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Abstract Performing studies on the risks of environmental hazards on human health
requires accurate estimates of exposures that might be experienced by the popula-
tions at risk. Often there will be missing data and in many epidemiological studies,
the locations and times of exposure measurements and health data do not match. To
a large extent this will be due to the health and exposure data having arisen from
completely different data sources and not as the result of a carefully designed study,
leading to problems of both ‘change of support’ and ‘misaligned data’. In such cases, a
direct comparison of the exposure and health outcome is often not possible without an
underlying model to align the two in the spatial and temporal domains. The Bayesian
approach provides the natural framework for such models; however, the large amounts
of data that can arise from environmental networks means that inference usingMarkov
ChainMonteCarlomight not be computationally feasible in this setting.Herewe adapt
the integrated nested Laplace approximation to implement spatio–temporal exposure
models. We also propose methods for the integration of large-scale exposure mod-
els and health analyses. It is important that any model structure allows the correct
propagation of uncertainty from the predictions of the exposure model through to the
estimates of risk and associated confidence intervals. The methods are demonstrated
using a case study of the levels of black smoke in the UK, measured over several
decades, and respiratory mortality.
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1 Introduction

The background to this paper involves two major processes that are changing the
world dramatically. The first is population growth: recent projections suggest that the
World’s population would move from today’s 7 billions to 11 billions by the year 2100
contrary to earlier estimates that had seen it declining after year 2050 [25]. Since a
large fraction of environmental hazards are anthropogenic in origin, this steep rise in
population will have a serious effect on the environment. The second process, related
to the first at least in part, is climate change. This is expected to generate more extreme
weather events including heat waves [56]. Together these processes will have serious
implications for human health and welfare [33].

Population growth and climate change are leading to an increased focus on policy
making including mitigation strategies, management, regulation and control. This
leads to an increased need for monitoring of environmental hazards in order to inform
policy, togetherwith accurate calculations of their potential effects. The amount of data
that are available from environmental monitoring networks is growing all the time and
is characterised by very high-dimensional records of measurements made over a large
number of time points. As such there is a need for statistical tools that can encompass
the information that is contained within these rich datasets. In the case study presented
in this paper for example, data are available from several thousands monitoring sites.
This leads to the central aim of this paper: an approach to modelling the effects of
environmental exposures on health that can contend with these high-dimensional data
records. Herewe focus on the case of air pollution on health, although themethodology
is general and could be applied to other environmental hazards.

Concerns about the potential adverse effects of air pollution on human health have
been the subject of a great deal of research. Epidemiological studies have consistently
reported associations between a variety of pollutants and bothmortality andmorbidity,
including particulate matter [31], sulphur dioxide [51], nitrogen dioxide [72], carbon
monoxide [12] and ozone [58]. Associations have also been shown within different
sub-groups of the population, such as the elderly [16] and children [34] for a range of
health outcomes, such as asthma [65] and respiratory and circulatory illnesses [28].
Determining whether safe levels exist is important for regulatory purposes and air
pollution legislation such as the Clean Air Acts in the UK and US, which set safe
levels for a number of common pollutants, and the WHO air quality guidelines [64],
which offer global guidance on reducing the health impacts of air pollution.

Much of this evidence comes from studies of acute health effects, where short-
term changes in exposure to air pollution are associated with increased mortality in
subsequent days. A wide range of pollutants have been implicated in these effects, but
particular attention has focused on particulate matter, measured in various ways (e.g.
as PM10, PM2.5, total suspended particles and black smoke) and oxides of sulphur
(SOx ).
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Rather less attention has been given to investigating chronic effects of air pollution,
i.e. the association between health outcomes and long-term exposures to air pollu-
tion, possibly over several years, due to the lack of availability of suitable data and
issues related to confounding. However, it is uncertain to what extent, if at all, findings
from studies of short-term effects can be extrapolated to longer term (chronic) effects.
Whilst some or all of the effects of acute exposures may be attributed to ‘mortality
displacement’, where health events which were likely to occur within a short time
brought forward, chronic exposures may be implicated in fundamental disease cau-
sation, e.g. by sensitising people in early life to respiratory allergens or by provoking
cell mutation.

The vast majority of the studies examining the associations between air pollution
and health use data from monitoring networks as a proxy for the exposure to air
pollution experienced by the populations in question. Information on ambient con-
centrations therefore often comes from a set of monitoring sites measuring pollutants
over an extended period of time.

In order to perform health analysis using such data, there will be a need for accurate
estimates of air pollution during periods and in locations when there are missing
data. Missing data may be either by design, where a monitor is not located or in
operation, or due to shorter periods where measurements are not available from a
monitor. Commonly, simple methods for handling missing values are used including
simply discarding them from the analysis or replacing them by a specific single value,
for example, the overall mean. By discarding missing values, we may lose useful
information and may in fact introduce bias. By replacing missing values by a single
value, for example the posterior mean from an exposure model, important features of
the data and the intrinsic variability in using a summary value may be ignored to the
detriment of the quality of the estimates of adverse health outcomes.

Inmany epidemiological studies, the locations and times of exposuremeasurements
and the health assessments do not match, in part because the health and exposure data
will derive from completely different data sources and not as the result of a carefully
designed study. This is known as spatial misalignment and an example can be seen in
Lopiano et al. [38]whoconsider the casewhere datamaybe collected at different points
or the same type of data at different frequencies leading to the need to synthesise them
[69]. In addition, both continuous and discrete domains may have to be considered.
For example, an environmental hazard, such as air pollution, might be thought of as a
continuous process over space and time but health outcomes, i.e. counts, may only be
available in aggregated form for administrative districts. This is termed the ‘change
of support problem’ by Gelfand et. al. [24] and a direct comparison of the exposure
and health outcome requires an underlying model to align the two in the spatial and
temporal domains [26,43].

