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Summary
Background Multisystem inflammatory syndrome in children (MIS-C) is a rare but serious complication of infection 
with SARS-CoV-2. A possible involvement of pathogenetically relevant autoantibodies has been discussed. Recently, 
neutralising autoantibodies against inflammatory receptor antagonists progranulin and interleukin-1 receptor 
antagonist (IL-1Ra) were found in adult patients with critical COVID-19. The aim of this study was to investigate the 
role of such autoantibodies in MIS-C.

Methods In this multicentre, retrospective, cohort study, plasma and serum samples were collected from patients 
(0–18 years) with MIS-C (as per WHO criteria) treated at five clinical centres in Germany and Spain. As controls, we 
included plasma or serum samples from children with Kawasaki disease, children with inactive systemic juvenile 
idiopathic arthritis, and children with suspected growth retardation (non-inflammatory control) across four clinical 
centres in Germany and Spain (all aged ≤18 years). Serum samples from the CoKiBa trial were used as two further 
control groups, from healthy children (negative for SARS-CoV-2 antibodies) and children with previous mild or 
asymptomatic COVID-19 (aged ≤17 years). MIS-C and control samples were analysed for autoantibodies against IL-1Ra 
and progranulin, and for IL-1Ra concentrations, by ELISA. Biochemical analysis of plasma IL-1Ra was performed with 
native Western blots and isoelectric focusing. Functional activity of the autoantibodies was examined by an in vitro IL-1β-
signalling reporter assay.

Findings Serum and plasma samples were collected between March 6, 2011, and June 2, 2021. Autoantibodies against 
IL-1Ra could be detected in 13 (62%) of 21 patients with MIS-C (11 girls and ten boys), but not in children with 
Kawasaki disease (n=24; nine girls and 15 boys), asymptomatic or mild COVID-19 (n=146; 72 girls and 74 boys), 
inactive systemic juvenile idiopathic arthritis (n=10; five girls and five boys), suspected growth retardation (n=33; 
13 girls and 20 boys), or in healthy controls (n=462; 230 girls and 232 boys). Anti-IL-1Ra antibodies in patients with 
MIS-C belonged exclusively to the IgG1 subclass, except in one patient who had additional IL-1Ra-specific IgM 
antibodies. Autoantibodies against progranulin were only detected in one (5%) patient with MIS-C. In patients with 
MIS-C who were positive for anti-IL-1Ra antibodies, free plasma IL-1Ra concentrations were reduced, and immune-
complexes of IL-1Ra were detected. Notably, an additional, hyperphosphorylated, transiently occurring atypical 
isoform of IL-1Ra was observed in all patients with MIS-C who were positive for anti-IL-1Ra antibodies. Anti-IL-1Ra 
antibodies impaired IL-1Ra function in reporter cell assays, resulting in amplified IL-1β signalling.

Interpretation Anti-IL-1Ra autoantibodies were observed in a high proportion of patients with MIS-C and were specific 
to these patients. Generation of these autoantibodies might be triggered by an atypical, hyperphosphorylated isoform 
of IL-1Ra. These autoantibodies impair IL-1Ra bioactivity and might thus contribute to increased IL-1β-signalling in 
MIS-C.
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Introduction 
The course of SARS-CoV-2 infection is typically mild or 
asymptomatic in children.1–3 Multisystem inflammatory 
syndrome in children (MIS-C; also known as paediatric 

inflammatory multisystem syndrome temporally 
associated with SARS-CoV-2) is a rare but serious 
complication that usually occurs after SARS-CoV-2 
infection following a latency period (approximately 
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2–6 weeks).4–9 All affected children present with persistent 
fever while other clinical features might vary. Acute 
abdominal pain, diarrhoea or vomiting, muscle pain, 
headache, and fatigue have been reported.6 Initial 
descriptions have highlighted overlapping features with 
those observed in Kawasaki disease, including bilateral 
conjunctival injection (hyperaemia) and exanthema, 
swollen hands and feet, and so-called strawberry tongue, 
as well as cardiovascular features such as myocardial 
dysfunction, arterial hypotension, myocarditis, pericarditis, 
and involvement of the valves and coronary arteries 
(dilatation or aneurysma) or systemic shock.4,5 Laboratory 
data have revealed excessive inflammation with highly 
elevated serum concentrations of C-reactive protein, 
procalcitonin, and ferritin, and elevated troponin and 
N-terminal pro-B-type natriuretic peptide reflecting cardiac 
involvement.6 Furthermore, hyponatraemia, markers of 
coagulopathy (elevated D-dimers and prolonged 
prothrombin time and partial thromboplastin time) and 
haematological abnormalities (anaemia, lymphocytopenia, 
and thrombocytopenia or thrombocytosis) have been 
reported.10 Most affected children need intensive care due 
to multiorgan failure and shock.7–9,11–13

