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Polychlorinated naphthalenes (PCNs) are a group of organochlorinated compounds exhibiting dioxin-like properties. Previously
published data showed the direct action of PCN-rich Halowax 1051 on ovarian follicular steroidogenesis. Taking into consideration
that the observed biological effects of PCNs may be frequently side effects of metabolites generated by their detoxification, the aim
of this study was to determine the activity and expression of enzymes involved in phase I (cytochrome P450, family 1 (CYP1A1))
and phase II (sulfotransferase (SULT1A) and catechol-O-methyltransferase (COMT)) detoxification metabolism. Cocultures of
granulosa and theca interna cells collected from sexually mature pigs were exposed to 1 pg/mL to 10 ng/mL of Halowax 1051 for 1 to
48 hours, after which levels and activities of CYP1A1, SULT1A, and COMT were measured. Dose-dependent increases of CYP1A1
activity and expression were observed. High doses of Halowax 1051 were inhibitory to COMT and SULT1A activity and reduced
their protein levels. In conclusion, fast activation of phase I enzymes with simultaneous inhibition of phase II enzymes indicates that
the previously observed effect of Halowax 1051 on follicular steroidogenesis may partially result from metabolite action occurring
locally in ovarian follicles.

1. Introduction

Polychlorinated naphthalenes (PCNs) are chlorinated organ-
ic compounds that have been used in various industries
as capacitor impregnates, electrical insulating compounds,
flame-resistant seals for condensers, gauge fluids, and lubri-
cants because of their beneficial properties [1]. Until the
1980s, PCNs as mixtures of congeners were synthesized in
North America (Halowax) and Europe (e.g., Nibren Wax,
Basileum, and Seekay Wax) [2]. Currently, there is no com-
mercial use for PCNs [1]. Production of PCNs has ceased due
to its substitution by less toxic chemicals [3]. Even though the
production of PCNs has ended, humans are still exposed to
PCNs via food consumption [4–7].

As with other polychlorinated diaromatic hydrocarbons,
PCNs are lipophilic compounds that persist in the environ-
ment and bioaccumulate in biological tissues [8]. There are
reports indicating the presence of PCNs in adipose tissue and
body fluids of people exposed to these agents [6, 9, 10].

In spite of significant research into the presence of
PCNs in various samples and their dioxin-like properties,

data concerning their action as endocrine disruptors are
scarce. Akerblom et al. [11] showed that differences in
oocyte maturation exist between control and PCNs-exposed
ovaries. Further, published data from our laboratory showed
the direct action of Halowax 1051 on ovarian follicular
steroidogenesis [12]. Together, these reports indicate that
PCNs can disrupt the endocrine system, thereby leading to
reproduction defects.

It should be taken into consideration that the effects of
exposure to PCNs may be due to the side effects of PCN
metabolites. Environmental chemicals such as PCNs may be
metabolized to more polar compounds in living organisms.
For instance, PCNs can be transformed into hydroxylated
metabolites [3]. Cytochrome P450 proteins (CYPs) play
key roles in the metabolism and elimination of exogenous
substances. Enzymes belonging to the CYP family are called
phase I enzymes; theymonooxygenate, reduce, and hydrolyze
various substances such as lipids, steroidal hormones, and
xenobiotics [13]. Enzymes of phase I are expressed mainly
in the liver, but they are also present in other tissues such
as uterus, adrenal glands, placenta, kidney, brain, and testis
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[14]. In previously published papers we showed that three
cytochrome P450 (CYP) isoforms, CYP1A1, CYP1A2 and
CYP2B, are present in porcine prepubertal ovary cells [15–17].

After phase I reactions, xenobiotics may be further
metabolized by conjugation with charged species such as
glutathione, sulfate, glycine, or glucuronic acid to form more
polar products, which are more efficiently eliminated from
the organism. Rabbits exposed tomonochloro- or dichloron-
aphthalenes excreted 70 to 90% of these compounds in four
days, mainly as conjugates of glucuronic acid (54–69%) and
mercapturic acid (13–18%). Minor amounts of naphthalene
sulfates and phenolic conjugates were also excreted [3]. Phase
II enzymes are expressed mainly in the liver, but they are also
found in the ovary. Catechol-O-methyltransferase (COMT)
is expressed in porcine and human granulosa cells [17, 18]
and sulfotransferase (SULT1A) is expressed in porcine ovaries
[17, 19]. When determining the metabolism of 2,2,4,4-
tetrabromodiphenyl ether (BDE-47) in the porcine ovary,
Karpeta et al. [17] showed fast activation of CYP2B1/2, late
activation of COMT, and lack of activation of SULT1A. This
confirmed the action of phase II enzymes in the ovary and
suggested the possible action of locally produced hydroxy-
lated metabolites prior to their detoxification.