A few studies have used spatial–temporal modelling within such health studies,
largely due to the health data being available at a lower geographical temporal resolu-
tion than the exposure data [23,32,67,71]. These studies are ecological in nature as the
health data are likely to be available in aggregate formwhich means the exposures will
likely need to be spatially or temporally aggregated. In such cases, there is potential
for ecological bias where associations observed at the area level do not hold for the
individuals within areas. Ecological bias can manifest itself in a variety of ways and
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here bias in the resulting health risks may occur due to the aggregation of a non-linear
model [59–61].

The amount of monitored air pollution data that are routinely available is increas-
ing dramatically; in London for example there are now more than 80 monitoring sites
measuring particulate matter on an hourly, and sub-hourly basis compared with about
10 in the early nineties. Globally the WHO database on air pollution currently com-
prises ground-levelmeasurements from1600 cities. Being able to utilise the increasing
amounts of available data will lead to more accurate assessments of levels of pollution
and more realistic models through increased ability to investigate spatio–temporal
dependencies.

A hierarchical modelling approach provides a natural way of modelling data with
complex forms of dependence and themodels presented here for that purpose are natu-
rally set within a Bayesian framework. Modelling the entire spatio–temporal structure
of an environmental field has often been impractical in the past due to the availabil-
ity, or lack thereof, of data in the quantities required to produce reliable estimates.
Where such data are available, its high dimensionality has meant that the computation
required may be prohibitive. There is therefore a need for efficient methods of estima-
tion, particularly in reference to the computational issues that are likely to arise when
attempting to fit the models using Markov Chain Monte Carlo (MCMC) sampling.
This has led to the development of alternativemethods based on approximationswithin
the Bayesian inferential framework and here we specifically consider those based on
integrated nested Laplace approximations (INLA)[46].

The remainder of this paper is organised as follows. Section 2 contains details of
health–exposure models for estimating the risk associated with cumulative exposure
to air pollution. Section 3 presents a general approach to exposure modelling within
a hierarchical framework, assuming an underlying process model of which measure-
ments can be made (with error). This underlying process model may have structure
in both time and space. In any Bayesian analysis, there will be another level; that of
priors for the parameters. Details of these and possible methods for inference, notably
the use of INLA, are described at the end of this section. In Sect. 4, we describe an
approach for linking the spatio–temporal exposure models with health effects models.
Here, predictions from the exposure models are used for locations in time and space
where exposures are not available but where health outcomes are available. Section 5
contains a case study that demonstrates the use of our proposed approach to exposure
modelling and its integration with health analyses. Long-term concentrations of black
smoke, a measure of particulate matter, measured over several decades in the UK
are related to respiratory mortality leading to the estimation of the adverse effects on
health. Section 6 provides a concluding discussion and some suggestions for future
research.

2 Preliminaries

In this paper, we develop an approach for estimating the adverse health effects of
environmental hazards. This approach incorporates health data, available in aggregate
form, and exposure data measured at point locations over space and time. We partic-
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ularly consider cases where spatio–temporal data records are of such high dimension
that conventional computational approaches fail. Before embarking on the descrip-
tion of the health and exposure models, we now describe the general framework of
hierarchical Bayesian models and the notation that will be used throughout the paper.

Hierarchical Bayesian models are an extremely useful and flexible framework to
model complex relationships and dependencies in data. There are three parts to the
hierarchy:

– The observation, or measurement, level; Y |Z , X, θ1. The data are assumed to arise
from an underlying process which is unobservable but from which measurements
can be taken, with error, at locations in space and time. Measurements may also
be available for covariates, X .

– The underlying process level; Z |θ2. This drives the measurements seen at the
observation level. It may be, for example, a spatio–temporal process representing
an environmental hazard.

– The parameter level; θ = (θ1, θ2). This contains models for all of the parameters
in the observation and process level and may control things such as the variability
and strength of any spatio–temporal relationships.

Here the notation Y |X means that the distribution of Y is conditional on X . The
underlying spatio–temporal process, Z may be viewed as lying in continuous domains
of time and space, T ⊂ R and S ⊂ Rd respectively, where Rd denotes a d-
dimensional Euclidean space. However, even when Z is continuously monitored over
time, monitors may only report results at discrete times, i.e. T = {0, 1, . . . , NT } for
some NT . The same may be true over space, where the locations where air quality
monitors can actually be placed may be restricted to a relatively small number of
locations, for example, on public land, leading to a discrete S in practice.

The approach developed in this paper involvesmodels for both health counts as well
as exposures and each of these can be framed in the context of a hierarchical model. To
avoid ambiguity between the two, we use Y (1), X (1), Z (1), θ (1) for the health models
and Y (2), X (2), Z (2), θ (2) for the exposure models. It is noted that although the health
counts, Y (1), can be considered to be measurements from an underlying true level with
differences occurring, for example, due to misclassification or data anomalies, here
we consider them to be an accurate reflection of the truth, i.e. Y (1) = Z (1).

3 Health Effects Models

In order to assess the effect of air pollution on health, models are required that relate
risk to the exposure, both in terms of the degree of exposure and the time overwhich the
exposure occurred. In cohort studies of individuals, suchmodels need to account for the
duration of exposure, time since first exposure, time since exposure ceased and the age
at first exposure [5,62]. For the development of carcinogenesis, complex multistage
models have been developed that use well-defined dose–response relationships [13].
However, when using aggregated daily mortality counts for a specific period, e.g. day
or health period, and specified area, detailed exposure histories and other information
are generally not available.
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Considering a generic area for ease of illustration, let Y (1)
t be the health outcome at

time t , e.g. the number of respiratory deaths on a single day or other period of time, and
the true exposure history Zu, 0 ≤ u ≤ t , then the outcome is modelled as a function
of the exposure history.

