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Abstract

The efficacy of PD-1/PD-L1 targeted therapies in addition to anti-CTLA-4 solidifies immunotherapy as a modality to add to
the anticancer arsenal. Despite raising the bar of clinical efficacy, immunologically targeted agents raise new challenges to
conventional drug development paradigms by highlighting the limited relevance of assessing standard pharmacokinetics
(PK) and pharmacodynamics (PD). Specifically, systemic and intratumoral immune effects have not consistently correlated
with standard relationships between systemic dose, toxicity, and efficacy for cytotoxic therapies. Hence, PK and PD
paradigms remain inadequate to guide the selection of doses and schedules, both starting and recommended Phase 2
for immunotherapies. The promise of harnessing the immune response against cancer must also be considered in light of
unique and potentially serious toxicities. Refining immune endpoints to better inform clinical trial design represents a

high priority challenge. The Cancer Immunotherapy Trials Network investigators review the immunodynamic effects of
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specific classes of immunotherapeutic agents to focus immune assessment modalities and sites, both systemic and
importantly intratumoral, which are critical to the success of the rapidly growing field of immuno-oncology.

Background

Immunotherapy has begun to revolutionize cancer treat-
ment, by introducing therapies that target not the tumor,
but the host immune system, therapies that possess unique
adverse event profiles, and therapies that might cure many
types of cancer. The paradigms of drug development, simi-
larly, are in a time of change. Because immune-targeted
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agents (ITAs) act against tumors by modulating immune
cells instead of tumor cells, they do not demonstrate the
conventional correlative relationship between toxicity and
efficacy. The impact of their unique and diverse mecha-
nisms of action on both drug development and clinical trial
design is significant and requires a redefinition of the
norms for charting adverse events, antitumor response, and
efficacy (Table 1). To encapsulate this shift in paradigm,
immunodynamics has been coined as a way to evaluate the
impact of a drug or therapy on the immune system.

One of the first examples of how immunodynamics plays
out in clinical trials emerged in the study of ipilimumab for
advanced melanoma. In March 2011, the US Food and
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Table 1 Immunoprognostic and Immunotherapeutic Areas

Prognostic
Immunoscore
Therapeutic
Conventional Therapies
Chemotherapy
Radiation therapy
[TAs - Passive
Cellular Therapy
Adoptive T and NK cells
CART cells
ITAs - Active & Specific
Monoclonal Antibodies
Tumor-targeting
Immune-targeting, including checkpoint inhibitors
Vaccines
In situ Vaccines
Cell-based Vaccines
Dendritic cell-based Vaccines
Non-cell-based Vaccines
ITAs - Active & Nonspecific
Cytokines
IDO Inhibitors

CAR chimeric antigen receptor, ITA immune-targeted agent,
IDO indoleamine-2,3-dioxygenase

Drug Administration (FDA) approved ipilimumab, an anti-
body against cytotoxic T-lymphocyte-associated protein 4
(anti-CTLA-4), and marked the first, approved, immune
checkpoint modulator that significantly improved survival
in patients with advanced melanoma. However, ipilimumab
also resulted in unique and previously unobserved,
immune-related adverse events (irAEs) as well as transient
periods of tumor flare or pseudoprogression that preceded
clinical response [1]. In addition, nivolumab and pembroli-
zumab, which block programmed cell death protein 1 (PD-
1) and were approved in 2014 in Japan and the United
States, demonstrated divergent cycle lengths and raised un-
anticipated questions about the optimal dosing for im-
munotherapy. For example, is a single dose level and
schedule length optimal for maximal clinical benefit with
immunotherapy or do distinct properties, inherent to the
checkpoint or the antibody, determine customized sched-
ules and regimens? Before we had an understanding of
immunodynamics, in 2009, the clinical development of an
agonistic antibody against CD137, 4-1BB, was halted due to
severe, potentially immune-related hepatotoxicity. In light
of the insights gained from the approvals of ipilimumab,
nivolumab, and pembrolizumab, perhaps the 4-1BB trial
was halted prematurely.