In this study, we ought to determine whether PCNs are
metabolized in the ovary by examining the effects of the
Halowax 1051 on phase I (CYP1A1) and phase II (SULT1A
and COMT) enzyme activities and expression in cultured
granulosa and theca interna cells.

2. Materials and Methods

2.1. Reagents. Halowax 1051 was obtained from Koppers Co.,
USA. A stock solution of this compound was dissolved in
DMSO. The final concentration of DMSO in the medium
was 0.1%. Parker’smedium (M199) lacking phenol red, trypan
blue, Laemmli lysis-buffer, dimethyl sulfoxide (DMSO), Tris,
sodium dodecyl sulfate (SDS), Tween 20, 4-nitrocatechol,
SAM, 3,5-diniotrocatechol, PAPS, p-nitrophenyl sulfate, 2-
naphthol, and 2,6-dichloro-4-niotrophenol were obtained
from Sigma Chemical Co. (Saint Louis, MO, USA). Fetal
bovine serum (FBS, heat inactivated), phosphate-buffered
saline (PBS), and Trypsin-EDTA and antibiotic, antimy-
cotic solution (penicillin 100U/mL, streptomycin 100𝜇g/mL,
amphotericin B 0.25 𝜇g/mL) were obtained from PAA Labo-
ratories GmbH (Colbe, Germany).

2.2. Tissue Culture. Porcine prepubertal ovaries were ob-
tained from a local abattoir. Granulosa cells (Gc) and theca
interna cells (Tc) obtained from the same follicles were
subsequently prepared according to the technique described
by Stoklosowa et al. [20, 21]. After isolation, Gc and Tc were
collected and suspended in M199 medium supplemented
with 10% fetal bovine serum. The viability of the cells was
determined before seeding by the trypan blue exclusion test;
viability was 60–75% for Gc and 85–90% for Tc. Gc and Tc
were inoculated at concentrations similar to those observed
in vivo (Gc : Tc, 4 : 1). The cultures were maintained at 37∘C
in a humidified atmosphere containing 5% CO

2
for 24 h to

allow for attachment. Then the cells were cultured for an
additional 1, 6, 24, or 48 h with Halowax 1051 doses of 1, 10,
and 100 pg/mL and 1 or 10 ng/mL.

2.3. Experimental Procedure. To determine CYP1A1 activity,
cells were seeded in 96-well tissue culture plates at concentra-
tions of 1.5 × 105 viable cells per well and exposed to the test
compound for 1, 6, 24, or 48 h. At the end of the incubation,
media were removed and the cells were washed with cold
phosphate buffered saline (PBS) and stored at −70∘C.

To determine SULT1A and COMT activity, cells were
seeded in 48-well tissue culture plates at concentrations of 2.5
× 105 viable cells per well and exposed to the test compound
for 6, 24, or 48 h. At the end of the incubation, media were
removed and the cells were washed with cold PBS and stored
at −70∘C.

To examine the dose- and time-dependent effect of
Halowax 1051 on CYP1A1, SULT1A, and COMT protein
expression, cells were seeded in 24-well tissue culture plates
at concentrations of 5.0× 105 viable cells per well and exposed
toHalowax 1051 for 1, 6, or 48 h. After incubation,media were
removed and the cells were washed with cold PBS and then
lysed using Laemmli lysis-buffer. Total cell lysates were stored
at −70∘C.

2.4. CYP1A1 Activity. Frozen cells were lysed when removed
from the freezer and allowed to thaw for 10min. The
ethoxyresorufin-O-deethylase assay (EROD), a specific mea-
sure of CYP1A activity, was performed as described by
Kennedy and Jones [22]. The fluorescence of resorufin gen-
erated by the conversion of ethoxyresorufin by CYP1A was
measured at 15min interval for up to 2 h with a fluores-
cence plate reader (FLx 800, Bio-Tek, USA) using a 530 nm
excitation filter and a 590 nm emission filter. After 2 h, the
protein concentration in each well was determined by the
fluorescamine protein assay (SigmaChemical Co.MO,USA).
Results were calibrated against a resorufin standard curve (0–
100 nM) and a BSA standard curve (0–1000𝜇g).