E(Y (1)
t ) = f (Z (2)

u ; 0 ≤ u ≤ t). (1)

As true lifetime personal exposure to air pollutants is unmeasurable, it being depen-
dent on ambient levels and integrated time activity, the term ‘exposure’ here relates to
cumulative ambient outdoor concentrations of air pollutants, measured at the aggre-
gate area level. The summaries of the exposure history are therefore constructed based
on available data, Y (2)

t .
If it is assumed that Zu is piecewise continuous, then the cumulative postnatal

exposure up to and including time t is
∫ u=t

0
Z (2)
u du. (2)

Rather than just considering the effect of the total exposure over a period of time, the
contributions from intervals within the period may be of interest, in which case Eq.
(2) can be expressed in the form of weighted integrals [1,6].

Ct =
∫ u=t

o
Wt−u Z

(2)
u du, (3)

where the weights, Wt−u , determine the aspect of the postnatal exposure being sum-
marised. For example if the weights are of the formWu = min(1, u/b) or 0 according
as u > 0 or u ≤ 0, then the exposures are phased in linearly over a period of length
b until reaching their maximum. This can allow for delayed as well as cumulative
effects depending on the form of the weights. In individual studies that focus on
postnatal exposure, the form of the cumulative exposure can be explicitly modelled,
for example in the case of exposure to asbestos fibres, where the rate of elimination
of the fibres from the lungs, λ, may be incorporated and the model takes the form
Wu = {1 − exp(−λu)}/λ [3].

The exposure of interest is likely to be over a specified period of time and if the
weights are of the form

Wu =
{
1/(b − a) for 0 < a ≤ u < b
0 otherwise

(4)

then the summary will represent the average for the period (t − b, t − a], 0 ≤ a <

b ≤ t . For example, when studying the short-term effects of air pollution, with daily
measurements of health and air pollution, if a = 0 and b = 2, then Wt−u would
represent a three day mean.

When dealing with health counts, and exposure measurements, made at discrete
times, the integral in Eq. (3) can be approximated by a summation over a suitable
discretisation
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Ct =
t∑

k=0

Wt−k Z
(2)
k . (5)

If the probability of disease given cumulative exposure is assumed to be proportional
to exp(γCt ), i.e. a log-linear model in cumulative exposure, then a Poisson model can
be used to estimate the weights,Wt−k in Eq. (5). Assuming that Yt ∼ P(Etμt ) where
Et represents the expected number of cases [7] then

logμt = β0 + γ

t∑
k=0

Wt−k Z
(2)
k +

P∑
p=1

βp X
(1)
pt

= β0 +
t∑

k=0

βt−k Z
(2)
t−k +

P∑
p=1

βp X
(1)
pt (6)

where X (1)
p , p = 1, . . . P are area-level covariates. Hence the parameters, βt−k repre-

sent the effect of exposure k time periods ago. Comparing with Eqs. (3) and (5) shows
that βt−k = γWt−k . The expected number of deaths will be E = ∑K

k=1 Nkr ′
k , where

r ′
k are the age–gender-specific mortality rates for the reference population (usually a
country or other large area) and Nk, k = 1, . . . , K are the populations in the area of
study, in each age–gender group k. It should be noted that these are not the expected
number of cases in the sense of statistical expectation, but are what would be expected
based on applying national rates of disease to the population structure of the areas
being studied.

It is possible to specify the shape of the distributions of the weights, Wt−k . For
example, Schwartz et. al. [52] describe the use of a distributed lag model (DLM)
within aggregate level studies examining the short-term effects of air pollution on
health where the weights fit a polynomial function [29]. This requires assumptions to
be made on the maximum lags that are likely to have an effect and the smoothness
of the patterns over lags, which is determined by the polynomial used, but has the
advantage of increasing the stability of the individual estimates when there is high
collinearity between the explanatory variables [66]. The required assumptions have
been formulated in termsof priorswhen implementingDLMswithin aBayesian setting
[63].

There is a strong possibility of over dispersion in the Poissonmodels,where the vari-
ance is greater than the mean, arising from the presence of unmeasured confounders.
These may be operating at the individual level, e.g. smoking, or at the area level, e.g.
residual socio-economic confounding. Over dispersion may also arise because of data
anomalies, i.e. errors in the numerators and/or denominators, e.g. due to migration
which may make it unreasonable to assume that Y (1) = Z (1). Making no allowance
for the extra-Poisson variability that may be present will lead to confidence intervals
for the estimates of risk being too narrow and changes in deviances, used to compare
models, being too small. An attempt to correct these effects can be made using quasi-
likelihood [40] or, in a Bayesian setting, by incorporating random effects within the
model (see [19] for an example of this).
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4 Exposure Modelling

As discussed in Sect. 1, there will often be missing values in the available exposure
data. These will arise both from short periods in which monitors were not reporting
information and from locations and times forwhich therewere nomonitoring sites.One
approach is to represent the ambient pollution surfacewith a spatial or spatio–temporal
model, and then to estimate the quantities of interest such as estimated exposures when
and where measurements were not taken using prediction methods. As described in
Sect. 2, the spatio–temporal random field, Zst , s ∈ S, t ∈ T , is a stochastic process
over a region and time period. This underlying process is not directly measurable, but
realisations of it can be obtained by taking measurements, possibly with error, at a set
of known locations in space S = {s1, . . . , sNS } ∈ S and time T = {t1, . . . , tNT } ∈ T .
In a purely spatial analysis, repeated observations at a specific location over time are
treated as independent realisations of the underlying process.

The observed data, Y (2)
st , s = 1, . . . , NS, t = 1, . . . , NT , at the first level of the

model are considered conditionally independent given a realisation of the underlying
process, Z (2)

st . The second level describes the true underlying process as a combination
of a trend (mean),μst , and a randomprocess,ωst , which has spatial–temporal structure
in its covariance. In a Bayesian analysis, the third level of the model assigns prior
distributions to the hyperparameters from the previous levels. Thus in summary, we
have

Y (2)
st = Z (2)

st + εst

Z (2)
st = μst + ωst (7)

where the {εst } is a set of independent random, or measurement, error terms, μst is a
space-time mean field (trend) and ωst is a spatial–temporal process.

