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Incorporating Breast Anatomy 
in Computational Phenotyping 
of Mammographic Parenchymal 
Patterns for Breast Cancer Risk 
Estimation
Aimilia Gastounioti   , Meng-Kang Hsieh, Eric Cohen, Lauren Pantalone, Emily F. Conant & 
Despina Kontos

We retrospectively analyzed negative screening digital mammograms from 115 women who developed 
unilateral breast cancer at least one year later and 460 matched controls. Texture features were 
estimated in multiple breast regions defined by an anatomically-oriented polar grid, and were weighted 
by their position and underlying dense versus fatty tissue composition. Elastic net regression with 
cross-validation was performed and area under the curve (AUC) of the receiver operating characteristic 
(ROC) was used to evaluate ability to predict breast cancer. We also compared our anatomy-augmented 
features to current state-of-the-art in which parenchymal texture was assessed without considering 
breast anatomy and evaluated the added value of the extracted features to breast density, body-
mass-index (BMI) and age as baseline predictors. Our anatomy-augmented texture features resulted in 
higher discriminatory capacity (AUC = 0.63 vs. AUC = 0.59) when breast anatomy was not considered 
(p = 0.021), with dense tissue regions and the central breast quadrant being more heavily weighted. 
Texture also improved baseline models (from AUC = 0.62 to AUC = 0.67, p = 0.029). Our findings suggest 
that incorporating breast anatomy information could augment imaging markers of breast cancer risk 
with the potential to improve personalized breast cancer risk assessment.

Breast cancer risk assessment has become increasingly important for forming tailored breast cancer screening 
and prevention strategies1,2. Full-field digital mammography (FFDM), routinely used for breast cancer screening3, 
has demonstrated substantial potential in providing quantitative image-derivable measures which relate to breast 
cancer risk4–7. Mammographic density has been the most established such measure and has been shown to be a 
strong independent risk factor for breast cancer8,9.

Going beyond breast density, recent studies also suggest that parenchymal texture, which reflects the heteroge-
neity of the breast parenchymal pattern, plays a complementary role in breast cancer risk assessment by capturing 
information that is not reflected by mammographic density alone or other established risk factors10. This research 
field, aiming to translate mammographic images to computational imaging phenotypes of breast cancer risk, is 
rapidly evolving and several computerized methodologies have been developed to quantify the properties of the 
breast parenchymal pattern using texture descriptors10.

Although useful in risk prediction, parenchymal texture measurements do not generally incorporate breast 
morphology and anatomy — i.e., the shape, size, and tissue structure of the specific breast analyzed. Breast anat-
omy may, however, be an important component in quantification of breast parenchymal patterns. For instance, 
texture characterization adapted to the largely variable breast morphology would allow establishing anatom-
ical correspondences across mammograms and, therefore, generate more comparable textural measurements 
across subjects. In addition, and perhaps most importantly, parenchymal characteristics from different areas of 
the breast may contribute differently towards the risk for developing breast cancer. For example, a recent study11 
showed significant associations between breast cancer and the relative spatial distribution of dense versus fatty 
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regions within the breast, with fatty tissue in the lower quadrants and the absence of density in the retromammary 
space being protective against breast cancer. Moreover, the central breast area (CBA) and the upper-outer area 
(UOA) of the breast have been associated with a higher frequency by location of breast cancers12 and with early 
changes in texture due to breast cancer development13. These findings suggest that inherent breast tissue proper-
ties predisposing women to higher risk of breast cancer may not be uniformly expressed in the breast parenchyma 
and, therefore, allowing breast morphology and anatomy to drive texture measurements could augment their 
predictive capacity.

The purpose of our study was to evaluate whether incorporating breast anatomy information can strengthen 
the associations of mammographic parenchymal texture phenotypes with breast cancer risk. Towards this end, 
we introduce a computational breast-anatomy-driven approach for extracting parenchymal texture features and 
evaluate their predictive value in a case-control study with full-field digital mammograms.