2.5. COMT Activity. COMT activity was measured using a
modified colorimetric assay described byHerblin [23] (which
uses methylation of 4-nitrocatecholas as a marker of COMT
activity) with the following modifications. Frozen cells were
thawed for 10min. Each reaction well received 200 𝜇L of
25 𝜇M 4-nitrocatechol, 0.01M of MgCl

2
, and 1mM of Tris-

HCl buffer (pH 7.0). Plates were preincubated for 10min
at 37∘C. Then 0.2mM of S-adenosyl methionine was added
and incubated for an additional 60min. The reaction was
terminated by the addition of 1MNaOH, and absorbancewas
measured at a wavelength of 520 nm using a micro-ELISA
plate reader (Bio-Tek Instruments).

2.6. SULT1A Activity. SULT1A activity was measured using a
modified colorimetric assay developed by Frame et al. [24].
This method is based on the release of p-nitrophenol from
a 3-phosphoadenosine-5-phosphosulfate (PAPS) regener-
ating system. Frozen cells were thawed for 10min. Each
reaction well contained 50mM of potassium phosphate
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Figure 1: Time- and dose-dependent action of Halowax 1051 on
CYP1 A1 activity showed as a percentage of control. Cocultures of
granulose and theca cells were exposed to 1, 10, and 100 pg/mL and
1 or 10 ng/mL of Halowax 1051. Each treatment was repeated three
times (𝑛 = 3). Statistically significant differences between points in
graph are indicated with different letters; the same letters indicating
no significant differences, with a < b < c < d < e < f < g.

buffer, 5mM of MgCl
2
, 20𝜇M PAPS, 5mM p-nitrophenyl

sulfate, and 0.1mM 2-naphthol in a total volume of 250𝜇L.
As a negative control, cells were incubated for 48 h with the
selective inhibitor of SULT1A, 2,6-dichloro-4-nitrophenol, at
a dose of 0.5 𝜇M. The reactions were incubated at 37∘C for
60min and then terminated by the addition of 0.25M of
Tris-HCl buffer (pH 8.7). Absorbance was measured at a
wavelength of 405 nmusing amicro-ELISA plate reader (Bio-
Tek Instruments).

2.7. Western Blot Analysis. Equal sample volumes were
separated by SDS-PAGE and electrophoresed onto PVDF
membranes using a Bio-Rad Mini-Protean 3 apparatus (Bio-
Rad Laboratories, Inc., USA) according to the manufacturer
instructions. Blots were incubated overnight with 1 : 200
dilutions of antibodies specific to CYP1A1 (sc-9828), SULT1
A (sc-27980), and COMT (sc-25844) (all from Santa Cruz
Biotechnology Inc., CA, USA) and with 1 : 2000 dilution of
antibodies specific to 𝛽-actin (A5316) (Sigma Chemical Co.,
MO, USA). An anti-𝛽-actin antibody was used as a loading
control. Primary antibodies were detected by a horseradish
peroxidase-conjugated secondary antibody: P0447 (Dako-
Cytomation, Denmark) for 𝛽-actin diluted 1 : 5000; sc-2020
(Santa Cruz Biotechnology Inc., CA, USA) for CYP1A1
and SULT1 diluted 1 : 2000; and sc-2004 for COMT diluted
1 : 2000, essentially according to the manufacturer’s guide-
lines. Signals were detected by enhanced chemilumines-
cence using the Western Blotting Luminol Reagent (sc-2048,
Santa Cruz Biotechnology) and were visualized using the
ChemidocTM XRS+ System (Bio-Rad Laboratories). Data
visualized by chemiluminescence were quantified by using
Image LabTM 2.0 Software (Bio-Rad Laboratories).

2.8. Statistical Analysis. Each treatment was repeated three
times (𝑛 = 3) in quadruplicate. Statistical analysis was
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Figure 2: (a) Protein expression (immunoblot) of CYP1 A1 after 1
(a), 6 (b), and 48 (c) hours of incubation with Halowax 1051. The
amount of protein in each sample was checked using an anti-𝛽-
actin antibody. All means marked with ( ∗𝑃 < 0.05) are significantly
different from the control.

performed using GraphPad Prism 5. Statistically significant
differences between groups are indicated with different let-
ters; the same letters indicating no significant differences,
with a < b < c < d < e < f; statistically significant differences
between control and treated groups were marked with ∗𝑃 <
0.05. All data (𝑛 = 12) are expressed as the mean ± the
standard error of the mean.