The second line in Eq. (7) comprises a mean function together with a zero-mean
spatial–temporal process. Previous studies have modelled the mean function with a
trend surface model [67], cyclical variation [57], a temporal only trend [53,68] and
the Kriged-kalman model [49]. The spatial–temporal process can be considered to be
the combination of three components; space, time and space–time interaction. These
three components may be combined in either additive or multiplicative form [49,67].
For the former, we have

ωst = ms + γt + κst . (8)

This form has been used by a number of authors to model ambient air pollution,
including for example [48,49,68] and [47] who modelled PM10 in Vancouver, Canada
and PM2.5 in Ohio state, New York City and a collection of midwestern states in
the US, respectively. In a separable model, the spatial and temporal components are
considered entirely separately with no interaction between them, i.e. κst = 0.

It is commonly assumed that the spatial effects, ms , represent a stationary spatial
process with the relationship between correlation and distance between the sites being
represented by a function from theMatern family of covariance functions, which takes
the following form:
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σ 2

2ν−1�(ν)
(2

√
νtφ)νKν

√
νtφ (9)

where Kν(θ ‖ h ‖) is a modified Bessel function of the second kind, σ 2 is the overall
variance and (ν, φ) are parameters that control the smoothness and strength of the
distance–correlation relationship, respectively.

4.1 Prediction at Unsampled Locations

The posterior predictive distributions for the underlying level at a point s0 not included
in the sampled locations are

p(Z (2)
0 |Y (2)) ∝ p(Z (2)

0 ,Y (2)) =
∫

...

∫
p(Y (2), Z (2), Z (2)

0 )dZ (2)

=
∫

...

∫ ⎧⎨
⎩

NS∏
s=1

p(Y (2)
s |Z (2)

s )

⎫⎬
⎭ × . . . (10)

. . . × p(Z (2)
0 |Z (2))p(Z (2))dZ (2). (11)

This form can be further expanded to incorporate the conditioning on the parameters
within the model, i.e. p(Z (2)|ψ, ν, φ), where ψ are the coefficients in the mean term
and (ν, φ) those in the variogram/covariance function. In this way the uncertainty in
the estimation of the parameters of the spatio–temporal model can be ‘fed’ through to
the predictions.

4.1.1 Inference

For Bayesian analyses, the posterior distributions will often involve high-dimensional
integration and may be analytically intractable. However, samples from these dis-
tributions may theoretically be generated in a straightforward fashion using MCMC
sampling [55]. The main constraint for this approach, particularly when using large
spatial datasets, is its demanding computational requirements. This can be both
because of the need to manipulate large matrices within each simulation of theMCMC
and also due to the lack of convergence of parameter estimates in complex models
[21].

The increasing size and complexity of experiments and the databases they gener-
ate have outpaced the speed of readily available computational hardware. This has
forced the development of practical alternatives to MCMC algorithms. One approach
is to marginalise out the spatial effects details of which can be found in Finley et.
al. [21]. The basic idea is to use a simpler model with the spatial effects component
marginalised out. The covariance is then a combination of the random and (spatial)
structured effects, � = σ 2

m�m(φ) + Iσ 2
u , where σ 2

m is the overall spatial variance,
�m(φ) is the spatial covariance which will be dependent on the parameter φ which
determines the relationship between correlation and distance, I is the identity matrix
and σ 2

u is the random variation. The idea is that this matrix ismore stable than σ 2
m�m(φ)
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and it is expected that the posterior distribution of φ will converge. This means that
most of the full conditionals of the parameters cannot be found in closed form and here
a Metropolis–Hasting step is used for the variables (σ 2

u , σ 2
m, φ), where φ represents

the strength of the decay in the correlation–distance relationship. The spatial effects
are marginalised out, which reduces the parameter space and thus lessens the compu-
tational burden. However, this means that estimates of the spatial effects, which are
required for prediction, are not available as they cannot be sampled. In the Gaussian
case, they can be reconstructed in a posterior predictive fashion [2].

Here we concentrate on recently developed techniques, which perform approxi-
mate Bayesian inference based on integrated nested Laplace approximations (INLA)
and thus do not require full MCMC sampling to be performed [46]. INLA has been
developed as a computationally attractive, practical alternative to MCMC.

INLA uses a Laplace approximation to the posterior distribution of the parameters,
θ , given measurements of the response, Y . For clarity of exposition, we drop the
Y (), Z (), θ () notation in what follows. When the process model is Gaussian, we have
a latent Gaussian model:

– Observation model; yst |zst ∼ π(yst |zst , θ1).
– Process model; Z |θ2 ∼ N (μ,�θ2).
– Parameter model; θ = (θ1, θ2) ∼ π(θ).

Therefore π(Z , θ |y) ∝ π(θ)π(Z |θ)
∏NT ×NS

j π(y j |z j , θ). In the setting, considered
here, the response consists of measurements of air pollution which are assumed to
depend stochastically on a latent process, Z , which is indexed by spatial–temporal
locations, st . If the latent process can be expressed as a Gaussian Markov Random
Field (GMRF) then, with Gaussian observations, the resulting joint distribution will
be a GMRF. For a GMRF, the precision matrix, Qθ = �−1

θ will be sparse, allowing
efficient computation.

The aim is to obtain posterior marginal quantities such as π(θi |y) and π(zst |y)
where for example π(θi |y) = ∫

π(θ |y)dθ−i and π(zst |y) = ∫
π(θ |y)π(zst |θ, y)dθ .