Methods
Study population.  In this IRB-approved (University of Pennsylvania; Protocol #: 825735), HIPAA-
compliant study under a waiver of consent, we retrospectively analyzed a case-control sample of raw (i.e., ‘FOR 
PROCESSING’) bilateral digital mammograms. Briefly, cases (n = 116) included all women diagnosed with uni-
lateral breast cancer between July 2012 and December 2014 (biopsy and state registry confirmed cancer diag-
nosis) who also had negative screening mammograms available at our institution at least one year prior to their 
diagnosis. One case was excluded due to the presence of bilateral breast implants. For all the remaining 115 cases, 
we retrieved the earliest negative screening study with raw mammograms available (average time from screening 
to diagnosis: 1.9 years ± 0.7) which was used for our analysis. Eligible controls were women who had a negative 
routine screening exam during the same period and confirmed negative one-year follow-up. Following case-con-
trol matching without replacement, controls were matched to cases on age at screening (within 5-year intervals), 
ethnicity and screening exam date (within 1 year) at a 4:1 ratio (n = 460), yielding a total sample of 575 women. 
Briefly, cases and controls were randomly ordered. Then, for each case, eligible controls were identified as controls 
matching to cases on the specified matching criteria and four of them were randomly selected. Since we were 
matching without replacement, matched controls were not available to serve as matches for subsequent cases. This 
process was repeated until four matches were found for each cancer case.

For the purposes of our study, we used the mediolateral-oblique (MLO) view of the available digital mam-
mograms as it visualizes the maximum amount of breast tissue and can potentially better define anatomically 
the breast quadrants. All images were acquired using Selenia Dimensions (Hologic, Inc., Bedford, MA, USA) 
units. Breast Imaging-Reporting and Data System (BI-RADS) density classification and body-mass index 
(BMI) were extracted from the archived clinical records and the radiologists’ screening reports for all women. 
Fully-automated quantitative measurements of breast percent density (PD) were also obtained for all images in 
this study, using the publicly available “Laboratory for Individualized Breast Radiodensity Assessment” (LIBRA, 
v.1.0.4) software14 which provides area-based breast PD (APD) measurements, and the commercially available 
software package Quantra TM (Hologic Inc., Bedford, MA, v.2.2.1), which allows for APD and volumetric breast 
PD (VPD) assessment.

Computational parameterization of breast anatomy.  To incorporate breast anatomy in quantitative 
computational metrics, first several landmarks and sub-regions of the breast parenchyma were defined in each 
2D FFDM image: (a) the air-breast boundary, (b) the pectoralis muscle, (c) regions of predominantly dense versus 
predominantly fatty tissue, (d) the nipple, and (e) the UOA and CBA (Fig. 1).

The anatomical components (a)–(c) were identified using LIBRA14,15. Specifically, LIBRA delineates the 
air-breast boundary using automated gray-level thresholding, and extracts the pectoralis muscle region by apply-
ing a straight-line Hough transform16. To identify dense versus fatty tissue areas, LIBRA uses adaptive fuzzy 
c-means clustering to partition the breast into density clusters (DCs) of similar gray-level intensity, which are 
then aggregated into the final dense tissue segmentation.

For landmarks (d)–(e), the breast image was first rotated, and then flipped for right breasts, so that the pecto-
ralis muscle was vertically aligned on the left side of all images. Then, the nipple was approximated as the right-
most circular region of the breast bounded by a rectangle of maximum size 1.5 cm in both dimensions. Lastly, 
two breast sub-regions were identified: for rP equal to the perpendicular distance from the pectoralis muscle to 
the nipple, the CBA was defined as that part of the breast at a radial distance less than f *rP from the nipple, and 
the UOA as that part of the breast lying above the nipple and further than f *rP from the nipple. The parameter f, 
was implemented to range within [0.5, 1] so that CBA adequately covers the central part of the breast, defining the 
relative sizes of the CBA and the UOA.

A polar grid of a radius unit equal to D, centered on the nipple, was then overlaid on the mammographic 
image (Fig. 2). The polar grid was fitted to the shape and size of the individual breast as well as to an approxima-
tion of the ductal distribution extending from the nipple posteriorly and perpendicular to the pectoralis muscle 
in a radial fashion. Centering on the nipple allowed for denser sampling in the retro-areolar region of the breast, 
which typically contains more complex parenchymal tissue patterns than the breast areas closer to the pectoralis 
muscle17.