Despite numerous published studies since its initial 
description, understanding of MIS-C pathogenesis re
mains limited. The formation of pathogenetically 
relevant autoantibodies has been suggested to contribute 
to a hyperinflammatory state.14,15 The autoantibody 
hypothesis is supported by, firstly, the observation of a 
latency period between SARS-CoV-2 infection and MIS-C 
onset, during which priming and activation of adaptive 
immune mechanisms might occur; and, secondly, the 
favourable clinical response of patients to intravenous 
immunoglobulins (IVIGs) and glucocorticoids. 

Furthermore, the American College of Rheumatology 
recommends treatment with a high dose of the 
recombinant interleukin-1 receptor antagonist (IL-1Ra) 
anakinra for IVIG-refractory patients with MIS-C.16–18

Recently, in adult patients with critical COVID-19, 
we identified neutralising autoantibodies against 
progranulin,19 an anti-inflammatory ligand of the 
pro-inflammatory receptors tumour necrosis factor 
receptor 1 (TNFR1), TNFR2, and DR3 (also known as 
TNF receptor superfamily members 1A, 1B, and 25),20–23 
that acts as direct receptor antagonist of TNFα and TL1A 
(also known as TNF ligand superfamily member 15).22,23 
In these adult patients we also detected autoantibodies 
against IL-1Ra,19 a ligand of the pro-inflammatory IL-1 
receptor and antagonist of IL-1α and IL-1β binding and 
signalling. 24–28 The aim of this study was to investigate 
the role of such autoantibodies in MIS-C.

Methods 
Study design and participants 
In this multicentre, retrospective, cohort study, serum 
and plasma samples were collected from patients 
(≤18 years) with MIS-C treated at five clinical centres in 
Germany and Spain. Blood samples of patients with 
MIS-C were drawn in the Department of Pediatric 
Cardiology (Saarland University Hospital, Homburg, 
Germany), the Department of Pediatrics (Klinikum 
Saarbrücken, Saarbrücken, Germany), the Department 
of Pediatric Rheumatology and Immunology (University 
Children’s Hospital Münster, Münster, Germany), the 
Department of Pediatrics (Klinikum Kempten, 
Kempten, Germany), and the Department of Pediatrics 
(Hospital Sant Joan de Déu, Universitat de Barcelona, 
Barcelona, Spain). All patients with MIS-C fulfilled the 

Research in context

Evidence before this study
Before starting our analyses, we searched PubMed (May 1, 2021) 
using the search terms “MIS-C”, “PIMS”, “COVID-19”, and 
“autoantibodies” OR “anti-IL-1Ra” OR “anti- progranulin” for 
articles with these terms appearing in publication titles and 
abstracts of English language articles. Multisystem 
inflammatory syndrome in children (MIS-C; also called 
paediatric inflammatory multisystem syndrome paediatric 
inflammatory temporally associated with SARS-CoV-2) has 
emerged as a rare but serious complication after infection with 
SARS-CoV-2 in children and adolescents. Published work has 
already described different autoantibody responses in COVID-19 
and MIS-C and a possible pathogenetic involvement has been 
discussed, particularly in the context of type I interferon-
targeting autoantibodies. Recently, neutralising autoantibodies 
against anti-inflammatory receptor antagonists progranulin 
and interleukin-1 receptor antagonist (IL-1Ra) were identified in 
adult patients with critical COVID-19. Neutralising antibodies 
against IL-1Ra have also been reported in IgG4-associated 

disease. However, we found no published studies that have 
investigated the occurrence of antibodies against IL-1Ra or 
progranulin in MIS-C.

Added value of this study
Our retrospective multicentre cohort study identified IL-1Ra-
specific autoantibodies in a high proportion of patients with 
MIS-C, but not in healthy or disease controls. Generation of the 
anti-IL-1Ra antibodies might be triggered by an atypical, 
hyperphosphorylated isoform of IL-1Ra, which we observed in 
all autoantibody-positive patients with MIS-C. IL-1Ra-specific 
antibodies were also associated with decreased IL-1Ra plasma 
concentration and impaired IL-1Ra bioactivity. In contrast to 
critical COVID-19 in adults, in MIS-C, antibodies against IL-1Ra 
belonged predominantly to the IgG1 subclass and antibodies 
against progranulin were infrequent.