3. Results and Discussion

3.1. Phase IMetabolism. CYP1A1 enzyme activity was assayed
using the ethoxyresorufin-O-deethylase assay. Basal CYP1A1
activity was the highest in 6 h of incubation (with values:
26.27 ± 1.05; 101.08 ± 2.13; 16.36 ± 0.58; and 31.86 ±
0.93 pmol per 100𝜇g protein min−1 after 1, 6, 24, and 48 h of
culture, resp.). This is in accordance with our last published
data [17] showing also the high basal CYP1A1 activity in
ovarian follicles in 6 h of culture. A stimulatory effect on
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Figure 3: Time- and dose-dependent action of Halowax 1051
on COMT activity. Cocultures of granulose and theca cells were
exposed to 1, 10, and 100 pg/mL and 1 or 10 ng/mL of Halowax
1051. Statistically significant differences between points in graph
are indicated with different letters; the same letters indicating no
significant differences, with a < b.

CYP1A1 activity was observed after 6 h of exposure to all
doses of Halowax 1051 used (Figure 1). Basal CYP1A1 protein
expression increased from 1 h to 24 h of culture and then
decreased at the 48 h time point. Halowax 1051 after 1 h of
exposure to all doses had a stimulatory effect on CYP1A1
protein expression. In addition, only for dose of 10 ng/mL
activation of the CYP1A1 protein expression maintained for
48 h (Figure 2). Our previous studies have shown compound-
dependent differences in the time ofCYP1A1 activation: faster
induction of the CYP1A1 protein by PCB3 (from 1 to 48 h)
than by 17-𝛽 estradiol (from 6 to 48 h) [25].

The observed rapid activation of CYP1A1 under the
influence of Halowax 1051 is probably associated with dioxin-
like properties of PCN while longer-lasting activation under
the influence of PCB-3 or 17-𝛽 estradiol with nondioxin-
like properties of tested compounds. This suggests that the
activation time depends not only on doses but also on type of
used reagent.

Similarly, increased ERODactivity in the livers of juvenile
Baltic salmon, Salmo salar, exposed to a mixture of Halowax
1001, 1014, and 1051 [11] and in liver of rat exposed to
PCNs [26] was demonstrated. Previously, Villeneuve et al.
[27] estimated that relative potencies of individual PCNs
in relation to a 2,3,7,8-tetrachlorodibenzodioxin standard
generally increased with increasing chlorine substitution and
were the highest for themost chlorinated compounds. Highly
chlorinated PCNs are present inHalowax 1051. To our knowl-
edge, this report is the first to show the impact of Halowax
1051 on microsomal enzymes in the ovary, suggesting that
metabolites of PCNs are formed locally in this organ.

3.2. Phase II Metabolism. The second, and probably most
important, finding was the inhibitory effect of Halowax 1051
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Figure 4: Protein expression (immunoblot) of COMT after 1 (a),
6 (b), and 48 (c) hours of incubation with Halowax 1051. The
amount of protein in each sample was checked using an anti-𝛽-
actin antibody. All means marked with ( ∗𝑃 < 0.05) are significantly
different from the control.

on the activities and expression of COMT and SULT1A. The
second phase of detoxification metabolism is particularly
important because it leads to the formation of compounds
that are removed via the urinary system. In the existing
literature, no data show the detoxification of any PCNs by
phase II enzymes in the ovaries. A very early study (by
Cornish and Block) [28] showed that metabolites of hepta-
and octachloronaphthalenes (main compounds of Halowax
1051) were absent from the urine of rabbits after the oral
administration of PCNs, suggesting that the metabolism of
these compounds proceeded only partially.

