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Abstract

Traumatic injuries are a leading cause of death and disability in both military and civilian populations. Given the complexity and
diversity of traumatic injuries, novel and individualized treatment strategies are required to optimize outcomes. Cellular therapies
have potential benefit for the treatment of acute or chronic injuries, and various cell-based pharmaceuticals are currently being
tested in preclinical studies or in clinical trials. Cellular therapeutics may have the ability to complement existing therapies,
especially in restoring organ function lost due to tissue disruption, prolonged hypoxia or inflammatory damage. In this article we
highlight the current status and discuss future directions of cellular therapies for the treatment of traumatic injury. Both published

research and ongoing clinical trials are discussed here.
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Background

Traumatic injuries are one of the leading causes of death in
both civilian and military populations worldwide [1, 2].
More advanced methods of resuscitation have improved out-
comes of severe traumatic injury associated with hemorrhage
in all populations [2], however there are few if any effective
therapies that mitigate the long-term consequences of trau-
matic injury which lead to organ failure and long-term mor-
bidity and mortality. Specifically, in the military, the
June 2009 Department of Defense (DoD) implementation
of the “golden hour” policy mandating transport of injured
service members to a medical treatment facility (MTF) with-
in 60 min where possible has reduced the odds of Killed in
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Action (KIA) mortality by 39% for the patients transported
within an hour in comparison to those who were not [3]. In
contrast, civilian injury-related mortality has risen over the
past several decades, with a 23% increase in trauma-related
mortality in the United States between 2000 and 2010 [2]. In
spite of the enormous societal and economic impacts of trau-
ma, a relative lack of innovation in management of the phys-
iological trauma response and disparities in care access for
existing treatment strategies has led it to being referred to as
the “neglected disease of modern society” [4, 5]. Addressing
this need, the emergence of cell-based therapies for the treat-
ment of both acute and chronic traumatic injuries affords a
promising new opportunity for the future of critical care
medicine.
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Introduction

The 1966 U.S. National Academy of Sciences report
“Accidental Death and Disability: The Neglected Disease of
Modern Society” revealed trauma as the leading cause of death
and disability among Americans, and with this revelation issued
a plea to apply the lessons of combat injury management to
civilian medicine [5]. In response, over the past 50 years the
United States has witnessed the development of statewide and
regional trauma centers, with 80% of Americans now able to
access a Level I or Level II trauma center within 1 h by land or
air. Throughout this period, during which active combat oper-
ations persisted, the U.S. military continued to improve their
own management of traumatic injuries independent to civilian
developments, with advances including aggressive tourniquet
use, revised transfusion protocols, and an orchestrated sequence
of stabilization and transport. Continuous re-evaluation of out-
come data through the DoD trauma registry has informed fur-
ther research for both the military and the civilian sector, and
allowed for the centralization of evidence, leading to more stan-
dardized clinical practice guidelines [6].

In spite of these advances, an estimated 1000 American
service members who perished in combat between 2001 and
2011 died of potentially survivable injuries. Civilian statistics
are arguably even more sobering, owing in part to continued
discrepancies between military and civilian treatment capabil-
ities and access, with an estimated 1 in 5 trauma deaths con-
sidered to be preventable with better trauma care [6]. Thus,
despite fifty years of admirable innovation, the urgency re-
mains to develop novel and effective therapeutics for the treat-
ment of the injured.

Cellular therapy (CT), which encompasses a number of
different cell types of both autologous and non-autologous
derivation is a relatively recent approach which shows poten-
tial in all phases of traumatic resuscitation (immediate, sub-
acute, and chronic). Following the initial traumatic injury dur-
ing which death from hemorrhage can occur rapidly and sup-
portive resuscitation efforts play a key role, an interplay of
infection, inflammation, vascular compromise, and dysfunc-
tional coagulation can subsequently develop, leading to fur-
ther systemic compromise. CT administered acutely after in-
jury has the potential to modulate these systemic inflammato-
ry processes, increasing survival in this vulnerable period until
the acute provocation dissipates and hemodynamic stability is
regained [2]. In the following review, we provide an overview
of trauma pathophysiology, and the pre-clinical and clinical
data available to date utilizing various cellular therapies.

Definition and Timeline of Traumatic Injury

A significant portion of trauma-related mortality is attributed
to polytrauma [7]. The term “polytrauma” historically lacks a

consensus definition. Previous authors have defined
polytrauma as “>2 severe injuries, with at least one injury or
the sum of all injuries being life threatening”, while others
have defined it based on the Injury Severity Score (ISS), with
discordant numerical values quantifying severity [8]. Studies
have shown that providers have varying interpretations re-
garding the definition, even within the same institutions [9,
10]. In spite of this lack of formal definition, the ramifications
of the injury time course are generally well-defined.

Trauma-related mortality was classically described as a
trimodal model of distribution, characterized by three peaks:
[1] immediate deaths from severe injuries, typically occurring
within minutes of injury; [2] early deaths typically due to
hemorrhage, defined as those occurring within 24 h of arrival
to the trauma center; [3] late deaths due to multi-organ failure
and sepsis, occurring days to weeks following the initial injury
[11-13]. However, several large retrospective studies begin-
ning in the early 2000s indicated a paradigm shift towards a
more bimodal or unimodal distribution of trauma-related mor-
tality, with up to 50-60% of deaths occurring in the first 24 h
followed by an overall decrease in trauma-related mortality
thereafter [14-16].