In order to achieve this, approximations need to be built; π̃(θ |y) and π̃(zst |θ, y).
The Laplace approximation to the posterior π̃(θ |y) is given by

π̃(θ |y) =∝ π(z, θ, y)
π̃G(z|θ, y)

∣∣∣∣
z=z∗(θ)

where π̃G is aGaussian approximation at themode z∗(θ) of the conditional distribution
of z given θ . Given such an approximation, numerical integration can be used to
evaluate the required integral. The same procedure can be used to approximate the
posterior distribution of π(zst |y).

The accuracy towhich INLA can compute approximations to the posteriormarginal
distributions is well documented, see for example [46] and [50]. Whilst INLA is
usually very accurate, [20] have shown some cases with binomial and Poisson data
where a correction may be required, although it is noted that these are very extreme
cases. A number of authors have recently reported favourable comparisonswith results
obtained using MCMC including [42], who fit a bivariate meta-analysis of diagnostic
test accuracy studies and [22], who perform comparison for a variety of examples.
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When comparing the results from OpenBUGS and R-INLA in a disease mapping
setting, [9] found some differences in the estimates of the random effects and their
precisions when using R-INLA with the default priors, but found that exact replicates
could be found by specifying alternatives.

In a spatial setting the INLA approach provides a natural approach to modelling
areal level data. Applying the approach to point level data of the type that will arise
from air pollutionmonitoring sites can be performed by using a link between Gaussian
Fields (GFs) with Matern covariance functions and GMRFs through use of stochastic
partial differential equations (SPDE) [35].

Lindgren et. al. [35] show that a field with a Matern covariance structure can be
expressed as the solution of an SPDE. If a GF, Z , has a Matern spatial covariance as
given by (9) then it is the solution of the SPDE

(κ2 − �)α/2zS = WS, S ∈ S, α = ν + d/2, κ > 0, ν > 0, (12)

where (κ2−�)α/2 is a pseudo-difference operator,� is the Laplacian andW is spatial
white noise with unit variance.

This SPDE in turn can be approximated using a finite element method, using tri-
angulation over the spatial domain of interest. An induced GMRF representation of
the original GF can then be found with the precision matrix being approximated by
a sparse precision matrix, Q. This represents the information within the covariance
matrix of the original GF, � and its sparsity allows computational efficiency. The
GMRF is used by INLA for performing computations that would be computationally
prohibitive using the GF directly.

5 Linking Exposure and Health Models

Pollution data are generally obtained from NS fixed site monitors located within S,
each of which will measure ambient pollution concentrations continuously through-
out the year. The set of pollution monitoring sites are collectively denoted by
S = s1, . . . , sNS , where sl = (al, bl) ∈ R2. However, health data are commonly
available only at aggregated level for administrative areas, Ai , i = 1, . . . , NA and
therefore a suitable summary of the concentrations in an area for a particular time
period is required. The true mean exposure for time t in a health area, Ai is given by

zit =
∫
s∈Ai

Ns zst ds, (13)

where zts is the ambient pollution concentration at all possible locations s in Ai at
time t and Ns is the population density such that

∫
s∈Ai

Nsds = 1. However, the
information required to perform the integral will be unavailable. Therefore, there is a
need to approximate this, with the simplest and most commonly used approach being
to take the average of the observed measurements from actual monitoring sites located
within the health area,
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ȳi t = 1

NAi

∑
s∈Ai

yst , (14)

where NAi is the number of monitoring sites located within area Ai . Here missing
values are typically ignored, something that can lead to bias if there are strong temporal
trends in the data. An example of this can be seen in the case study presented in Sect. 6.

Alternatively, an exposure model can be used to provide the required information
includingusing predictions in place of anymissing values.Any approach for using such
predictions in the health model must acknowledge the uncertainty in the predictions
and allow for it to be incorporated in final measures of uncertainty, and confidence
intervals, associated with those measures of risk.

In a fully Bayesian analysis, estimation for both the health and exposure models,
including prediction at locations where data are not available, would be performed
simultaneously. The uncertainty in estimating the coefficients of the exposure model
is therefore acknowledged and ‘fed through’ the model to the predictions and thus to
the estimation of the coefficients in the health model.

There are likely to be computational considerations associated with jointly fitting
the health and exposure models, especially if the latter uses large amounts of data over
space and time. When the exposure model is complicated or when one is interested in
running multiple candidate epidemiological models with different sets of covariates
either for a single outcome ormultiple outcomes, a singlemodel is not going to provide
an efficient method of investigation.

Often the exposure models are fit separately from the health model, removing the
dependence between Y and Z , in order to ease the computational burden in running a
combined model, an approach that has also been adopted in Carlin et. al. [8] and Zhu
et. al. [67]. This two-stage approach has the advantage that the exposure model, which
is likely to be the most computationally demanding, does not have to be refit when
running multiple health effect analyses. Two- stage approaches separate the exposure
and health components, whilst still allowing uncertainty from the exposure modelling
to be incorporated into the health model [11,32,43].

There are other reasons why fitting a joint model may be unappealing; it is not
intended that the health counts should inform the estimation of the exposures which
should be based on data from the monitored concentrations. It is possible to ‘cut’ feed-
back between the stages within MCMC, for example in WinBUGS [39]. This may be
achieved by simplifying the full conditional distributions by removing the dependence
on the health data for those parameters associated with the exposure model; however,
the result is that the posteriors may not be proper probability distributions [44].

5.1 Multiple Imputation

One approach to performing a two-stage analysis is to use multiple imputation [37].
This allows the uncertainty in predictions to be represented by using set of plausible
values for the exposures, which comprise samples from the posterior distributions of
the predictions at the required locations in space and time. Taking M multiple (joint)
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samples from the posteriors results in M multiple datasets which are repeatedly used
in the health model.