Anatomically-oriented texture feature extraction.  Within each region defined by the polar grid, we 
estimated a total of 34 established texture descriptors (Table 1 and Supplementary Note N1 for detailed mathe-
matical formulations), including gray-level histogram, co-occurrence, run-length, and structural features, all of 
which have been previously used for mammographic pattern analysis and breast cancer risk assessment10. Briefly, 
gray-level histogram features are common first-order statistics which describe the distribution of gray-level inten-
sity. The co-occurrence features also consider the spatial relationships of pixel intensities in specified directions 
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and are based on the gray-level co-occurrence matrix (GLCM) which encodes the relative frequency of neighbor-
ing intensity values. Run-length features capture the coarseness of texture in specified directions by measuring 
strings of consecutive pixels which have the same gray-level intensity along specific linear orientations. Using the 
polar grid, the axes for calculating the co-occurrence and run-length features were aligned with the structure of 
the parenchymal tissue and ductal structures (Fig. 2). Finally, structural features capture the architectural compo-
sition of the parenchyma by characterizing the tissue complexity, the directionality of flow-like structures in the 
breast, and intensity variations between central and neighboring pixels. A total of 34 feature maps were computed 
(i.e., one for each feature), which captured the spatial distribution of the corresponding parenchymal texture 
measurements as sampled by the polar grid over the entire breast.

Texture feature summarization weighted by breast anatomy.  As the final step, we generated a 
weight map which assigned a weight to each region; this weight map was, then, region-wise multiplied to the 34 
original texture feature maps to generate a set of 34 weighted texture feature maps. Our design of the weight map 
was motivated by studies associating the CBA and UOA with potential specific roles in breast cancer develop-
ment12,13, and by work investigating biologic correlates of tissue composition with breast cancer develop-
ment11,18–20. Therefore, the weight map (W) was designed as a combination of weights due to the region’s 
anatomical position (S), and weights due to the underlying tissue composition (T) of each region (Fig. 3). The S 
component, representing the coding of the anatomical location, was based on the relative distance from the CBA 
and UOA centroids and assigned larger weights to regions within those anatomical quadrants, with parameter a 
tuning the role of CBA versus UOA. The component T, representing the coding of the tissue composition, 
reflected the density clusters generated by LIBRA (Fig. 1), with parameter b indicating whether a higher weight 
was assigned to areas of dense tissue or fatty tissue. The relative importance of weights S and T when merged to 
the final weight map was defined by parameter c. (See Supplementary Note N2 for detailed definitions.)

For each weighted texture feature map we estimated the mean value of the corresponding weighted feature 
across all regions (labeled “TF#_mean”), and the standard deviation (labeled “TF#_std”). These constituted the 
breast’s texture signature: a 68-element feature vector corresponding to the average and the variation of each of 
the weighted texture feature maps.

Figure 1.  Breast anatomy and morphology captured by landmarks and key sub-regions of the breast 
parenchyma.
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Statistical Analysis.  The optimization of our anatomy-driven approach for parenchymal texture analysis 
and breast cancer prediction involved two inter-related tasks: automatically configuring the tunable texture anal-
ysis parameters (D, f, a, b, and c) and determining the most discriminatory subset of covariates out of the 68 avail-
able texture features. To this end, for different parameter combinations (Supplementary Fig. S1), the following 
steps were applied. First, per-woman texture estimates were generated by averaging the corresponding bilateral 
breast texture signatures for each woman and were, then, z-score normalized. To remove features with little or 
no variability while also maintaining all different aspects of texture captured by the different features, we, then, 
identified pairs of features with absolute Pearson correlation greater than 0.90 and for each pair we removed the 
feature with the lowest variability in terms of its interquartile range (IQR)7. Starting from the remaining features, 
elastic net regression21 with nested cross-validation22 was used to build a parsimonious logistic regression model 
with the most discriminatory subset of covariates, where model performance was evaluated using the area under 
the curve (AUC) of the receiver operating characteristic (ROC) (see Supplementary Note N3 for feature optimi-
zation details).

The model corresponding to maximum cross-validated AUC (i.e., optimized model) was compared with a 
model built using the same statistical approach as described above but where textural features were generated 
using a current state-of-the-art algorithm based on a simpler lattice approach to sample the breast without incor-
porating breast anatomy23. Briefly, in this lattice-based strategy, a regular lattice is overlaid on the mammographic 
image, and textural features are computed on local square regions centered on each lattice point within the breast; 
further, all regions are equally contributing to the breast’s texture signature which consists of the mean and the 
standard deviation of each feature distribution. The AUCs were compared using DeLong’s test24 and by estimating 
the model net reclassification improvement (NRI)25.