Trauma Pathophysiology

The pathophysiology of trauma-induced injury is complex
and depends on multiple factors, including severity and type
of injury as well as factors related to the health and character-
istics of the patient. Severe traumatic injury and the resulting
systemic physiological responses challenge virtually all organ
systems in the body. Some of these physiological responses to
severe traumatic injury are shown in Fig. 1. Breaching the
endothelial barrier exposes tissue factor and activates the co-
agulation cascade to halt bleeding. Additionally, trauma in-
duces a series of innate and adaptive immune responses for
the purpose of clearing damaged tissues and activating repair
mechanisms [17]. Severe injury can prompt the release of
endogenous damage-associated molecular patterns (DAMPs,
including nucleic acids, histones, high-mobility group box 1
protein, and S100), from damaged, stressed or dying cells
[18-20]. In addition, vulnerability to exogenous pathogen-
associated molecular patterns (PAMPs, produced by infec-
tious agents and pathogens) can be increased [21]. These mol-
ecules can cause activation of inflammatory systemic path-
ways, such as the complement cascade, as an initial defense
[22]. In conjunction with this, a ‘cytokine storm’ may occur
which stimulates the re-prioritization of leukocyte function
unique to the pattern of injury. Under ideal circumstances, this
results in balanced pro-inflammatory and anti-inflammatory
protective effects that ultimately promote healing. However,
if the initial injury is severe or associated with further exacer-
bating factors, e.g. hemorrhagic shock, generalized/
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Fig. 1 Systemic responses and
complications associated with
severe traumatic injury
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overwhelming infection, or extended surgical intervention, the
inflammatory effects can become dominant, leading to acute
traumatic coagulopathy, vascular compromise and immune
dysfunction — key factors which have been defined to en-
compass what is known as the endotheliopathy of trauma
[23] (EOT). This, in turn, can cause endothelial dysfunction
and cellular barrier breakdown, facilitating further release of
PAMPs and DAMPs and, in a vicious cycle, amplifying the
already disproportionate immune response [22].

In contrast, the adaptive immune response to trauma occurs
later and is less defined. Accumulating evidence implicates
interactions between the complement pathway and lympho-
cytes as a prominent feature in the acute setting. Severe trauma
is associated with elevated levels of complement factors C3a,
C4a, and C5a. The root cause of the complement factor ele-
vation is unknown [24], whether by interaction with PAMPS
or by consequence of activated thrombin in the coagulation
cascade [17, 25, 26], however, histones released by C5a’s
action on neutrophils were linked to induction of T cell apo-
ptosis, suggesting that histone levels increased after trauma
may contribute to T cell death through the indirect effect of
C5a. In addition, C5aR activation was shown to enhance pro-
inflammatory Th1 responses and to reduce anti-inflammatory
Th2 responses, hereby shifting the balance toward a systemic
inflammatory condition [24]. Collectively, these disparate im-
mune responses can clinically manifest as multiple-organ-
dysfunction syndrome in the acute setting, which can lead to
persistent inflammation-immunosuppressive catabolism syn-
drome, both of which correlate with worse outcomes [26, 27].

Unpredictable physiological responses may also occur in
response to severe trauma. Acute traumatic coagulopathy

@ Springer

(ATC), also known as trauma induced coagulopathy, is one
such complication further confounding trauma pathophysiol-
ogy and management. ATC is multifactorial and highly vari-
able between patients; it is clinically characterized by the ini-
tial onset of hemodynamic instability, with subsequent tissue
hypoperfusion, and endothelial dysfunction with activation of
the endothelium by factors such as catecholamines, cytokines
and hypoxia following severe traumatic injury, leading to an
early inflammatory and hypercoagulable state [28]. Excessive
thrombin generation from the coagulation cascade leads to
further hypocoagulation, characterized by fibrinolysis and
platelet dysfunction [28-31]. This excessive thrombin gener-
ation can also further exacerbate activation of complement
factors in the innate immune response [17, 24, 25].
Multi-organ dysfunction secondary to the aberrant sys-
temic inflammatory response to trauma occurs in up to
30% of severely injured patients, and leads to poorer associ-
ated outcomes [32]. Both focal and multifocal injuries can
lead to similar complications. For example, neurotrauma,
such as traumatic brain injury (TBI) or spinal cord injury
(SCI), is characterized by the initial injury which is subse-
quently followed by the inflammatory cascade, leading to
fluid and electrolyte imbalance, cerebral edema, and neuro-
nal cell death, all of which can continue for extended periods
following the inciting event. Hemorrhagic shock can lead to
pulmonary and renal injuries, including acute respiratory
distress syndrome and acute renal failure. Marrow suppres-
sion due to ongoing inflammation can lead to persistent cy-
topenias, unrelated to the initial insult or ongoing hemor-
rhagic process [2]. In spite of the inter-related nature of their
dysfunction, treatments to date have primarily focused on
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addressing each individual entity rather than the process as a
whole.

Yet, given the complexity of trauma pathophysiology, it is
not surprising that no single treatment has emerged to manage
it. Cellular therapies utilize complex biological agents which
comprise often living cells and are presumably able to actively
respond to the variable environment in the injured patient.
Thus, they have the potential to address multiple therapeutic
targets of injury simultaneously that cannot be encompassed
with other existing strategies [2].

Cellular Therapies

A number of different cell types are currently being investi-
gated for use in CT, including intact live cells and cell-derived
materials, such as extracellular vesicles (EVs) or conditioned
media. A universal CT agent has not yet been identified, how-
ever it is likely that different cell types will be optimal depend-
ing on the patient indication and intended use. Figure 2 illus-
trates some of the more commonly used types of cellular ther-
apy agents. The following is a summary of individual CT
concepts and cell types, and their potential therapeutic appli-
cation in trauma patients (Table 1).

Mesenchymal Stromal Cells

Mesenchymal stromal cells (MSCs) are multipotent adult
stem-like cells [33] which may be involved in the physiologic
response to regenerate damaged tissue following injury [34,
35]. When re-infused after ex vivo expansion, they can exert
therapeutic effects such as immunomodulation and tissue re-
generation. The term MSC itself encompasses cells which
share some common characteristics derived from a broad
range of tissue sources. The International Society of Cell
and Gene Therapy has established minimal standardized
criteria to define MSCs for the purposes of laboratory and
pre-clinical research, which include adherence to plastic, spe-
cific surface antigen expression, and multipotent differentia-
tion potential [36]. Originally, MSCs were isolated from the
bone marrow, but more recently they have been derived from
almost every tissue type within the body, with sources such as
adipose tissue and placental-derived MSCs being tested for
application in specific diseases. Despite overlapping proper-
ties of MSCs from different sources, it is recognized that they
likely have a range of capabilities based upon cell source,
donor, and variation in production and handling conditions
[37].