Implications of all the available evidence
Functional neutralising autoantibodies directed against 
IL-1Ra can contribute to excessive IL-1 signalling in MIS-C.
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WHO criteria.12 As a control group, we collected plasma 
samples from patients with Kawasaki disease at the 
Hospital Sant Joan de Déu (Universitat de Barcelona) 
and at the Department of Paediatric Cardiology (Ludwig 
Maximilians University, Munich, Germany). 
Furthermore, we included plasma samples from 
children with inactive systemic juvenile idiopathic 
arthritis at the Department of Pediatric Rheumatology 
and Immunology (University Children’s Hospital 
Münster). As a non-inflammatory control group, serum 
samples were collected from children with suspected 
growth retardation at the Department of Pediatrics 
(Saarland University, Homburg, Germany). We also 
included serum samples negative for SARS-CoV-2 
antibodies from healthy paediatric control patients, 
referred to as healthy controls herein, and serum 
samples from children with a history of asymptomatic 
or mild COVID-19, from the CoKiBa study.29 Healthy 
controls were age and sex-matched with the MIS-C 
group (multiple matched cases for each MIS-C group). 
Samples in the CoKiBa study were obtained 1–3 months 
after the peak of the first pandemic wave (spring 2020) 
in Bavaria. Most control groups were aged 0–18 years 
apart from groups from the CoKiBa trial (aged ≤17 years). 
Plasma samples of adult patients (>18 years) with critical 
COVID-19 were obtained from the Department of 
Internal Medicine V, Saarland University Medical 
School (Homburg, Germany).

This study was approved by the Ethics Committee of 
the Saarland Medical Association (reference number 
41/21) and conducted according to the Declaration of 
Helsinki. All parents or guardians and adult patients 
signed written informed consent.

Procedures
Baseline data including demographic characteristics, 
clinical manifestations, laboratory parameters, and 
current drug therapies at the time of blood sampling were 
collected by study staff with the exception of the CoKiBa 
study samples. In the CoKiBa trial, data were collected by 
questionnaire at the time of blood sampling. We were not 
able to obtain follow-up samples systematically but had 
access to longitudinal samples for two patients in the 
MIS-C group. 

Product details of all kits and antibodies used are listed 
in the appendix (p 38). ELISA for autoantibodies was 
performed as described previously.30 In brief, the 
antigens were obtained with use of the coding sequences 
of the GRN gene encoding progranulin and isoform 1 
precursor of IL1RN, and were recombinantly expressed 
with a C-terminal FLAG tag in HEK293 cells under the 
control of a cytomegalovirus promoter (pSFI).31 Total cell 
extracts were prepared and bound to Nunc MaxiSorp 
plates (eBioscience, Frankfurt, Germany) precoated with 
murine anti-FLAG monoclonal antibody at a dilution 
of 1:2500 (volume/volume; Sigma-Aldrich, Munich, 
Germany) at 4°C overnight. After blocking with 1·5% 

(weight/volume) gelatin in Tris-buffered saline (TBS) for 
1 h at room temperature and washing steps with TBS 
with Triton X-100, the individual plasma samples were 
diluted 1:100. ELISA was performed according to 
standard manufacturer protocols with the antibodies: 
biotinylated goat antihuman heavy and light chain IgG 
at a dilution of 1:2500 (Dianova, Hamburg, Germany); 
subclass-specific sheep antihuman IgG1, IgG2, IgG3, 
and IgG4 (Binding Site Group, Birmingham, UK) at 
a dilution of 1:5000; goat antihuman IgM (Dianova) at a 
dilution of 1:2500; or goat antihuman IgA (Dianova) 
at a dilution of 1:2500. Following this step, corresponding 
biotinylated secondary antibodies were used for 
immunoassays performed to detect IgG subclasses and 
IgM. Peroxidase-labelled streptavidin (Roche Applied 
Science, Indianapolis, IN, USA) was used at a dilution 
of 1:50 000. As a cutoff for positivity, the average of the 
optical density (OD) of the negative samples plus three 
SDs was applied. To determine the epitope region of the 
anti-IL-1Ra antibodies, we expressed fragments of full-
length IL-1Ra (amino acids 59–75, 98–116, 125–143, and 
161–177), and, as a control antigen, full-length IL-36Ra, 
with a C-terminal FLAG tag in HEK293 cells under the 
control of a cytomegalovirus promoter (pSFI).31 As a 
control for possible bystander humoral immune 
responses, IgG antibodies directed against 
Clostridium tetani tetanus toxin (Argio Biolaboratories, 
Hsinchu City, Taiwan) were analysed by ELISA.