Finally, we assessed the potential of augmenting established risk factors by evaluating four baseline models 
including breast density (BI-RADS density categories, LIBRA APD, Quantra APD, or Quantra VPD) adjusted 
by BMI and age at screening, and tested the added value of incorporating our breast-anatomy-driven texture 
features. Baseline and augmented logistic regression models were fitted to obtain estimates of AUC, odds ratios 

Figure 2.  Anatomical sampling of the breast. Polar grid fitted to the morphology of the particular breast and 
morphology-aligned orientations for texture feature calculations.
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Gray-level Histogram

TF1 5th Percentile

TF2 5th Mean

TF3 95th Percentile

TF4 95th Mean

TF5 Entropy

TF6 Kurtosis

TF7 Max

TF8 Mean

TF9 Min

TF10 Sigma

TF11 Skewness

TF12 Sum

TF13 Median

Co-occurrence

TF14 Contrast

TF15 Correlation

TF16 Homogeneity

TF17 Energy

TF18 Entropy

TF19 Inverse Difference Moment

TF20 Cluster Shade

Run-length

TF21 Short Run Emphasis

TF22 Long Run Emphasis

TF23 Gray Level Non-uniformity

TF24 Run Length Non-uniformity

TF25 Run Percentage

TF26 Low Gray Level Run Emphasis

TF27 High Gray Level Run Emphasis

TF28 Short Run Low Gray Level Emphasis

TF29 Short Run High Gray Level Emphasis

TF30 Long Run Low Gray Level Emphasis

TF31 Long Run High Gray Level Emphasis

Structural

TF32 Edge-enhancing index

TF33 Box-Counting Fractal Dimension

TF34 Local Binary Pattern

Table 1.  Parenchymal texture features (TF) measured in each anatomically-defined region.

Figure 3.  Generating the weight of each region. Example of weight map (W, for c = 0.8) representing the 
anatomical structure (S, a = 0.5) and the underlying tissue composition (T, b = 1) of the breast.
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(ORs), and statistical significance of predictor variables. For comparison, conventional lattice-based texture 
measurements23 were also evaluated in terms of their ability to augment established risk factors in breast cancer 
risk prediction.

All tests of statistical significance were at the standard p = 0.05 level. The breast-anatomy-driven approach 
was developed in Matlab R2014b (Mathworks, Natick, Mass) and statistical analysis was performed in Stata 13 
(StataCorp LP, College Station, TX, USA).

Results
There was a significant difference in Quantra VPD and a marginally significant difference in age between cases 
and controls in our sample (Table 2).

The best model performance for the anatomy-driven features was AUC = 0.63 (95% CI [0.59 0.69]). This was 
achieved for a spatially dense polar grid (D = 6.3 mm) and for a weight map in which dense tissue regions were 
assigned higher weights than fatty regions (b = 1 in weights T), and regions in the CBA were weighted more 
heavily than in the UOA (a = 0.8 in weights S). Each region’s location (weights S) was slightly less important than 
the region’s underlying tissue composition (weights T) in calculating the final weight (c = 0.4 in weights W). After 
excluding 17 features with low IQR, elastic net regression selected 30 of the 51 textural features for inclusion in 
this optimal model, including nine gray-level histogram, nine co-occurrence, eight run-length, and four struc-
tural features; among these, 14 represented mean values and 16 the variation (i.e., standard deviation) in texture 
feature maps (Supplementary Table S1).

Our anatomy-driven features outperformed the lattice-based strategy which gave AUC = 0.59 (95% CI [0.55 
0.64]) (p = 0.021 by DeLong’s test) (Fig. 4). Based on the NRI, 20% of cases were correctly reclassified upwards 
and 5% of controls were correctly reclassified downwards.

Our anatomy-driven features were also able to significantly augment all four baseline models fitted with breast 
density, BMI and age. Specifically, when the breast-anatomy-driven texture features were added to the model 
based on Quantra VPD and BMI, which was the best performing baseline model (Table 3), the discriminatory 
capacity was significantly improved from AUC = 0.62 (95% CI [0.57 0.68]) to AUC = 0.67 (95% CI [0.60 0.72]) 
(p = 0.029 by DeLong’s test) (Table 4 and Supplementary Table S1). The lattice-based texture descriptors were 
also able to add significant value to the baseline models; however, they were consistently outperformed by the 
breast-anatomy-driven texture features (Table 4).

Discussion
Our findings suggest that incorporating breast anatomy information in mammographic phenotypes of parenchy-
mal pattern could augment imaging markers of breast cancer risk with the potential to improve personalized breast 
cancer risk assessment. Interestingly, the configuration of the weight map in our breast-anatomy-driven approach as 
indicated by the optimization experiments also suggests that the textural properties of different regions in the breast 
may contribute differently towards breast cancer risk, with dense tissue regions and the central breast quadrant 
having potentially a more important role. Further, the heterogeneity in textural measurements within the breast 
may also be important, as more than half of the features selected as strongest covariates in our model represent the 
variation (i.e., standard deviation) of the corresponding texture feature distribution within the breast.