MSCs respond to chemoattractant pathways and have the
potential to target to the site of cellular damage via these
pathways [38]. Based on our current understanding, they are
presumed to exert therapeutic effects by secreting and/or re-
leasing cytokines and other factors, possibly delivered by
EVs, that affect inflammation, coagulation, vascular integrity

and the immune response to trauma [39]. Yet, distinct mech-
anisms of action (MoA) pertaining to specific MSC prepara-
tions or clinical indications have not been identified to date.
Their potential beneficial properties have informed a number
of preclinical and clinical studies in various disease types,
including sepsis, TBI, wound and fracture healing, cerebro-
vascular accident, graft versus host disease, renal disease, car-
diovascular disease and pulmonary injury, among others
[40-50]. Interestingly, benefit in pre-clinical and clinical stud-
ies for acute respiratory distress syndrome (ARDS) [51-53]
has led to a large number of preclinical studies and proposed
clinical trials to investigate cellular therapies for COVID-19
[54-56]. However, pre-clinical evidence regarding MSC ther-
apeutic efficacy in polytrauma remains limited.

Previous studies have indicated the presence of MSCs both
sequestered within organ systems and in the peripheral blood
of various animal models, as well as in instances of isolated
tissue regeneration [43, 57, 58]. To date, little is known re-
garding the role or presence of endogenous MSCs in the set-
ting of polytrauma. Wiegner et al. revealed in a monocenter,
longitudinal observational clinical study of 11 patients that the
relative numbers of MSC-like cells found in the peripheral
blood were reduced following injury [59]. Whether this is
due to lower mobilization of MSCs from the bone marrow
or sequestration of MSCs to the sites of injury remains unclear
at this time [59].

In spite of the well-established regenerative and immuno-
modulatory capacities of MSCs in experimental settings and
their potential to migrate to areas of injury, evidence of overall
clinical effectiveness of exogenous MSCs remains limited to
certain specific conditions [60—-62]. MSC use in trauma or
trauma-associated conditions such as organ failure is still at
an early stage of investigation, but preclinical studies show
promise. Krumina et al. established MSCs’ therapeutic effica-
cy for rodent polytrauma in a study in which they injected rats
with bone marrow MSCs at 36 h and 9 days following induced
trauma. The animals who underwent experimental polytrauma
with subsequent MSC infusion displayed improved rehabili-
tation scores in comparison to rats without the infusion.
Interestingly, rats who received MSC infusions also displayed
transient decreased red blood cell production with pathology
remaining unclear [63]. Tanrivderi, et al. further substantiated
this in a more recent study in which they injected rats with
MSCs or normal saline intraperitoneally or intravenously
5 days following induced polytrauma vs. isolated liver injury.
Rats injected with MSCs had statistically significant lower
markers of inflammation (alanine aminotransferase, C-
reactive protein) from peripheral samples and liver and bone
tissue biopsies than untreated groups [64]. Yet, no study to
date has replicated these therapeutic concepts in humans; most
clinical studies examining MSC therapy for non-trauma set-
tings are in the early stages of phase 1 and 2 trials [65-67].
Wilson, et al. completed a phase 1 safety clinical trial
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involving 9 patients with non-trauma induced ARDS divided
into 3 cohorts with each given a different dose of MSCs.
Those given the highest dose of MSCs displayed better scores
on validated assessments of organ function and peripheral
biomarker levels, although the results were statistically insig-
nificant. A follow up phase 2a clinical trial was subsequently
released with no differences in 28 day mortality noted be-
tween the treated and control groups. Notably, no adverse
effects directly attributable to MSCs were found in either trial
[51, 68]. A Phase 2b prospective randomized multi-center trial
is currently underway for MSCs in trauma and non-trauma
patients (clinicaltrials.gov, NCT03818854). Phase 1 trials
throughout Korea, China, and Brazil examining MSC use in
acute and chronic spinal cord injuries have been completed
with no data released to date (clinicaltrials.gov,
NCT02152657, NCT02482194, NCT01393977).

Hematopoietic Stem Cells

In the adult, hematopoietic stem/progenitor cells (HSCs) re-
side in the bone marrow and give rise to all blood cells
throughout the body. They were among the first cell types that
were applied clinically, with the first successful bone marrow
transplant occurring in 1956 in a patient with acute myeloid
leukemia [69]. Historically, HSCs were thought of as a homo-
geneous population of cells with similar abilities for self-
renewal and differentiation. However, recent studies have
identified HSC subtypes with distinctive functional properties,
including self-renewal capacity and differentiation patterns
[70]. Such operative diversity stimulates curiosity regarding
unrealized treatment potential.

Fig. 2 Cell types commonly used
in cellular therapy applications,
either as live cells or as a source

Embryonic Stem Cells

Previous studies have suggested a hypercatecholamine
state with associated bone marrow dysfunction leading to
prolonged peripheral HSC mobilization and suppressed ery-
throid progenitor cell maturation following severe trauma [69,
71, 72]. This HSC mobilization can persist for up to 14 days in
humans, with trauma-associated anemia persisting thereafter,
often for months [73]. Additionally, HSC apoptosis can occur
due to the excessive induction of inflammatory cytokines that
occurs in association with trauma [74].

Such functional suppression has led to questions about
methods of marrow stimulation and replacement. While the
clinical application of HSCs is well established in oncology,
their use in trauma-associated injuries remains mostly unex-
plored. The most relevant example of their utility involves
radiation exposure and its associated complications. Acute
radiation syndrome (ARS) refers to multi-organ system dys-
function, including hematopoietic, gastrointestinal,
neurovascular, and cutaneous, which occurs as a result of
acute exposure to high doses of ionizing radiation, whether
accidently or as a warfare tactic [75]. An estimated 50 pa-
tients with ARS have undergone allogeneic HSC transplan-
tation (HSCT), with the most famous cases involving the
victims of the 1986 Chernobyl and the 1999 Tokaimura nu-
clear plant accidents. Unfortunately, half of these patients
died within 50 days of transplant, largely secondary to com-
plications including burns, graft versus host disease, and in-
fection [76, 77]. In 2018, the World Health Organization
released their summary of recommendations regarding
ARS management, with HSCT being recommended as sec-
ond line therapy following the failure of colony-stimulating
factors in the management of hematologic complications of
radiation exposure [75].