Isoelectric focusing and western blotting (including 
native western blotting with non-reducing sample 
pretreatment and gradient gels without SDS) were 
performed. Blocking was done overnight at 4°C 
in 10% non-fat dry milk (weight/volume). Plasma 
samples were analysed for IL-1Ra isoforms. Plasma 
from anti-IL-1Ra antibody-positive patients was treated 
with alkaline phosphatase as previously described with 
FastAP Thermosensitive Alkaline Phosphatase 
(Fermentas, Darmstadt, Germany).32

IL-1Ra plasma concentrations were measured with an 
IL1RA Human ELISA Kit (Thermo Fisher Scientific, 
Waltham, MA USA) according to the manufacturer’s 
instructions. The accuracy of IL-1Ra plasma 
concentrations measured by ELISA has been validated 
previously by a dilution series with recombinant human 
IL-1Ra in the presence of recombinant anti-IL-1Ra 
antibodies or anti-IL-1Ra antibodies purified from 
patient plasma.19 Progranulin plasma concentrations 
were determined with a Progranulin (human) ELISA 
Kit (AdipoGen, Incheon, South Korea) according to the 
manufacturer’s instructions.

For an IL-1β signalling reporter assay, HEK-Blue IL-1β 
Cells (Invivogen, San Diego, CA, USA) were used, which 
react specifically to IL-1β and IL-1α by induction of nuclear 
factor-κB and activator protein 1, leading to expression of 
secreted embryonic alkaline phosphatase reporter. 
Recombinant IL-1Ra at 40 ng/mL (Biozol, Eching, 
Germany) alone or with either rabbit antihuman IL-1Ra 

See Online for appendix
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antibody at 5 µg/mL (antibodies-online, Aachen, 
Germany), recombinant anti-SLP2 antibody at 5 µg/mL 
(Abcam, Cambridge, UK), diluted plasma (1:20) from a 
patient with acute MIS-C and high-titred (1:800) anti-
IL-1Ra antibodies, or diluted plasma (1:20) from the same 
patient 7 months after onset of MIS-C but without 
detectable anti-IL-1Ra antibodies, were preincubated for 
2 h at room temperature. Subsequently, these compounds 
were added with either 2 ng/mL IL-1β (Biozol) or 2 ng/mL 
TNF (Biozol) in 100 µl Dulbecco’s Modified Eagle Medium 
to HEK-Blue IL-1β reporter cells (2 × 10⁴ cells per well) and 
incubated overnight at 37°C. Thereafter, 180 µL of each 
supernatant was collected, 20 µl QUANTI-Blue 
(Invivogen) was added, and secreted embryonic alkaline 
phosphatase activity was measured at an OD of 655 nm. 
Experiments were performed in triplicate. Diluted plasma 
(1:20) from adult patients with critical COVID-19 with and 
without anti-IL-1Ra antibodies served as controls.

Statistical analysis 
Differences in proportions of Anti-IL-1Ra autoantibody 
positivity between the MIS-C and control groups were 
compared by Fisher’s exact test, not corrected for 
multiple testing. Associations between two categorical 
variables were tested with two-tailed Fisher’s exact test. 
IL-1Ra plasma concentrations measured by ELISA were 
analysed for normality distribution with Shapiro–Wilk 
and Kolmogorov–Smirnov tests. Mean IL-1Ra plasma 
concentration in autoantibody-positive patients with 
MIS-C was compared with mean concentration in 
seronegative patients with MIS-C, and with mean values 
in the control groups, via Brown–Forsythe and Welch 
ANOVA and Dunnett’s T3 multiple comparisons test. All 
analyses were repeated excluding two MIS-C cases that 
had received IVIGs before the blood sampling. 
A p value less than 0·05 was regarded to indicate 
statistical significance. GraphPad Prism (version 9.3.0) 
was used for analysis.

Role of the funding source 
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results 
Serum and plasma samples analysed in this study were 
collected between March 6, 2011, and June 2, 2021. We 
analysed 21 patients (11 girls and ten boys) with MIS-C, 
with a median age of 7·0 years (range 1·5–17·0 years), and 
a mean weight of 31·6 kg (SD 19·2; range 9·8–71·8; table, 
appendix pp 1–2). All patients with MIS-C were 
seropositive or PCR positive (or both seropositive and 
PCR positive) for SARS-CoV-2, with the exception of one 
patient who had only reported contact with SARS-CoV-2. 
The control groups comprised 146 children with 
asymptomatic or mild COVID-19 (72 girls and 74 boys, 
median age 8 years [range 0–16]), 24 children with 

Kawasaki disease (nine girls and 15 boys; median age 
3·0 years [0·1–7·5]), ten children with systemic juvenile 
idiopathic arthritis in remission (five girls and five boys; 
median age 15·5 [9·0–18·0]), 33 non-inflammatory 
patients with suspected growth retardation (13 girls and 
20 boys; median age 10·6 years [3·0–15·3]), and 
462 healthy controls (230 girls and 232 boys; median age 
8 years [0–16 years]). All samples from patients with 
MIS-C, with the exception of two patients, and all patients 
with Kawasaki disease were collected before administration 
of IVIGs. Further baseline characteristics of the MIS-C 
and control groups are presented in the table.