This requires the ability to draw joint samples from the posterior distributions of
the predictions from the exposure model. This is possible in the R-INLA package
using the function inla.posterior.sample. In computing the approximation
to the required distributions, π̃(θ |y) π̃(zst |θ, y), R-INLA uses numerical integration
based on interpolation between a number of chosen ‘integration points’ [46]. Taking
π̃(zst |θ, y) as an example, the integration points are selected from a set of candidate
points on a grid. After exploring log(π̃(zst |θ, y)) to find themode, a point is selected if
the difference between log(π̃(zst |θ, y)) evaluated at that point and the value evaluated
at the mode is greater than a prespecified constant. Apart from the integration based on
this procedure for finding approximations to the marginal distributions as described
in Sect. 4.1.1, the information stored about the distribution at these integration points
can be kept. This allows the function inla.posterior.sample to be used after
the main INLA run. Joint samples from the posteriors can be obtained by sampling
from Gaussian approximations at the integration points for all of the parameters,
including predictions from the exposure model. A combined analysis of these datasets
is then performed. This results in valid statistical inferences that properly reflect the
uncertainty due to missing values.

Repeatedly running the health model results in an estimate of the log relative risk,
β1, and associated standard error for each dataset. These are then combined to give an
overall estimate of relative risk together with a combined standard error that can be
used to calculate confidence intervals [45]. Assume β1d is the estimate obtained from
dataset d (d =1,2,…,n) and σβd is the standard error associated with β1d . The overall
estimate is the average of the individual estimates,

β̄1 = 1

n

n∑
1

β1d (15)

The overall estimate of the standard error will be a function of a combination of
within-imputation variance and between-imputation variance. The first of these is
given as

σ 2
wβ = 1

D

D∑
1

σ 2
βd

and the between-imputation variance by

σ 2
bβ = 1

n − 1

n∑
1

(β1d − β̄1d)
2.

The total variance is therefore

τ 2 = σ 2
bβ + (1 + 1

D
)σ 2

wβ.
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Fig. 1 Average concentrations of Black Smoke (μgm−3) (black line) from 1966 to 1992 with associated
95% confidence intervals (red dotted lines) (Color figure online)

Confidence intervals are obtained using quantiles of the t-distribution with degrees of
freedom

d f = (D − 1)

(
1 + Dσ 2

bβ

(D + 1)σ 2
wβ

)2

.

6 Case Study

The UK black smoke and sulphur dioxide network measured black smoke (BS) and
sulphur dioxide (SO2) from the early 1960s until 2006. During that time, at its peak it
comprised of over 1200 sites (in the early 1970s). As levels of BS and SO2 declined
from the very high levels in the 1960s, the network dramatically reduced in size and by
2005, shortly before it ceased operation, it contained 65 sites. Over this time, there was
a marked decline in the average concentrations of BS which can be seen in Figure 1.
For further details of the long-term changes in levels of BS and changes in the network
see Shaddick and Zidek [54].

Data were obtained for a total of 3016 sites throughout the operation of the network,
of which 2137 sites were designated as being located in residential areas. The locations
of the monitoring sites were linked using GIS, as described in [19], to electoral wards
which is the resolution of the health data. The locations of the wards, together with
an indication of the average concentrations of BS over the study period are shown in
Fig. 2.

This allows analyses of the association between health and air pollution to be per-
formed; however, there will be areas in which health data are available but monitoring
information was not available. The health data consist of mortality counts for the
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Fig. 2 Average concentrations of black smoke (μgm−3) measured at monitoring sites within the UK,
1996–1992

period 1993–1996 for respiratory diseases in the over 65 s. These data were extracted
for all ages by ward from national postcoded mortality data, by age and sex, for the
period 1993–1996. Expected numbers, standardised by age and sex, were calculated
for each ward using national mortality counts and population data from the 1991 cen-
sus. Smoking is known to be a major risk factor for cardio-respiratory illness and it is
known that smoking habits vary with social class [30] andmay therefore correlate with
pollution levels, and act as a potential confounder. In the absence of data on smoking
levels, an area-level measure of socio-economic deprivation is used [10], which has
previously demonstrated to be related to smoking rates [30].

The period of study is chosen to represent a time (for the health period) which
follows an extended period during which there were great changes in the levels of
BS. Studies of the chronic effects of pollution have largely considered concurrent
exposures. Over recent decades, air pollution concentrations have generally fallen,
in response to industrial and technological changes and more rigorous regulation. At
the same time, the character of air pollution has changed markedly, as domestic and
industrial coal-burning has declined and emissions from road traffic have increased.
Health risks determined on the basis only of current or recent exposures may therefore
be misleading, especially for older age groups who may in the past have been sub-
ject to very different exposure regimes. Here we use exposures over the previous 27
years.
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6.1 Statistical Modelling

6.1.1 Exposure Modelling

Let Y (2)
st be the concentration of black smoke measured at location, s, at time, t . Ott

[41] has suggested that a log transformation is appropriate for modelling pollution
concentrations, because in addition to the desirable properties of right-skew and non-
negativity, there is justification in terms of the physical explanation of atmospheric
chemistry. We adopt a similar model to that presented in Shaddick and Zidek [54] and
model the change in levels of BS over time using a random effects model with the
quadratic relationship between time and concentrations of BS.