CELLULAR THERAPIES

Neural Stem Cells

for cellular products such as
extracellular vesicles (EVs)

source: fetal blastocyst

source: central nervous system

Mesenchymal Stromal

Cells

Engineered Therapies

source: bone marrow

adipose tissue

cord blood

Extracellular Vesicles
source: multiple

Hematopoietic Stem Cells

CAR-T
TCR-T
CAR-NK
iPSC

17 "\

Natural Killer Cells

source: bone marrow

source: bone marrow

peripheral blood peripheral blood
Fibroblasts cord blood
. . source: adipose tissue
Endothelial Progenitor Cells dorite
source: bone marrow bone marrow
peripheral blood peripheral blood
cord blood cord blood
fetal tissue fetal tissue

@ Springer


http://clinicaltrials.gov
http://clinicaltrials.gov

1200

Stem Cell Rev and Rep (2021) 17:1194-1214

Several studies have implied a benefit to HSC and MSC
co-transplantation in an oncologic setting, with increased
HSC engraftment due to bone marrow microenvironment
modulation and hematopoietic support by MSCs [78, 79].
Such findings suggest a potential clinical benefit to combina-
tion CT in other disease processes. Additional trauma specific
data is needed before more definitive utility can be
determined.

Pluripotent Stem Cells

Human embryonic stem cells (ESCs) are pluripotent stem
cells derived from the undifferentiated inner cell mass of a
blastocyst [80], and differentiated cells can be re-
programmed to induced pluripotent stem cells (iPSCs) featur-
ing inner cell mass properties [81-83]. Although unmodified
pluripotent cell use cannot be applied clinically due to their
potential to form teratomas, their differentiation potential has
prompted interest in use of ESC/iPSC derivatives—cells or
cellular products of the pluripotent ESC/iPSC
differentiation—as a therapy for a variety of disease types,
including ophthalmologic and cardiovascular disorders [84,
85]. While data is relatively limited, ESC derivatives use in
focal traumatic injuries—primarily neurologic—has been in-
vestigated with positive results.

Manley et al. corroborated the efficacy and safety profile of
ESC-derived oligodendrocyte progenitor cells (OPCs) in rats
which underwent experimental spinal cord injury. Rats which
received spinal injections of the OPCs displayed improved
locomotor performance with increased sparing of myelinated
axons at the injury site in comparison to controls [86]. Similar
results were seen in several preceding studies [87-90]. There
are currently more than 10 trials involving human ESC deriv-
atives at various stages of completion listed on clinicaltrials.
gov, primarily addressing cardiovascular, ophthalmologic,
and neurodegenerative conditions. To our knowledge, no
published pre-clinical or clinical studies investigating the ap-
plication of ESC/iPSC derivatives in polytrauma are currently
available.

Aside from this paucity of data restricting its therapeutic
application, additional unique concerns related to ESC/iPSC
based therapy have arisen throughout their investigation.
These include the risk of potential tumorigenic contaminants
in the ESC/iPSC-derived CT, as well as ethical and legal im-
plications related to this cellular source [89, 91, 92]. Further
information must be obtained prior to widespread utilization.

Neural Stem Cells
Historically, cells of the human central nervous system (CNS)
were thought to have limited capacity for renewal and repair.

However, the identification of neural stem cells (NSCs) in the
1960s led to extensive research that changed this central tenet
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from one of resignation to hope that at least some repair may
be possible [93]. NSCs and their progenitors are multipotent
cells located in the lateral ventricles and hippocampus in
adults, and in the brain, umbilical cord, and bone marrow of
fetuses, which have the ability to differentiate into both neu-
rons and glial cells [94, 95]. The therapeutic potential of NSC
transplantation in neurodegenerative diseases or in trauma (in-
cluding spinal cord and traumatic brain injuries) was demon-
strated in rat models [91, 96, 97]. Specifically, in a recent
study, rats which underwent experimental TBI with subse-
quent injection of embryonic NSCs were found to have re-
duced neuroinflammation and increased neurogenesis via in-
duction of neural progenitor proliferation at 1 and 4 weeks
post-transplant in comparison to controls [90]. Given the glob-
al burden of neurologic injuries, with their associated acute
and chronic effects, NSC cell therapies are a promising option
for future research [95].

Similar to the CT discussed above, the mechanisms by
which transplanted NSCs wield their neuroprotective effects
are not yet fully understood, with recent animal studies sug-
gesting contributions of various growth factors and anti-
apoptotic proteins [96, 98]. However, several patterns have
emerged [95]. First, the transplanted NSCs can proliferate,
differentiate, and migrate in small numbers in vivo, which
has been associated with some recovery of function. Second,
NSCs display a comparatively prolonged tolerance to hypoxia
allowing them to survive for longer periods in the hostile,
injured tissue environment and exert their beneficial effects.
Finally, transplanted NSCs participate in ‘internal crosstalk,’
in which they protect nearby cells from degeneration by se-
creting paracrine factors and modulating the immune response
[95].

In addition to the aforementioned animal studies, several
phase 2 clinical trials evaluating the safety and efficacy of
NSC transplantation in spinal cord injuries have been com-
pleted in Russia and Switzerland, although no results have yet
been published (clinicaltrials.gov, NCT01321333,
NCT02326662). A phase 1 clinical trial examining the
efficacy of fetal-derived neural stem cell transplantation in
multiple sclerosis patients is currently on-going
(clinicaltrials.gov, NCT03269071). A phase 1 trial of neural
progenitor cells for SCI was conducted by Ciacci and
colleagues in chronic SCI and demonstrated no adverse
events [99]. A previous phase 1 clinical trial examining
intraspinal injections of NSCs in patients with Amyotrophic
Lateral Sclerosis (ALS) suggested a positive safety profile,
however the study was insufficiently powered to suggest treat-
ment efficacy [100]. A similar safety profile was noted at the
60 month follow up in a more recent phase 1 clinical trial of
ALS patients [101].

In spite of the extensive research to date regarding NSC
safety and utility, limited published data exists regarding their
application in either animal or human models of trauma or
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polytrauma. Further research is needed, including safety, effi-
cacy, and NSC behavior under systemic inflammatory condi-
tions, prior to wider clinical application in the setting of trau-
matic injury.

Endothelial Progenitor Cells

The term “haemangioblast” was coined in 1932 to describe a
cell type thought to be the precursor of both endothelial and
hematopoietic cell lineages [102]. These cells, now termed
endothelial progenitor cells (EPCs), were only isolated from
human peripheral blood in 1997 [103]. EPCs are a heteroge-
neous group of endothelial cell precursors comprised of both
hematopoietic and non-hematopoietic lineages derived from
bone marrow and peripheral blood sources, respectively.
Unlike traditional progenitor cells lacking self-renewal capac-
ity, EPCs are similar to stem cells in their ability to self-renew,
form clones, and differentiate into endothelial cells [104—106].
Their role in vasculogenesis—previously thought to occur
only via migration of existing endothelial cells or through
induction of hematopoietic stem cells—has been well-
established [107]. Several studies have shown a correlation
between the presence of EPCs in blood to various disecase
processes, including neurologic and cardiovascular disease,
sepsis, malignancy, and severe trauma, among others
[108-112]. Given their ubiquitous nature and the importance
of endothelial maintenance and neovascularization to wound
healing, EPCs are an encouraging option for future trauma
therapies.