Anti-IL-1Ra antibodies were detected in 13 (62%) of 
21 patients with MIS-C, with titres ranging between 1:200 
to 1:800 (figure 1A and 1D, appendix pp 3–5, 19–20). All 
anti-IL-1Ra antibodies in patients with MIS-C belonged 
exclusively to the IgG1 subclass, with the exception of 
one patient, who additionally had anti-IL-1Ra antibodies 
of the IgM subclass (figure 1C, appendix p 19). Anti-IL-
1Ra antibodies bound to a region spanning from amino 
acid 98 to 143 (figure 1E). Autoantibodies against 
progranulin were only detected in one (5%) patient with 
MIS-C at a titre of 1:200 (appendix p 5).

Anti-IL-1Ra antibodies were not detectable in children 
with asymptomatic or mild COVID-19 (vs MIS-C group, 
Fisher’s exact test p<0·0001; appendix pp 23–26), Kawasaki 
disease (p<0·0001; figure 1F, appendix p 22), or inactive 
systemic juvenile idiopathic arthritis (p=0·0013; figure 1F). 
Anti-IL-1Ra antibodies were also not detectable in the 
non-inflammatory group (p<0·0001; appendix p 20) or 
healthy control group (p<0·0001, appendix pp 23–26). 
Progranulin autoantibodies were undetectable in all 
control groups (appendix pp 6–18, 20–22, 27–30).

Clostridium tetanus toxin IgG antibody concentrations 
in patients MIS-C did not differ from the concentrations 
measured in patients with Kawasaki disease or healthy 
controls (appendix p 31).

IL-1Ra typically produces two bands on isoelectric 
focusing.19 Isoelectric focusing of total protein from plasma 
of one patient with MIS-C with several follow-up samples 
revealed the presence of an additional, more negatively 
charged third band of IL-1Ra (appendix p 33) at the 
time of initial presentation. Pretreatment with alkaline 
phosphatase before isoelectric focusing resulted in 
disappearance of protein bands resembling both the 
normally occurring second IL-1Ra isoform as well as the 
atypical additional third, indicating a hyperphosphorylation. 
In the disease course of this patient, hyperphosphorylated 
IL-1Ra was no longer detectable at 3 or 7 months after 
initial MIS-C onset (appendix p 33).

Hyperphosphorylated IL-1Ra was observed in all 
13 MIS-C patients with anti-IL-1Ra antibodies but not in 
the patients with MIS-C who were autoantibody negative 
(appendix pp 33–34), healthy controls (appendix p 35), or 
control patients with Kawasaki disease (appendix p 36), 
inactive systemic juvenile idiopathic arthritis, or non-
inflammatory conditions (n=49 negative samples) 
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analysed by isoelectric focusing, resulting in a significant 
association (Fisher’s exact test, two-tailed p<0·0001), 
which was maintained when excluding the two patients 
with MIS-C who had received IVIGs before blood 
sampling (p<0·0001).

In MIS-C patients positive for anti-IL-1Ra antibody, we 
observed that free IL-1Ra plasma concentrations were 
significantly decreased (figure 2A, appendix 3–5) at 
presentation of acute inflammation (n=13, mean 
279·4 pg/mL [SD 58·2]; or excluding the two MIS-C 
patients who received IVIGs before blood sampling, n=11, 
mean 275·0 pg/mL [62·6]), compared with MIS-C 
patients negative for anti-IL-1Ra antibody (n=8; mean 
1746·0 pg/mL [200·4], p<0·0001). A significant decrease 
was also observed compared with patients with Kawasaki 
disease (n=6 with available data; mean 1038·0 pg/mL 
[SD 312·8], p=0·0094; or versus 11 MIS-C cases, 
p=0·0093) or patients with inactive systemic juvenile 

idiopathic arthritis (n=10; mean 1278·0 [323·1], 
p<0·0001; figure 2A).

