽-TCP), and biphasic calcium phosphate (BCP) [59] . HA is rarely
bsorbed and maintains the volume of the grafted site but is not
xpected to be fully replaced by new bone [70] . Furthermore, HA has
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Table 2 

Advantages and disadvantages of different bone morphogenetic protein (BMP) release kinetics. 

Release kinetics of 
BMPs Advantages Disadvantages 

Burst release 
√

Early bone formation 
√

Ectopic ossification at unintended sites (bone formation that extends outside the 
target site) √

Poor bone quality in the center of the implanted site (abundant fatty marrow) √
Side effects such as concentration-dependent inflammatory reactions 

Sustained release 
√

Prevents the spread of inflammatory reactions √
Bone formation limited to the target site (prevention of unintentional 

ectopic bone formation) √
Good new bone quality with bone formation in the center of the 

target site 

√
Long time required for bone formation 

Table 3 

Characteristics of different bone morphogenetic protein (BMP) carriers. 

Class Type Characteristics 

Natural polymers 
√

Collagen √
Hyaluronic acid √
Gelatin √
Fibrin 

√
Natural polymers have good biocompatibility and biodegradability. √
Natural polymers have some limitations such as mechanical weakness and immunogenicity. 

Synthetic polymers 
√

Polylactic acid √
Polyglycolic acid √

Poly(D,L-lactide-coglycolide) √
Polyethylene glycol 

√
By changing the polymer structure, handling properties, degradability, mechanical strength, and adhesiveness can be 

adjusted. √
The degradation products cause excessive inflammatory response. 

Inorganic materials 

(ceramics) 

√
Hydroxyapatite (HA) 

√
HA is rarely absorbed and maintains the volume of the grafted site but is not expected to be fully replaced by new bone. √
HA has a remarkably high affinity for BMPs and is unlikely to exert sufficient osteoinductive effects. √

Tricalcium 𝛽-phosphate 
( 𝛽-TCP) 

√
𝛽-TCP is highly degradable and can be replaced by new bone. √
Early absorption of 𝛽-TCP can lead to soft tissue invasion into the grafted site before the new bone formation. √

Biphasic calcium 

phosphate (BCP) 

√
To take advantages of HA and 𝛽-TCP, BCP is created by sintering HA and 𝛽-TCP. √
The HA part has low resorbability and prevents soft tissue invasion, while the 𝛽-TCP part is resorbed and replaced by 

new bone. √
Ceramics alone, depending on their morphology and porosity is often complicated due to the inability to exhibit 

sustained BMP release. 
Composite 

(ceramics/polymers) 

√
BCP/Collagen √
HA/ 𝛽-TCP microsphere 

/poloxamer 407 hydrogel 

√
Composites provide an advantage based on the strength of the combination of several materials. √
Ceramic/polymer composites provide better handling than ceramics alone. √
Ceramic/polymer composites are mechanically stronger than polymers alone, owing to the presence of ceramics. √
By combining polymers with calcium ceramics, BMP is released more slowly and for a longer duration than in the case 

of bare calcium ceramics. 
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 remarkably high affinity for BMPs and is unlikely to exert sufficient
steoinductive effects [71] . In contrast, 𝛽-TCP is highly degradable and
an be expected to be replaced by new bone, but early absorption of
-TCP can lead to soft tissue invasion into the grafted site before the
ew bone formation [70] . To take advantages of both, BCP is created
y sintering HA and 𝛽-TCP. The HA part has low resorbability and
revents soft tissue invasion, while the 𝛽-TCP part is resorbed and
eplaced by new bone, resulting in efficient bone formation. However,
he use of ceramics alone, depending on their morphology and porosity,
s often complicated due to the inability for sustained BMP release. 

Recently, clay nanomaterials have attracted attention as carriers of
MPs and other growth factors [72] . Laponite nanoclay (hereafter, re-
erred to as nanoclay) is composed of a layered synthetic silicate synthe-
ized from inorganic mineral salts and has a disk shape with a diameter
f 20–50 nm and a thickness of 1–2 nm [72] . Nanoclay gels, developed
ased on strong interactions between nanoclays, release proteins in a
ustained manner while increasing the adsorption and localization of
roteins, resulting in a 10–100 fold reduction in the effective concen-
ration of BMP-2 [73] . 

3) Composites 

Composites provide an advantage based on the strength of the combi-
ation of several materials [59] . For example, ceramic/polymer compos-
te carriers have attracted considerable attention as BMP carriers. These
omposites are injectable and moldable owing to the polymer composi-
ion and provide better handling than ceramics alone [74] . Composites
re mechanically stronger than polymers alone, owing to the presence
f ceramics [59] . Furthermore, by combining polymers with calcium ce-
amics, BMP is released more slowly and for a longer duration than in
6 
he case of bare calcium ceramics, and the burst release is suppressed
75–77] . 

We have developed NOVOSIS putty®, a novel ceramic/polymer
omposite that combines HA granules, 𝛽-TCP microspheres, and polox-
mer 407-based hydrogel (HA/ 𝛽-TCP microsphere/poloxamer 407 hy-
rogel) [ 61 , 62 ]. HA/ 𝛽-TCP microsphere/poloxamer 407 hydrogel is an
xceptional handling composite with injectable and moldable properties
nd exhibits improved sustained release of rhBMP-2 than the collagen
ponge. In a rat caudal intervertebral fusion model, HA/ 𝛽-TCP micro-
phere/poloxamer 407 hydrogel showed superior fusion rates, new bone
ormation, and suppressed side effects (ectopic bone formation and soft
issue swelling) in comparison with the collagen sponge [62] . Regard-
ng the ongoing efforts and future directions, a phase 1/2 clinical trial of
OVOSIS putty® for lumbar interbody fusion is currently underway in
apan, and a clinical trial is planned in North America (U.S. and Canada)
n the near future. 

uture prospects for bone regeneration therapy 

BMPs are expected to play a major role in bone regeneration therapy
n the future. The results of the clinical application of BMPs over the last
wo decades have supported their bone regeneration capacity. However,
 substantial challenge related to side effects remains, and researchers
re developing drugs and carriers that improve BMP applications. 

In bone regeneration, both “reliable ” and “rapid ” bone healing are
rucial. Several reports have shown that BMPs shortened the time re-
uired for bone healing [78–80] . If the efficient use of BMPs can shorten
he time for bone healing, their application warrants further exploration.
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or example, athletes whose performance may be affected by prolonged
est and patients who are expected to return to society early may be
andidates for BMP treatment, even for common traumatic injuries. 

BMPs with the same carrier (mainly collagen sponge) are currently
pplied for different pathologies, However, individual bone quality
aries depending on sex, age, pathologies, bone location, and other fac-
ors. Therefore, modulating the release kinetics of BMPs according to
he condition of individual patients would present a viable therapeutic
trategy. For example, in young patients with good bone quality, it may
e better to allow some initial burst and induce bone formation early. In
ontrast, a carrier with a relatively long-term sustained release of BMPs
ould be desirable for elderly patients with severe osteoporosis or crit-

cal sized bone defects. If the spatiotemporal release of these cytokines
an be reproduced, improved physiological bone regeneration could be
chieved. The development of various biologics, including BMPs, could
ead to major advances in current orthopedic therapeutics. 
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