Systemic mobilization of EPCs into the peripheral blood
increases in the setting of either local or systemic organ dys-
function, prompting interest in their use as a potential bio-
marker for various disease processes [107]. Additionally, in-
creased EPC recruitment to various organs, including the
lung, liver, and kidney has shown physiologic benefit [112].
However, despite these correlations, their actual contribution
to organ repair remains an area of contention. Some studies
indicate that EPCs may migrate to areas of vascular damage,
where they could subsequently increase vascularization, im-
proving blood flow and tissue activity [113].

Early pre-clinical trials primarily focused on administered
EPC contributions to re-vascularization in the setting of car-
diovascular diseases. Kalka, et al. noted that rats injected with
isolated EPCs had significantly improved perfusion in exper-
imentally induced limb ischemia, with a 50% reduction of
limb necrosis and auto-amputation compared to controls
[114]. Positive outcomes were also noted with EPC infusion
in the setting of myocardial infarction [115]. In regard to trau-
ma, Guo, et al. noted that peripherally administered EPCs
preferentially tracked to injured rather than normal brain tissue
in rats with experimental TBI, with an overall improved func-
tional recovery seen thereafter [113]. Other studies have also
shown neuroprotection by EPCs [116]. Additionally, mice

who underwent experimental femoral fractures followed by
co-transplantation with bone marrow derived macrophages
(BMMs) and EPCs had enhanced engraftment into the frac-
ture site, increased neovascularization, and accelerated frac-
ture healing compared to BMM monotherapy [117].

Clinical trial data involving EPC interventions is limited,
especially for trauma. In non-trauma studies, a randomized
controlled trial evaluating the efficacy of autologous EPC in-
fusion for idiopathic pulmonary arterial hypertension sug-
gested potential improvement in exercise capacity and pulmo-
nary hemodynamic status [86]. Several other trials are current-
ly underway, evaluating use of EPCs in chronic ischemic
stroke, liver cirrhosis, and refractory angina (clinicaltrials.
gov, NCT00694642, NCT02605707, NCT03109236).
Further studies are needed to determine the potential utility
and application of EPCs for various indications. Because
beneficial effects on vascularization are expected to assist
wound healing, it is of interest to evaluate EPCs for trauma.
However, given the heterogeneity of the EPC population as a
whole, a more defined and uniform cell type should be
elucidated and characterized prior to widespread therapeutic
application for trauma [118].

Fibroblasts

Many cell therapy agents are primary non-immortal cells with
a finite lifespan. For stem cell clinical applications, large num-
bers of well-characterized cells will be needed, leading to the
consideration of more easily accessible cell types. Fibroblasts
are cells that encompass the main component of the connec-
tive tissue. They secrete collagens, which provide the struc-
tural integrity for many tissues, and play a vital role in wound
healing, scar formation, and aging. Traditionally, fibroblasts
were viewed as uniform cell types with equivalent functions
despite originating in different tissues. However, recent liter-
ature has revealed significant phenotypic variance based upon
tissue derivation and physiologic conditions to which they
have been exposed [119, 120].

Fibroblasts generally proliferate rapidly during develop-
ment and in disease, [121, 122] and they are relatively easy
to expand in culture. Identification of fibroblast-specific cel-
lular markers has proven elusive, further limiting study of
fibroblasts in vivo and limiting our understanding of their
potential clinical utility. However, preliminary studies indi-
cate that human fibroblasts display similar morphology to
MSCs with similar immunophenotypic capabilities [123,
124]. Similar immunomodulation capabilities to MSCs (at
least in vitro) and greater relative abundance make primary
fibroblasts attractive candidates for cell therapy. However,
the safety profile of heterologous human fibroblast adminis-
tration has been less studied and needs further analysis.
Although they are thought to be less immune-privileged than
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MSCs, further work is needed on this issue [119, 120, 124,
125].

To date, pre-clinical and clinical trials involving fibroblasts
have primarily focused on their topical use in wound healing
rather than systemic administration. A phase II randomized
clinical trial using an intradermal allogeneic fibroblast suspen-
sion compared with vehicle alone injected into the chronic
wounds of patients with recessive dystrophic epidermolysis
bullosa revealed more rapid healing of wounds in those treated
with fibroblasts [126]. Additionally, more recent pre-clinical
trials have revealed a potential role for fibroblasts in nerve
regeneration. In one study examining fibroblast use in murine
models with induced peripheral nerve injury, co-
transplantation of fibroblasts with Schwann cells revealed
positive effects on peripheral nerve regeneration and function-
al recovery [127]. Clinical trials involving fibroblast trans-
plantation for facial deformities and skin thickening at the
surgical sites of amputees are currently on-going
(clinicaltrials.gov, NCT03947450, NCT0111563). A clinical
trial involving the conversion of fibroblasts to induced
pluripotent stem cells for future therapeutic use is also active
(clinicaltrials.gov, NCT00801372).

Natural Killer Cells

Natural killer (NK) cells are lymphocyte-like cells that are part
of the innate immune system which historically recognize and
respond to tumor and virally-infected cells by two mecha-
nisms. First, they bind antibody-coated targets via immuno-
globulin receptors leading to antibody-dependent cellular cy-
totoxicity. Second, they bear natural cytotoxicity receptors
that detect the altered expression of ligands on the surface of
abnormal cells, ultimately triggering NK cell activation [128,
129]. Recent evidence has shown the complexity of their func-
tionality, with their activity regulated by a series of activating
and inhibitory cell receptors, in conjunction with a variety of
pro-inflammatory cytokines. Additionally, activated NK cells
modulate the behavior of other innate and adaptive immune
cells through secretion of pro-inflammatory cytokines such as
IFN-y and TNF-« [130].