Y (2)
st = (β

(2)
0 + β

(2)
0s ) + (β(2)

x + β(2)
xs )t + (β

(2)
x2

+ β
(2)
x2s

)t2 + εst , (16)

where s = 1, . . . , NS denotes the site and t = 1, . . . , NT the year. Note that the
superscript, β(2) refers to the fact that these parameters are for the exposure model
and distinguishes them from parameters in the health model shown in Sect. 6.1.2 that
have β(1). The model includes both linear and quadratic effects, β(2)

x and β
(2)
x2

of time
reflecting the shapes of decline in the decline in levels of black smoke observed in the
data. The εst is a random error term, which is assumed to be Normally distributed,
εst ∼ N (0, σ 2

ε ). Site-specific random effects, β(2)
xs and β

(2)
x2s

and β
(2)
0s , are assigned to

the slopes of the linear, quadratic and intercept components, respectively. Each of these
set of random effects is constrained to sum to zero and centred on the corresponding
fixed effects, β(2)

0 , β(2)
x and β

(2)
x2

. After allowing for the effects of time, there is likely
to be spatial structure in the residuals and therefore the random effects are multivariate
normally distributed, β(2)

0s ∼ MV N (0, σ 2
sβ0�0s), β

(2)
xs ∼ MV N (0, σsβx �βx ), β

(2)
x2s

∼
MV N (0, σ 2

sβx 2
�βx2), with the structure of the covariances reflecting any spatial auto-

correlation as in Eq. (9).

6.1.2 Health Modelling

Expanding Eq. (6), we model the number of counts in area i for time t (defined as
1993–1996 for this analysis rather than a single year) as Poisson, Y (1)

i t ∼ P(Eiμi t ),
where Ei represents the expected number of cases in area i for the period from which
the health data arise. The log of the rate, μi t is modelled as a function of the levels of
air pollution over the previous 27 years with the area-level covariate, X (1)

2 representing
deprivation. In principle, this could be a time-varying covariate, but in this example it
is measured at a single point, using information from the 1991 census. As in Eq. (6),
we use equal weights for each year and use the average pollution over the chosen time
period for each area:

logμi t = β
(1)
0 + β

(1)
1 Z̃ (2)

si + β
(1)
2 X (1)

2i , (17)

where X (1)
2 is the area-level index of deprivation with associated coefficient β(1)

2 and

β
(1)
1 represents the effect of the previous 27 years of exposure which for area Ai is

represented by Z̃ (2)
i .
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Estimates of the exposure for each area, Z̃ (2)
i can be obtained in a number of ways

and here we consider three methods:

M1 The average of the available data.
M2 The average of predictions from the spatio–temporal exposure model.
M3 A combination of available data and predictions from the exposure model,

enabling missing data to be ‘filled in’.

In both M2 and M3, there will be 27 values used in calculating the average over
the previous 27 years. However, in M1 the fact that data may be missing is ignored
and takes no account of the fact that in some cases the average may be based on
small numbers. When there are clear trends in the data, as there are here, the times at
which data are available may strongly affect the resulting summary of exposure. For
example, if levels are decreasing then missing data at the beginning of the period will
result in an underestimate of the overall exposure as higher values will be excluded.
Similarly, missing data in the later period when exposures are lower would result in
an overestimate.

For methods M2 and M3, multiple imputation is performed by drawing samples
from the posterior distributions of the predictions in order to acknowledge the uncer-
tainty that is associated with predicting from the exposure model. One hundred sets
of data were produced, comprised of either a combination of available data and pre-
dictions (M3) or just predictions (M2).

7 Results

Table 1 shows the estimated relative risks per 10µgm−3 of black smoke together
with their corresponding 95% confidence intervals obtained from applying the three
approaches described inSect. 6.1.2. For each approach, relative risks are estimatedwith
and without adjustment for deprivation. Results for methods M2 and M3 are obtained
from multiple imputation of 100 samples from the joint posterior distribution of the
exposure predictions.

For the first approach, based on the given data, there is a significant increase in
risk associated with increased levels of black smoke when using the Poisson model
(RR=1.037, 95% CI 1.025 , 1.050). Significant increases in risk are also seen after
adjustment for deprivation. Little difference was observed when adjusting for the
effects of deprivation. Although this measure of deprivation has been used in many
small-area epidemiological studies [15,17,18] and has been shown to provide a good
measure with which to discriminate between poor health associated with deprivation
and vice versa, the score is defined on a national level. To a great extent, the areas
studied here, i.e. those that have air pollution monitoring sites located within them,
constitute a set of deprived areas. Deprived areas are likely to have higher levels of
pollution [19] and thus, due to the practice of locating monitors in locations where
pollution might be expected to be highest, these areas are also more likely to be the
ones in which monitoring sites are located. In fact, over 70% of the areas in this study
lie in the two most deprived quintiles (over the UK), which would greatly reduce the
discriminatory power, in that there would be little to differentiate between a large
number of the wards as they would be assigned similar (high) scores.
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Table 1 Relative risks (RR) of respiratory mortality, with 95% confidence intervals for an increase of 10
ppb of BS over the previous 27 years

Without deprivation With deprivation

Method 1: observed exposures only

RR 95% CI RR 95% CI

1.037 1.025–1.050 1.038 1.023–1.049

Method 2: predictions

RR 95% CI RR 95% CI

1.022 1.014–1.030 1.021 1.013–1.029

Method 3: observed data and predictions combined

RR 95% CI RR 95% CI

1.011 1.004–1.018 1.010 1.003–1.017

Exposure values are obtained using three methods: (1) using observed data; (2) using predictions from a
spatio–temporal model; (3) using observed data combined with predictions to fill in missing values. Risks
are estimated with and without adjustment for deprivation. Results for methods 2 and 3 are from multiple
imputation using 100 datasets (see text for details)

As discussed in Sect. 6.1.2, there is the strong possibility that the results based
solely on the available exposure data will be biased if there are strong temporal trends,
as in this case when there is a marked decline over time [54]. The availability of the
exposure data (at ward level) can be seen in Figure 3, which shows the years for which
information was available over the period 1966–1992.

Using approach M2, predictions from the exposure model are used, not just to fill
in missing values in the data for times/locations where data were not measured, but
also to replace the measurements where they were available. In doing this, as with any
model of this type, very high and low values of the exposures will be smoothed towards
the mean. However it is precisely the high values that are likely to be driving the health
risk and the combination of these high values together with the low ones which will
provide the contrast, i.e. the range of values, that is so important for estimation in
any regression model. Using this approach, increased risks are observed, RR=1.022
(95%CI 1.014–1.030), although the increase is smaller than that observed when using
approach M1. The risks again remain after adjustment for deprivation.