Similar to the absolute concentrations of free IL-1Ra as 
measured by ELISA, native western blots of total plasma 
protein also revealed weakened protein bands resembling 
IL-1Ra in all patients with MIS-C who were positive for 
anti-IL-1Ra antibodies. However, all autoantibody-
positive patients had an additional protein band 
representing IgG-bound IL-1Ra (appendix pp 33–34). In 
the only patient (MIS-C-21) presenting with IgM 
antibodies in addition to IgG1, we observed an additional 
protein band representing IgM-bound IL-1Ra.

We further analysed the two MIS-C patients with 
longitudinal samples available. In one patient (MIS-C-1), 
free IL-1Ra plasma concentration was strongly reduced at 
the time of MIS-C presentation (172·0 pg/mL) compared 
with values at 3 months (1297·1 pg/mL) and 7 months 
(847·5 pg/mL). Native western blot of total plasma protein 

Healthy controls 
(n=462)

Non-
inflammatory 
controls* (n=33)

MIS-C (n=21) Kawasaki disease 
(n=24)

Inactive systemic 
juvenile idiopathic 
arthritis (n=10)

Asymptomatic or 
mild COVID-19 
(n=146)

Demographic characteristics 

Age, years 8 (0–16) 10·6 (3·0–15·3) 7·0 (1·5–17·0) 3·0 (0·1–7·5) 15·5 (9·0–18·0) 8 (0–16)

Sex

Female 230 (50%) 13 (39%) 11 (52%) 9 (38%) 5 (50%) 72 (49%)

Male 232 (50%) 20 (61%) 10 (48%) 15 (63%) 5 (50%) 74 (51%)

Clinical manifestations 

Fever >3 days 163 (35%)† 0 21 (100%) 24 (100%) 0 57 (39%)†

Rash 23 (5%) 0 14 (67%) 17 (71%) 0 3 (2%)

Bilateral conjunctivitis 20 (4%)‡ 0 15 (71%) 21 (88%) 0 5 (3%)‡

Gastrointestinal symptoms 108 (23%)§ 0 18 (86%) 4 (17%) 0 29 (20%)§

Cardiac involvement NA 0 13 (62%) 24 (100%) 0 NA

Coronary artery aneurysms NA 0 ND 4 (17%) 0 NA

Arthritis NA 0 0 2 (8%) 1 (10%) NA

Laboratory parameters 

C-reactive protein, mg/L ND ND 214 (74–440) 95 (3–382) <0·5 (not 
detectable–13)

ND

Ferritin, ng/mL ND ND 565 (67–40 006) ND 35 (24–226) ND

Natrium, mmol/L ND ND 133 (124–141) 135 (126–138) 140 (138–142) ND

Leukocyte count, ×10⁹ cells/L ND ND 17·8 (10·3–30·6) 15·9 (7·9–37·3) 6·4 (4·4–32·5) ND

Neutrophils, % ND ND NA 82 (53–86) 55 (36–85) ND

Platelet count, ×10³ cells/mL ND ND 151 (78–1248) 547 (135–974) 296 (214–339) ND

SARS-CoV-2, serology positive 0 ND¶ 19/20 (95%) ND¶ ND|| 146 (100%)

SARS-CoV-2, PCR positive** ND ND|| 4/20 (20%) ND|| ND|| ND

Treatment 

IVIG†† 0 0 19 (90%) 24 (100%) 0 0

Steroids 0 0 20 (95%) 1 (4%) 3 (30%) 0

Anakinra 0 0 15 (71%) 21 (88%) 5 (50%) 0

Ventilation 0 0 9 (43%) 0 0 0

Data are median (range), n (%), or n/N (%) where N is patients with available data. Body weight is reported for the MIS-C group in the appendix (pp 1–2); weight data were 
not collected or unavailable for all other groups. MIS-C=multisystem inflammatory syndrome in children. NA=not available. ND=not determined. IVIG=intravenous 
immunoglobulin. *Children with suspected growth retardation. †Parent report of fever >38·5°C. ‡Parent report of conjunctivitis. §Parent report of diarrhoea or nausea. 
¶Collected before 2019. ||Collected before 2020. **PCR at admission to hospital. ††The analysed serum or plasma study samples were all collected from IVIG-naive patients 
(except two MIS-C cases); patients were subsequently treated during the disease course as medically indicated.