In relation to trauma, NK cells are thought to play a critical
role in the development of systemic inflammation and multi-
organ dysfunction by producing IFN-y with subsequent acti-
vation of macrophages and increased inflammatory cascade
activity. Depletion of NK cells in a rat model of polytrauma
consisting of an induced femoral fracture and hemorrhagic
shock, followed by sepsis resulted in a reduction in /L-6
mRNA in liver tissue with a 50% mortality reduction in com-
parison to controls [131]. Similar results were reproduced in
rats who underwent experimental polytrauma with subsequent
infusion of anti-NK1.1 antibody on the two consecutive days
following injury [132]. Observational studies in humans re-
vealed an increased presence of NK dim cells, considered to
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have a “cytotoxic phenotype, 2 h following traumatic injury,
with concomitant development of multi-organ dysfunction
and lymphopenia, although the clinical significance of this
remains unclear [133]. This direct correlation has also been
observed in other systemic illnesses, including sepsis [134].
Preliminary studies involving administration of NK cells for
oncologic intervention have shown positive outcomes, with
several clinical trials currently pending; however, at the time
of'this review, no trials involving their use in polytrauma have
been completed and reported (clinicaltrials.gov,
NCT02809092, NCT02409576, NCT03358849). Given the
aforementioned findings, CT with NK cells may well focus
on manipulation of their levels rather than their actual
injection.

Extracellular Vesicles

‘Extracellular vesicles’ (EV) is a generic term used to describe
secreted vesicles, commonly referred to as ectosomes,
exosomes, microparticles, microvesicles, and oncosomes,
based upon size [135, 136]. They are membrane-bound vesi-
cles containing various molecular components, including
RNA, proteins, and metabolites that are released from tissues
to aid in intracellular molecular trafficking. Given this prop-
erty, their potential use as disease markers and therapeutic
targets remains an active topic of interest [137], with prelim-
inary studies to date revealing promise for treating pulmonary
injuries, acute kidney injuries, neurologic insults, and myocar-
dial infarctions [138—-142].

A number of studies have noted increased circulation of
EVs following major physiologic insult. In trauma specifical-
ly, one observational study completed in 2015 of 22 patients
revealed that platelet-derived and endothelial-derived micro-
particle concentrations increased significantly in patients with
polytrauma compared to healthy patients or those with minor
injuries, with EV concentrations correlated directly with inju-
ry severity [143]. Another study of 37 patients yielded com-
parable outcomes and also revealed EV counts to be negative-
ly correlated with coagulation times, particularly within the
first 3 days of injury, indicating a possible pro-coagulant effect
of endogenous EVs in this setting [144]. Similar results have
been found in patients with severe burn injuries, with leuko-
cyte and granulocyte-derived EV levels on the initial day of
injury directly correlated with mortality [145]. In spite of these
observations, the effect of this increase is not well-described
and is likely largely source dependent, with evidence to date
suggesting a dual role of EVs in both tissue repair and damage
[22].

Optimal sources of EVs to maximize treatment efficacy
have yet to be defined. Initial studies using treatment with
exogenous MSC-derived EVs have shown promise in a vari-
ety of disease processes, including systemic inflammatory re-
sponses [146]. In one study using a mouse model to examine
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ARDS after hemorrhagic shock, injured mice received MSCs,
MSC-derived EVs, or normal saline following the initial inju-
ry. Subsequent lung biopsies revealed significantly decreased
lung vascular permeability in both the MSC and MSC-derived
EV treated groups compared to control animals [147].
Another pre-clinical trial examining the incidence of pneumo-
nia in mice following burn injuries revealed improved bacte-
rial clearance and overall survival in mice intra-nasally inoc-
ulated with EVs obtained via bronchoalveolar lavage versus
controls [148]. Alam and colleagues have recently demon-
strated in a swine model of TBI and hemorrhagic shock that
early treatment with a single dose of MSC-derived exosomes
significantly attenuated brain swelling, blood brain barrier
permeability, lesion size and also decreased blood-based ce-
rebral biomarkers [149]. In clinical studies, a safety study for
the use of MSC-derived EVs in premature neonates at risk for
bronchopulmonary dysplasia began enrollment in April 2019
(clinicaltrials.gov, NCT03857841). Trials involving MSC-
derived EVs for treatment of type 1 diabetes mellitus, macular
injury, and acute ischemic stroke are currently on-going
(clinicaltrials.gov, NCT03437759, NCT03384433,
NCTO02138331), as are several trials involving vesicle-based
drug delivery (clinicaltrials.gov, NCT01854866,
NCT02657460). Although preliminary, the use of EVs as
therapeutic agents holds promise and has practical
advantages over the use of live cells, especially in more
austere treatment environments.

“Engineered” Therapies

Tissue engineering refers to the manipulation of cells and
tissues. Historically, this research has focused on regaining
tissue functionality, such as limb restoration in cases of trau-
matic amputation [150]. However, the expansion of
“engineered therapy” use into medical sub-specialties such
as oncology has introduced the possibility of wider applica-
tion in all fields, including modulation of the immune system
following trauma.

CAR-T cell therapy utilizes T lymphocytes obtained from
individual patients that are genetically engineered to express
chimeric antigen receptors (CARs), a fusion protein combin-
ing an extracellular binding domain, a transmembrane do-
main, and an intracellular signaling domain. The modified T
cells are able to specifically recognize their target antigen via
the binding domain, resulting in T cell activation upon their
encounter [151]. T cell receptor (TCR) T cells represent a
similar but distinctive T cell immunotherapy which help to
combat the limitations of CAR-T cells related to extracellular
antigen recognition. Following modification, TCRs are able to
recognize and target antigen-derived peptides that are proc-
essed and presented on HLA molecules, thus allowing direct-
ed attack against intracellular antigens [152, 153]. Given their
potential as an allogeneic therapeutic, the development of