To the maximum feasible extent, approach M3 uses a combination of the available
data with predictions from the exposure model when measurements are not available.
As such, it retains the contrasts in the exposures (unlike approach M2), whilst having
a ‘full’ set of data over time for each area, which will reduce the effect of the bias
seen in approach M1. In this case, the estimated relative risk is RR=1.011 (95% CI
1.004–1.018).

8 Discussion

In this paper, we have incorporated large-scale modelling of air pollution over space
and time into epidemiological analyses. In performing epidemiological analyses of
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1966 1969 1972 1975 1978 1981 1984 1987 1990

Fig. 3 Schematic showing the years for which monitoring sites were operational and those when they were
not during the period of exposure; 1966–1992. Data are aggregated to the health area (ward) level. Each
line represents a ward with yellow lines showing times where there were no operational monitoring sites
and blue lines where monitoring sites were operational and data available for analysis (Color figure online)

the relationship between environmental hazards and adverse health outcomes often
there will be locations and periods of time in which exposure information will not be
available. This may be due to a fault in monitoring equipment or may be due to the
design of monitoring networks and changes over time. In such cases, a direct compar-
ison of the exposure and health outcome is often not possible without an underlying
model to align the two in the spatial and temporal domains.

In a fully Bayesian framework, estimation of health and exposuremodels, including
prediction at locations where data are not available, is performed simultaneously. The
uncertainty in estimating the coefficients of the exposure model is therefore acknowl-
edged and ‘fed through’ the model to the predictions and further to the estimation of
the coefficients in the health model. However, there may be conceptual reasons why
‘feedback’ from the health model to the exposure model is not desired. Here it is the
exposures that might be thought of as causing health effects, but the health effects
are not thought to affect the exposures in the same way. It is noted that although an
epidemiological regression model cannot itself prove causality (that can only really be
ascertained by randomised controlled experiments), it can indicate the change in the
response variable that might be associated with changes in exposure, either by predic-
tion or estimation, which is a very useful tool in developing insight and understanding
into possible causal relationships.

There may also be computational considerations associated with jointly fitting the
health and exposure models, especially if the latter uses large amounts of data over
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space and time. When the exposure model is complicated or when one is interested in
running multiple candidate epidemiological models with different sets of covariates,
either for a single outcome or multiple outcomes, a single model is not going to
provide an efficient method of investigation. A two-stage approach has the advantage
that one does not have to refit the exposure model when running multiple health effect
analyses. Two-stage approaches separate the exposure and health components, whilst
still allowing uncertainty from the exposure modelling to be incorporated into the
health model [11,32,43]. Here we use multiple imputation based on samples from
the joint distribution of the posterior distributions for predictions of the exposures.
In approaches M2 and M3, the width of the confidence interval associated with the
estimate of risk will incorporate both the uncertainty associated in the estimation of
the risk parameter within each of the datasets and also that between the datasets; the
latter reflects the uncertainty from the estimation of the exposures.

In the case study, we have attempted to isolate monitoring sites that might indicate
the exposures experienced by the populations at risk by selecting only sites that were
designated to be in residential areas. However, there is the strong possibility that
monitoring sites will have been located in areas that were expected to have high
concentrations, as may be the case when assessing whether guidelines and policies are
being adhered to. In the context of air pollution and health in epidemiological analyses,
Guttorp et al. [27] state that air pollution monitoring sites may be intentionally located
for a number of reasons, including to measure: (i) background levels outside of urban
areas; (ii) levels in residential areas and (iii) levels near pollutant sources. Shaddick and
Zidek [54] show evidence that thiswas the case for the black smoke network used in the
case study. As the number ofmonitoring sites was reduced over time, thosewith higher
measurements were more likely to be retained. This leads to preferential sampling in
this example, when the process that determines the locations of the monitoring sites
and the process being modelled (concentrations) are in some ways dependent [14].
Zidek et al. [70] showed that there is a significant association between measured levels
and the probability of a site remaining in the network. They also presented amethod for
adjusting summary measures (of the levels of pollution) for changes in the monitoring
network and preferential sampling. Future research topics may include the possibility
of incorporating adjustments directly into the estimation of health risks.

In theory, it would be relatively straightforward to fit the models considered here
usingMCMC and this would provide a natural way of allowing the uncertainty associ-
ated with using predictions from the exposure model to be fed through to the estimates
of the health risks. However, in practice the computational requirements may prove to
be prohibitive, both because of the requirement to manipulate large matrixes within
each simulation of the MCMC and also in convergence of parameters in complex
models. Convergence of the spatial parameters in particular can cause problems [21],
especially if datasets are relatively small inwhich case theremight not be enough infor-
mation to estimate them accurately, although difficulties with accurately estimating
spatial parameters with small datasets is of course not exclusive to MCMC.

The models considered here were fit using INLA with the SPDE approach to allow
point referenced spatial components to be incorporated. In terms of prediction at a
very high number of locations, techniques such as INLA,which perform ‘approximate’
Bayesian inference and thus do not require fullMCMCsampling, provide an extremely
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appealing approach, as shown by Lindgren et al. [36]. In many cases, the underlying
field will not be stationary. Bornn et al. showed evidence of non-stationarity in black
smoke concentrations [4] and this is likely to occur with air pollution where many
factors, such as topography and wind patterns will affect local concentrations. INLA
can be extended to cover non-stationary random Gaussian fields and future work
will involve integrating predictions from non-stationary exposure models into health
models. Overall, the implementation of the INLA and SPDE approaches in this paper
demonstrates how themethods can provide a remarkably fast computational algorithm
for application over large domains when standard computational methods might fail.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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