Table: Study population
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at initial presentation and the 3-month follow-up produced 
a weakened free IL-1Ra signal and revealed the presence 
of IgG-bound IL-1Ra, which was absent at 7 months when 

the patient was seronegative for anti-IL-1Ra antibodies 
(appendix p 32). In the other patient (MIS-C-6), the initial 
plasma sample was positive for anti-IL-1Ra antibodies, 

Figure 1: ELISA of IL-1Ra antibodies in patients with MIS-C and control participants. 
(A) ELISA data for anti-IL-1Ra antibodies in plasma from an exemplary 13 patients with MIS-C. Data for the other eight patients with MIS-C are shown in the appendix (pp 5, 19). Anti-IL-1Ra antibody 
subclasses in follow-up samples (initial presentation and 3-month and 7-month follow-up) of a single patient (B) and in samples collected at presentation of acute inflammation (C). (D) Titres of anti-
IL-1Ra antibodies in patients with MIS-C at presentation. (E) Epitope mapping of anti-IL-1Ra antibodies in MIS-C. (F) ELISA of anti-IL-1Ra antibodies in plasma of intravenous immunoglobulin-naive 
patients with Kawasaki disease at presentation (n=6) and serum samples obtained from patients with systemic juvenile idiopathic arthritis (in remission; n=10). Positive control was anti-FLAG 
antibody; negative control was healthy paediatric control plasma. MIS-C=multisystem inflammatory syndrome in children. IL-1Ra=interleukin-1 receptor antagonist. OD=optical density. 
IL-36Ra=interleukin-36 receptor antagonist. AA=amino acid. sJIA=systemic juvenile idiopathic arthritis. KD=Kawasaki disease.
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which coincided with hyperphosphorylated IL-1Ra 
(appendix p 33) and reduced free IL-1Ra plasma 
concentration (323·5 pg/mL). At a 5-week follow-up visit, 
anti-IL-1Ra antibodies and hyperphosphorylated IL-1Ra 
were no longer detectable (data not shown), whereas 
IL-1Ra plasma concentration had increased to 
1642·0 pg/mL.

To investigate a possible functional effect of the 
observed anti-IL-1Ra antibodies, we performed an in 
vitro IL-1β signalling reporter assay. Addition of plasma 
from a patient with MIS-C who was positive for anti-
IL-1Ra antibodies significantly weakened the antagonism 
by recombinant IL-1Ra, resulting in a stronger 
stimulatory effect of IL-1β (figure 2B). We observed 
similar impairment of IL-1Ra bioactivity when adding 
commercially available antihuman IL-1Ra antibody or 
plasma obtained from an adult patient with critical 
COVID-19 who had tested positive for IL-1Ra antibodies. 
By contrast, IL-1Ra function was not affected when 
adding plasma from the MIS-C patient when the sample 
was obtained at the 7-month follow-up and negative for 
anti-IL-1Ra antibodies (figure 2B). IL-1Ra function was 
also not affected when adding plasma from an adult 
patient with critical COVID-19 who had tested negative 
for anti-IL1-Ra antibodies.

Discussion 
In this study we report on neutralising autoantibodies 
against the anti-inflammatory molecule IL-1Ra as an 
exclusive phenomenon in patients with MIS-C, when 
compared with Kawasaki disease and other inflammatory 

and non-inflammatory paediatric conditions, including 
asymptomatic and mild courses of SARS-CoV-2 infection. 
Although we did not observe anti-IL-1Ra antibodies in 
any of the control conditions enrolled in this study, our 
findings are in accordance with those in our preprint 
paper on adults with critical COVID-19,19 in whom 
anti-IL-1Ra antibodies were detected in a high proportion 
of patients (about 50%).

In contrast to MIS-C, in adult patients with critical 
COVID-19 we observed autoantibodies against 
progranulin in about 40% of patients.19 However, we only 
detected anti-progranulin antibodies in one of 21 patients 
with MIS-C in the present study. Compared with critical 
COVID-19 in adults, anti-IL-1Ra antibodies were found 
in a higher proportion in patients with MIS-C (13 [62%] 
of 21). Notably, the plasma concentrations of free IL-1Ra 
were significantly reduced in all patients with MIS-C 
who had anti-IL-1Ra antibodies, compared with patients 
with Kawasaki disease or systemic juvenile idiopathic 
arthritis, which coincided with detection of immune-
complexed IL-1Ra. Anti-IL-1Ra antibodies in patients 
with MIS-C belonged exclusively to the IgG1 subclass, 
apart from one patient who had additional antibodies of 
the IgM class, which is in contrast to adults with critical 
COVID-19, in whom anti-IL-1Ra antibodies of the IgM 
class and several IgG subclasses were universally 
detectable in all investigated patients.19 These findings 
might suggest that a class switch of the anti-IL-1Ra 
antibodies from IgM to IgG might have already occurred 
within the latency period between infection and 
manifestation of hyperinflammation, or that the children 