CAR-NK cells has also recently emerged with similar treat-
ment goals [154]. To date, these therapies have shown prom-
ise in the treatment of various malignancies, but minimal data
exists for their use outside of malignancy [155—157]. Recently
Epstein and colleagues demonstrated that CAR-T cells could
promote cardiac repair and inhibit fibrosis, which is one of the
first studies demonstrating their potential outside of oncolog-
ical applications and implies potentially broader utility [158].
Given our increasing understanding of trauma pathophysiol-
ogy, including the previously described complement-
mediated suppression of anti-inflammatory Th2 leading to
increased inflammation, the potential use of lymphocyte im-
munotherapy to combat this cascade cannot be overlooked.
Aside from the aforementioned modifications of lympho-
cytes, genetic engineering of stem cells and progenitor cells
has been studied with the intent of optimizing functionality
and enhancing therapeutic efficacy [159]. Modification of
EPCs resulting in overexpression of various growth factors
has been shown to enhance vasculogenesis and neurogenesis
in rats which underwent experimental vascular and neurologic
injury, respectively [160, 161]. MSCs genetically engineered
to overexpress IL-10—known to suppress secretion of pro-
inflammatory markers—reduced inflammation and improved
fine motor function in comparison to MSCs alone in rats who
underwent experimental TBI [162]. One of the most publicly
lauded and broadly applied engineered therapies to date,
which was mentioned briefly above, involves induced plurip-
otent stem cells (iPSCs). iPSCs—initially developed in
2006—are differentiated cells manipulated to dedifferentiate,
and subsequently acquire properties similar to ESCs, includ-
ing the ability to differentiate into any adult cell type [163].
Although initially heralded as the next great phenomenon of
regenerative medicine due to the indefinite cell source and
great variety of cellular re-programming capabilities, the chal-
lenging nature of their development as well as concerns for
tumorogenicity [164—167] has shifted the focus for their use to
replicating and researching human diseases [168]. However,
in spite of this new focus, preclinical data regarding the use of
iPSC derivatives in traumatic injuries has shown promise. A
meta-analysis examining 6 randomized controlled trials in-
volving iPSC derivatives that have been differentiated into
neural precursors, oligodendrocyte progenitors or astrocytes
in rat models of spinal cord injury concluded that rats which
received therapy displayed improved locomotor function
[169]. A recent meta-analysis which evaluated preclinical data
involving a variety of rodent and monkey models for spinal
cord injury also displayed hopeful results, with significant
motor improvement after application of iPSC-derived neural
cells noted in comparison to controls [170]. Current clinical
trials involve the use of iPSCs in modeling various disease
types, include ophthalmologic, cardiovascular, and neurologic
(clinicaltrials.gov, NCT03696628, NCT03971812,
NCT02815072, NCT03853252). To our knowledge, no
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studies regarding their application in polytrauma currently
exist. However, given their arduous development process
and increased potential for tumorigenicity, the application of
iPSC derivatives in acute polytrauma remains challenging.

Areas in Need of Further Study

Although this review highlights the enormous investigative
efforts completed or ongoing to date, it demonstrates the sig-
nificant amount of study still needed before widespread clin-
ical application of CT for trauma indications is feasible. Two
remaining issues, mentioned only briefly above, involve cel-
lular product heterogeneity and the potential for tumorigenic-
ity [164-166, 171-174]. CT, particularly MSCs and EPCs,
can encompass a variety of cell types, each with distinctive
properties based upon organ system and donor source [106,
175]. In short, the field lacks standardized cell identity and
potency assays to evaluate product behavior and optimization
. Itis possible that a particular subset of CT may be optimal for
a specific therapeutic application. This has yet to be deter-
mined. Additionally, given the potential for unbridled cellular
proliferation with certain cell types (i.e. ESCs), further deter-
mination of ideal therapeutic half-life or requirement for en-
graftment must be determined in order to mitigate potential
negative consequences such as tumor formation. For use in
trauma patients, the ideal CT product may be one that only
transiently remains in the body and has an acute effect.

The external factors that influence the behavior of the in-
dividual therapy types must also be identified. As no cell type
exists naturally in isolation, one particularly vital consider-
ation is how the interaction of various cell types effects treat-
ment efficacy and safety. Interaction with immune cells in the
trauma patient to modulate immune function and inflamma-
tion is an important function of CT. As an example, prelimi-
nary studies examining interaction of MSCs and NK cells
have suggested a time-dependent component of regulation,
during which both inhibition and activation of NK cells by
MSCs may occur based upon secretory factor effects as well
as cellular ratios [130, 176, 177]. While MSC infusion after
HSCT has shown improved engraftment and decreased inci-
dence of chronic GVHD, MSC infusion prior to HSCT
displayed a tendency toward prolonged engraftment times
along with an associated increase in relapse and death, again
implying the importance of timing of delivery in the maximi-
zation of therapy [178]. More research is needed to determine
the most effective cellular therapy regimens.

Relatively little is understood about how trauma patho-
physiology may inform the application of therapies. Given
the discordant immunologic response with resultant enzymat-
ic dysfunction, trepidation exists regarding how the introduc-
tion of foreign cellular products may affect this stressed sys-
tem. For example, increased circulation of tissue factor—the
transmembrane protein responsible for initiation of the
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coagulation cascade—following traumatic injury leads to in-
creased exposure to other coagulation factors, ultimately caus-
ing intravascular thrombosis [179]. The consequences of
adding CT to this disordered state are largely unknown, but
raise concerns regarding the potential risk of exacerbating the
existing pro-coagulant state. MSCs express varying levels of
tissue factor on their surface and may influence blood coagu-
lation if administered intravenously [180-183]. Pre-clinical
studies demonstrate that human MSCs are procoagulant when
mixed with human blood or plasma [180, 181, 184]. Indeed, a
wide range of tissue factor surface expression is observed in
different CT agents, based on tissue of origin, donor variabil-
ity, and cell preparation conditions. During in vitro experi-
ments, the amount of surface tissue factor is inversely related
to the clotting time observed upon mixing of cells with either
whole blood or plasma. This relationship is also maintained
with blood from patients with severe trauma, although the
effect is less pronounced than that seen with blood from
healthy donors [180]. Although numerous clinical trials using
MSCs and other related products have indicated that admin-
istration of MSCs is relatively safe (at least at the doses tested),
there have been some examples of adverse thrombotic events
after administration, especially outside of tightly controlled
clinical trials ( [185] and references therein, [186]). Because
acute trauma patients may be coagulopathic, this issue should
be addressed in preclinical models first to determine safety.