Cases (n = 115) Controls (n = 460) p-value*
Breast Cancer Type

   Invasive 86 (75%)

   In-situ 29 (25%)

Age (Mean ± SD) 59.02 y ± 11.7 56.7 y ± 11.5 0.049

BMI (Mean ± SD) 29.7 kg/m2 ± 6.9 29.5 kg/m2 ± 7.6 0.799

   missing 0 (0%) 9 (2%)

Ethnicity 1.000

   Caucasian 54 (47%) 216 (47%)

   African-American 61 (53%) 244 (53%)

BI-RADS Density 0.075

   Type A 9 (7.8%) 54 (11.9%)

   Type B 61 (53.0%) 279 (60.7%)

   Type C 38 (33.0%) 123 (26.7%)

   Type D 3 (2.6%) 3 (0.7%)

   missing 4 (3.5%) 1 (0.2%)

LIBRA Breast APD (Mean ± SD) 14.65% ± 11.83 13.81% ± 9.46 0.421

Quantra Breast APD (Mean ± SD) 17.67% ± 16.50 14.68% ± 15.48 0.068

Quantra Breast VPD (Mean ± SD) 13.57% ± 6.48 11.99% ± 6.39 0.018

Table 2.  Study sample characteristics by case-control status. SD: standard deviation; BMI: body mass index; BI-
RADS: Breast Imaging Reporting and Data System; APD: Area-based breast percent density; VPD: Volumetric 
breast percent density. *p-values from two-sample t-tests for continuous covariates and from Pearson chi-
squared tests for ethnicity and BI-RADS density.
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In addition, our anatomy-driven approach to breast parenchymal texture analysis outperformed parenchymal 
texture features assessed without the incorporation of factors describing breast anatomy structure and variability23. 
We postulate that the improvement observed in this preliminary comparison is due to including factors that capture 
the wide variety of breast morphology and anatomy, found not only across the screening population but also within 
a single woman due to differences in positioning for FFDM. Incorporating such information, therefore, allows for 
also establishing anatomical correspondences across breasts of the same or different women, which in turn results 
in standardized imaging features and more comparable texture measurements. The observed improvement in dis-
criminatory capacity may also be due to our polar grid, which allows for more granular texture measurements to 
be obtained in the retroareolar breast area where some of the most complex parenchymal tissue patterns usually 
appear17, and the ability to consider different contributions of the different sub-regions within the breast in the 
overall parenchymal texture signature. With this improvement, our anatomy-driven approach achieved a promising 
performance in this challenging task of breast cancer risk prediction with prior screening mammograms.

Overall, adding the breast-anatomy-driven features to baseline models with established breast cancer risk 
factors led to a significant increase in discriminatory capacity, suggesting a promising role in augmenting breast 
cancer risk assessment models. Similar conclusions have been reported in related studies4,26, where case-control 
classification models considering parenchymal textural features in addition to established risk factors and breast 
density achieved AUC values of 0.62 up to 0.7810. Together, these findings consistently support independent 
associations of parenchymal texture with breast cancer and, therefore, create a strong argument for incorporating 
quantitative breast textural features in models estimating breast cancer risk. The improvement of breast cancer 
risk estimation models can have substantial clinical implications, as it would allow for more informed recommen-
dations for supplementary breast cancer screening (e.g., with magnetic resonance imaging or ultrasound) and 
prevention tailored by individual risk profiling. Hence, the potential of parenchymal texture to leverage breast 
cancer risk assessment might ultimately affect the chance of early cancer detection or prevention in women cate-
gorized as being at low breast cancer risk based on conventional risk factors

Important limitations of our study must also be noted. To avoid potential confounding effects of proprie-
tary FFDM post-processing algorithms in textural measurements, our study focused only on “For Processing” 
(a.k.a., raw) FFDM images from a single vendor. In addition, our analysis was confined to a fixed feature set and, 