Figure 2: Neutralising and functional effect of anti-IL-1Ra antibodies in MIS-C
(A) Free IL-1Ra plasma concentrations as measured by ELISA in patients with MIS-C (n=21), Kawasaki disease (n=6) and systemic juvenile idiopathic arthritis (n=10). Horizontal lines represent the 
mean and SD. Data were analysed by Brown–Forsythe and Welch ANOVA with Dunnett’s T3 multiple comparisons. (B) IL-1β-signalling reporter assay on selected MIS-C plasma compared with an adult 
critical COVID-19 plasma sample (both 1:20 dilution) as well as commercially available anti-IL-1Ra antibody or control (anti-SLP2) antibody. The absorbance of secreted embryonic alkaline 
phosphatase, as a marker for IL-1β pathway activation in HEK IL-1β reporter cells, was detected at 650 nm. Error bars show mean (SD). MIS-C=multisystem inflammatory syndrome in children. 
IL-1Ra=interleukin-1 receptor antagonist. KD=Kawasaki disease. sJIA=systemic juvenile idiopathic arthritis. TNF=tumour necrosis factor. IL-1β=interleukin-1β.
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might have had a clinically inapparent previous 
autoimmune response against IL-1Ra and consequently 
already established respective immunological memory. 
IL-1Ra-specific autoantibodies were also recently reported 
in IgG4-associated diseases,33 which might support the 
idea of IL-1Ra-specific immunity outside of a SARS-CoV-2 
infection context. Furthermore, our epitope mapping 
data indicated that anti-IL-1Ra antibodies in patients with 
MIS-C recognise a more confined epitope (amino 
acids 98–143) compared with respective antibodies in 
adult COVID-19,19 which might argue for at least a partly 
distinct immunological mechanism and origin of this 
immune response.

However, in both critical COVID-19 and MIS-C, we 
observed a hyperphosphorylated isoform of the IL-1Ra 
antigen, which coincided with the presence of anti-IL-1Ra 
antibodies. In patient follow-up samples, we observed 
the disappearance of hyperphosphorylated IL-1Ra, which 
preceded the disappearance of anti-IL-1Ra antibodies. 
Conversely, data from longitudinal samples of adult 
patients with severe or critical COVID-19 has shown that 
hyperphosphorylation of IL-1Ra preceded the formation 
of respective autoantibodies. Collectively, data from both 
COVID-19 and MIS-C suggest that atypical post-
translational modifications are associated with 
SARS-CoV-2-infection itself or the resulting inflammatory 
environment,19 and that these modifications are likely to 
be immunogenic.

Collectively, the findings of our study need to be 
discussed in view of three main limitations. First, we do 
not have a detailed molecular understanding of the 
circumstances and mechanism of the IL-1Ra hyper
phosphorylation, and we cannot delineate particular HLA 
associations with the reported autoantibody phenotypes, 
even though specific HLA haplotypes have been reported 
to associate with the general immunopathology in patients 
with MIS-C and COVID-19.34–36 Importantly, however, the 
coinciding autoantibodies proved to be functional and 
impaired IL-1Ra bioactivity, and this might thus offer an 
additional explanation for the hyperinflammatory 
phenotype in patients with MIS-C. Second, due to the 
small number of predominantly White patients with 
MIS-C included in our study, we did not observe 
differences in the clinical presentation or severity of MIS-C 
between patients with or without autoantibodies against 
IL-1Ra. Further studies with larger cohorts and mixed 
ethnicity are necessary to address this question. Third, 
based on our data we cannot provide specific treatment 
recommendations for autoantibody-positive patients. IVIG 
treatment has recently been suggested to selectively 
deplete IL-1-producing neutrophils in both Kawasaki 
disease and MIS-C.37 In case of non-response to IVIG, this 
effect could support application of selective IL-1 targeting 
therapies,17,18,38 which might also help to override 
temporarily imbalanced IL-1 signalling due to IL-1Ra-
neutralising autoantibodies in patients with MIS-C. 
However, we cannot make predictions about the in vivo 

concentrations of anakinra that would potentially be 
required to override anti-IL-1Ra immunity in MIS-C or 
whether use of the anti-IL-1β monoclonal antibody 
canakinumab might offer an adequate alternative 
treatment particularly in this scenario.

In summary, autoantibodies against IL-1Ra together 
with a hyperphosphorylated isoform of IL-1Ra were 
observed in a high proportion of children with MIS-C. 
Although the small number of patients with MIS-C 
enrolled in this study might pose a limitation, the 
high numbers of controls (both inflammatory and 
non-inflammatory) highlight our findings as unique 
rather than an epiphenomenon. Our data suggest that 
anti-IL-1Ra autoantibodies are pathogenetically relevant 
and potentially contribute to hyperinflammation in 
patients with MIS-C.
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