The use of CT or cell-derived biologicals such as EVs has
been proposed as a means to mitigate this possible repercus-
sion [187]. However, recent evidence indicates that EVs them-
selves contain tissue factor and pro-coagulant potential which
varies between sources [188] and have procoagulant activity
when mixed with whole blood or plasma [188, 189]. The
conditions for expanding, maintaining, and harvesting cells
may also affect tissue factor levels and procoagulant activity,
[190] and should be further optimized to enhance safety.
Alternatively, other methods of cell administration besides
intravenous infusion may be preferred in some trauma pa-
tients. A number of methods are under investigation, includ-
ing topical, intra-muscular, intra-arterial and direct injection
into tissues ( [185] and references therein). These methods
differ in their in their level of invasiveness and ease of perfor-
mance in acute situations, but also in their effects on cell
delivery, retention and probably cell efficacy. In the end, spe-
cific patient characteristics may dictate the choice of adminis-
tration method, based on the type of injury and the invasive-
ness and risk of each method.

To mitigate risk, TF expression and the potency of the
product should be considered in determining the choice of
CT agent. If a product with high procoagulant activity is used,
the administration of higher amounts of anticoagulant along
with the cells may be able to reduce the risk of thrombosis.
However, the clinical feasibility of this remains unclear, as
this must be balanced with the risks of further anti-
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coagulation in actively bleeding patients. Thus, further inves-
tigation to determine the ideal CT agent, dose, timing and
route of administration will be important to minimize the risk
of thrombosis.

As no individual cell function is segregated from its sur-
roundings, coinciding factors aside from cell-to-cell interac-
tion must also be considered. For example, the immune re-
sponses triggered by interaction of adaptive and innate im-
mune cells may in fact be central to the beneficial immune
modulation and anti-inflammatory properties of MSCs. MSCs
have the receptors for complement proteins C3a and Ca [191].
These complement proteins in the blood interact with MSCs
and augment their phagocytosis, which may contribute to im-
mune modulation but may also explain why MSCs are cleared
from the bloodstream rapidly (Gavin 2019), in addition to
being trapped in the lungs. MSC infusion causes a dramatic
inflammatory response called the IBMIR (instant blood-
mediated inflammatory reaction) [192]. All of these complex
cellular interactions are likely to be important for potency,
efficacy and adverse outcomes in trauma patients and require
further preclinical study.

Besides the aforementioned coagulopathies, other factors
commonly seen in severe traumatic injury include hypother-
mia and acidosis, with the three in combination collectively
referred to as the ‘lethal triad’ [193]. Animal studies suggest
that hypothermia serves to decrease tissue injury by exerting
an anti-apoptotic and immunomodulatory effect. However,
such compensation comes at a cost, with enzymatic dysregu-
lation and an overall increase in mortality observed in even
mild cases of trauma-associated hypothermia [194, 195].
Similarly, studies have shown that the degree of acidosis in
trauma patients is directly correlated with the severity of he-
mostatic dysfunction, again demonstrating how small disrup-
tions in homeostasis can lead to disastrous metabolic conse-
quences [196]. Endogenous cell receptor conformational
changes may occur in acidosis, subsequently affecting binding
capabilities and overall functionality [197]. At this point, very
little is understood about how exogenous cell-mediated ther-
apies will engage with this process.

Many areas of study undoubtedly remain regarding the
potential reciprocity of the cellular microenvironment and
CT. A third element not yet addressed involves the factors
external to the patient, particularly exposures sustained inde-
pendent of the trauma itself. One example of this is how radi-
ation exposure may affect all cell types, both endogenous and
exogenous. As discussed above, HSCT has been applied in
previous cases of massive radiation exposure with generally
negative results. While part of these negative findings may be
attributed to secondary complications of the radiation itself
such as infection, some may be attributable to the currently
not fully understood and, therefore, unpredictable cellular re-
sponse. Given the non-uniformity of irradiation exposure in
this setting, marrow recovery with resultant cellular

production is feasible following an initial period of indolence.
In the absence of complete myeloablation through established
chemotherapy regimens, which sacrifice all tissue types, the
consequence of autologous cell production in conjunction
with exogenous therapies is unknown [77, 198].

Logistical Challenges of Cellular Therapy Application

While much regarding the physiologic aspects of CT remains
to be determined, the logistical challenges of manufacture and
application must also be acknowledged. As frequent public
pleas for blood product donation indicate, CT sources apart
from iPSCs do not exist in limitless supply, and ensuring
consistent inventory with current isolation and growth prac-
tices will be difficult.

Additionally, while preservation techniques for use of cel-
lular products in research are well-established, the conse-
quences of this process for subsequent clinical application is
not fully known. Transfusion of older stored packed red blood
cells has been associated with increased complications, with
pathophysiology incompletely understood. However, it is un-
clear if such issues will be as prominent with other CT [199].
Additionally, the storage methods for CT products have not
been adequately defined. Many of the current storage tech-
niques restrict mobility of these therapies, raising concerns
for their use in resource-scarce settings such as occur in the
event of natural disasters or military deployments. Challenges
are also posed by the need for very low temperatures in the
storage of CT products. Further investigation is needed to
determine ideal storage and distribution conditions to maxi-
mize therapeutic viability, mobility, and utility.

Questions regarding appropriate dosing regimens also re-
main. As for all approved therapies, a standard potency assay
must exist in order to ensure a particular response is achieved
[200]. In order to do this, specific mechanisms of action
(MoAs) and quantitative measures of biologic function would
ideally be established for purposes of standardized
manufacturing and reliable clinical efficacy. However, given
the complexity of CT, likely featuring multiple, poorly under-
stood MoAs that are largely batch dependent, such determi-
nations are extremely difficult [201]. Consideration of mean-
ingful and robust assays for batch characterization and release
are essential in order to alleviate some of the known obstacles
[201].

Finally, ideal candidates to receive these therapies must
also be determined. Given the lack of a consensus definition
for polytrauma, as discussed previously, clinical criteria
would ideally be established to standardize this definition.
Such formalization could then inform an evidence-based grad-
ing system that could be quickly referenced during an acute
trauma resuscitation to determine who would most benefit
from cellular therapy.
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Conclusions

Preclinical and clinical studies of CT have shown significant
capacity for their application in cases of both acute and chron-
ic traumatic injury. However, much remains to be determined
both physiologically and logistically before the widespread
application of such treatments. Given the substantial morbid-
ity and mortality associated with severe trauma in both mili-
tary and civilian settings, and the comprehensive nature of the
topic, it is imperative that the medical community collectively
renews their efforts to seek further systemic therapy options,
using the vast amount of knowledge that has already been
built as their beacon. Focusing efforts on new therapies will
ensure that traumatic injury will no longer be a neglected
disease of modern society.
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