Figure 4.  Texture feature maps for four texture descriptors. Top row: weighted values on polar grid using the 
proposed breast-anatomy-driven approach with the optimal set of parameters. Bottom row: non-weighted 
values on a regular lattice23.
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although elastic-net regression was used to alleviate model over-fitting, our reported model performance may be 
over-estimated due to the relatively small sample size as a single-institution evaluation. Considering the reported 
substantial differences in textural measurements across image acquisition settings27, different FFDM representa-
tions, and vendors28, in our future studies we will plan to more thoroughly test the robustness of our method by 
incorporating multiple FFDM vendors from larger populations. In addition, larger studies will allow us to more 
rigorously evaluate the added discriminatory capacity of such imaging biomarkers when considering additional 
demographic and clinical risk factors (e.g., age at menarche, parity, family history of breast cancer), potentially 
also expanding our feature set into higher phenotypic representations, including deep learning. Finally, while 
2D FFDM images were analyzed as a first step for the purposes of this proof-of-concept study, we ultimately 
envision extending our algorithm to volumetric texture analysis for digital breast tomosynthesis images (also 
available for the studies in our study population), as tomosynthesis is increasingly being clinically implemented 
due to its reported improvements in sensitivity and specificity as compared to conventional 2D FFDM29. This new 
pseudo-3D imaging technology may, therefore, also result in superior imaging phenotypes of breast cancer risk.

In conclusion, our study provides evidence that incorporating breast anatomy strengthens the associations 
of mammographic parenchymal phenotypes with breast cancer risk and suggests that anatomy-driven measure-
ments of parenchymal texture could complement current established risk factors and quantitative breast density 
measures. This additional information reflecting breast anatomy structure has the potential to further refine indi-
vidualized risk assessment and, therefore, advance tailored screening and prevention strategies for breast cancer.

Data Availability
The data generated during the current study are available from the corresponding author on reasonable request.

OR p-value 95% CI AUC

Baseline 1

BI-RADS Density

   Type A Ref

   Type B 1.72 0.175 [0.79 3.78] 0.58

   Type C 3.07 0.013 [1.26 7.47] 95% CI [0.54 0.66]

   Type D 14.3 0.005 [2.23 91.92] pb = 0.031

BMI 1.03 0.081 [1.00 1.06]

Age 1.03 0.004 [1.00 1.05]

Baseline 2

LIBRA APD 1.02 0.065 [1.00 1.05] 0.56

BMI 1.02 0.202 [0.99 1.06] 95% CI [0.52 0.64]

Age 1.02 0.015 [1.00 1.04] pb = 0.063

Baseline 3

Quantra APD 1.02 0.006 [1.00 1.03] 0.61

BMI 1.02 0.135 [0.99 1.05] 95% CI [0.55 0.66]

Age 1.02 0.010 [1.01 1.04] pb = 0.010

Baseline 4

Quantra VPD 1.06 0.001 [1.03 1.10] 0.62

BMI 1.02 0.106 [0.99 1.06] 95% CI [0.57 0.68]

Age 1.03 0.004 [1.01 1.05] pb = 0.002

Table 3.  Associations with breast cancer risk and case-control discriminatory capacity for four baseline models. 
Odds ratios (ORs) per standard deviation increase in the standard risk factors of breast density (BI-RADS 
density categories, LIBRA APD, Quantra APD, or Quantra VPD), body-mass-index (BMI) and age. Also 
shown: p-values, 95% confidence intervals (CIs), cross-validated discriminatory capacity (AUC). pb: Statistical 
significance of baseline model.

Breast-anatomy-driven approach Lattice-based approach23

pcAUC, 95% CI pa AUC, 95% CI pa

Baseline 1 + Texture 0.62, 95% CI [0.56 0.67] 0.011 0.61, 95% CI [0.56 0.64] 0.029 0.051

Baseline 2 + Texture 0.65, 95% CI [0.58 0.69] 0.031 0.60, 95% CI [0.56 0.65] 0.042 0.033

Baseline 3 + Texture 0.66, 95% CI [0.60 0.71] 0.030 0.64, 95% CI [0.60 0.66] 0.037 0.039

Baseline 4 + Texture 0.67, 95% CI [0.60 0.72] 0.029 0.64, 95% CI [0.61 0.66] 0.038 0.027

Table 4.  Case-control discriminatory performance of standard breast cancer risk factors combined with 
parenchymal texture features. Cross-validated area under the curve (AUC) and 95% confidence intervals (CIs) 
for baseline models augmented by breast-anatomy-driven texture features or conventional lattice-based texture 
descriptors. pa: p-value for difference in AUC from the corresponding baseline model; pc: p-value for difference 
in AUC between breast-anatomy-driven and lattice-based texture analysis, by DeLong’s tests.
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