Basal COMT activities were 0.035 ± 0.003, 0.038 ± 0.004,
and 0.065± 0.004 relative absorbance units after 6, 24, and
48 h, respectively. The inhibitory action of each dose of
Halowax 1051 onCOMT activity was noted after 48 h of expo-
sure (Figure 3). A high level of COMTprotein expression was
observed in the control after 6 h of culture. COMT protein
expression was decreased relative to the control after 6 h of
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Figure 5: Time- and dose-dependent action of Halowax 1051 on
SULT1A activity. Cocultures of granulose and theca cells were
exposed to 1, 10, and 100 pg/mL and 1 or 10 ng/mL of Halowax
1051. Statistically significant differences between points in graph
are indicated with different letters; the same letters indicating no
significant differences, with a < b < c < d < e < f.

exposure to 100 pg/mL, 1 ng/mL and 10 ng/mL, and after 48 h
of exposure to 10 ng/mL of Halowax 1051 (Figure 4).

COMT is widely distributed throughout the animal
kingdom and is primarily associated with the cytosolic
fraction of many tissues including porcine granulosa cells
[17, 29]. Substrates of COMT include xenobiotic catechols,
catecholamines, and catechol estrogens. It has been shown
that exposure to 2,2,4,4-tetrabromodiphenyl ether (BDE-
47) increases COMT activity after 24 and 48 h with no effect
on protein expression, as measured by immunoblot and
ELISA analyses. This suggests that hydrophilic methoxylated
polybrominated diphenyl ethers may be formed locally in
the ovary. There are no previous data on the effects of
Halowax 1051 on COMT activity in the ovary; however,
Hernandez et al. [30] showed that COMT inhibition in
pregnant rats produces arterial hypertension and endothe-
lial dysfunction due to reduced nitric oxide bioavailabil-
ity. Further, la Merril et al. [31] showed that exposure
to 2,3,7,8-tetrachlorodibenzodioxin lowers COMT expres-
sion in mouse mammary glands, which are also hormone-
dependent tissues. Therefore, the results in this paper are
consistent with those of previous reports and indicate that
hydrophilic methoxylated PCNs are not formed in the ovary.

Basal SULT1A activities were 0.026 ± 0.007, 0.031 ±
0.006, and 0.035 ± 0.008 relative absorbance units after 6,
24, and 48 h, respectively. The inhibitory action of Halowax
1051 on SULT1A activity was noted at each dose and time
point. The strongest effect of the mixture was observed
after 6 h of exposure to doses ranging from 10 pg/mL to
10 ng/mL (Figure 5). Basal SULT1A protein expression was
indistinguishable between 1 and 6 h of culture but decreased
after 48 h of culture. SULT1A protein expression decreased
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Figure 6: Protein expression (immunoblot) of SULT1A after 1 (a),
6 (b), and 48 (b) hours of incubation with Halowax 1051. The
amount of protein in each sample was checked using an anti-𝛽-
actin antibody. All means marked with ( ∗𝑃 < 0.05) are significantly
different from the control.

after only 6 h of incubation with 10 ng/mL Halowax 1051
(Figure 6).

SULT1A is the most abundant sulfotransferase; it has a
broad substrate specificity and a wide tissue distribution [32].
Several SULT1A subfamily members contribute to sulfate
conjugation of endogenous substrates, such as the thyroid
hormone 17𝛽-estradiol, as well as exogenous compounds
including xenobiotics [33, 34]. Sulfate conjugation generally
results in a decrease of biological activity and an increase
in the hydrophilicity of compounds, which facilitates their
excretion. Asmentioned earlier, a previous study showed that
rabbits could excrete 70 to 90% of ingested monochloro-
or dichloronaphthalenes. Unfortunately, there have been no
subsequent studies concerning PCN activation of enzymes
involved in the second phase of detoxification metabolism.
However, some studies have shown that other xenobiotics
such as polychlorinated biphenyls may inhibit SULT1A activ-
ity [35]. As in the case of COMT activity, there have been no
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previous reports of the effects of Halowax 1051 on SULT1A
activity in the ovary. Considering that sulfate conjugation
of xenobiotics usually decreases their toxicity, we suggest
that the inhibition of this pathway may lead to prolonged
compound exposure in the ovary and subsequent disruption
of ovarian function.

4. Conclusion

Theactivation of phase I enzymes (CYP1A1) and inhibition of
phase II enzymes (SULT1A and COMT) confirm the dioxin-
like properties of PCNs. Fast activation of enzymes involved
in phase I and concurrent inhibition of enzymes involved
in phase II metabolism indicate that the observed effects
of Halowax 1051 may partially result from the action of
metabolites formed locally in ovarian follicles.
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