Page 2 of 16

In addition, identifying a maximum tolerated dose
(MTD) might prove less relevant in selecting the recom-
mended Phase 2 dose of an ITA. At this writing, determin-
ing the minimum effective dose, the maximum effective
dose, and the maximum administered dose seems more
relevant. Small molecules achieve tumor reduction by dir-
ectly targeting cancer cells, and increasing the dose of small
molecules is often associated with increasing both the effi-
cacy and toxicity. In this scenario, MTD is often achieved
in Phase I trials and helps define what dose should be used
for Phase II trials. Immune-targeted agents (ITAs) achieve
tumor regression by directly targeting immune cell types
not cancer cells. ITAs often do not achieve an MTD since
efficacy and toxicity according to dose do not correlate. In
these cases, the MAD, which is based on a pre-specified
dose range in accordance with Pharmacokinetic data, helps
define the Phase II recommended dose. With extensive pre-
clinical models of CTLA-4, PD-1, and 4-1BB therapies, we
are faced with these clinical questions and limitations not
due to a lack of immunologic hypotheses, but rather due to
a lack of adequate assessment of the immune effects in clin-
ical trials. For example, the toxicity profile of ipilimimumab
is predictable by its mechanism of action of inhibiting a
regulatory component of the immune response, which re-
sults in irAEs (e.g., rash, diarrhea, colitis, hypophysitis) from
hyperstimulation or overactivation of the immune response
in non—tumor tissue. However, the ability of ipilimumab to
deplete CTLA-4—expressing regulatory T cells (Tregs)
intratumorally and in organs of toxicity is unknown. In
addition, PD-1 blockade augments the effector phase of the
cluster of differentiation 8 glycoprotein (CD8) T-cell re-
sponse and increases interferon gamma (IFN-y) production
in patients responding to therapy, but the degree of in-
creased IFN-y production by PD-1-expressing effector
CD8 T cells in PD-L1-positive tumors after 2-week nivolu-
mab vs. 3-week pembrolizumab dosing is unknown. Simi-
larly, 4-1BB agonism directly and indirectly augments CD8
T cells and Thl response by gene expression in the
peripheral blood of patients on urelumab therapy, but the
variability by site (i.e., intratumoral vs. intrahepatic) agon-
ism of 4-1BB—positive CD8 T cells after urelumab is
unknown.

Therefore, to successfully navigate endpoints in toxicity,
efficacy, and dose selection, assessing the mechanisms of
action of ITAs in clinical trials is more important than for
any prior therapeutic strategy. Despite well-established
guidelines on the measurement of pharmacokinetics and
pharmacodynamics, no such framework has been estab-
lished for the effect of therapies on the immune response,
or immunodynamics. To improve immunotherapy drug de-
velopment, the investigators of the Cancer Immunotherapy
Trials Network (CITN) have reviewed immunodynamic as-
says based on the class of ITA being investigated. To
organize immune endpoints, we begin with a discussion of
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immune markers that have prognostic relevance and that
should be considered when assessing patient’s tumor-
immune characteristics, specifically the immunoscore. We
then present the immunodynamic endpoints organized by
therapies (including conventional therapies) that have
immune effects (including chemotherapy and radiation
therapy), followed by passive and active immunotherapy
agents. Passive immunotherapies include cellular therapies,
such as adoptive T, natural killer (NK), and chimeric anti-
gen receptor (CAR) T cells. Active immunotherapies
include specific targeted agents, such as monoclonal anti-
bodies—both tumor-targeting and immune-targeting (e.g.,
checkpoint inhibitors)—and vaccines, including in situ vac-
cination and non-—cell-based and cell-based (e.g., dendritic
cell-based) vaccines. Finally, we discuss active immuno-
therapies that are nonspecific and may augment the im-
mune response in combination or as monotherapies in a
generalized fashion, such as cytokines and indoleamine-2,3-
dioxygenase (IDO) inhibitors (Table 2).

Immunodynamics

Prognostic, immunoscore

Bernard A. Fox

ITAs, by definition, modulate the immune response
with systemic and local effects. Assessment of the per-
ipheral blood, may be, but is not always, reflective of
the changes within the tumor. Though serial tumor
biopsies are therefore of fundamental value in moni-
toring the effects of novel ITAs, the baseline tumor
sample may also portend prognostic significance, as
the tumor-immune infiltrate has long been associated
with improved outcomes. In 2006, Galon and col-
leagues, using digital imaging and image quantification
software [2], reported a strong and highly significant
correlation in colon cancer between increased survival
and the presence of immune cell densities (CD3", CD8
", Granzyme B, CD45RO" cells) at the invasive mar-
gin and center of the tumor. A subsequent study fur-
ther substantiated these findings in a larger cohort
and correlated strong infiltration with disease-free,
disease-specific, and overall survival [3]. Importantly,
objective assessment of T-cell infiltrates (CD8" and
CD45RO" cells), or the immune score was a signifi-
cantly better prognostic biomarker than tumor-node-
metastasis (TNM) staging, recognition of the central
role immunity plays in this disease [4]. The observa-
tion that immune infiltrates are associated with im-
proved outcomes is not limited to colon cancer. More
than 100 publications have reported associations be-
tween immune infiltrates and improved outcomes for
patients with at least 18 different cancer histologies
[5]. Currently the Society for Immunotherapy of
Cancer is leading an international effort to validate

Page 3 of 16

these findings in a retrospective evaluation performed
at 23 centers in 17 countries on tissues from 5000
patients [6].

If applied, determination of the immunoscore is
obtained on formalin-fixed paraffin-embedded (FFPE)
tissue that has both a portion of invasive margin and
tumor center, and the greatest degree of immune infil-
trate is selected. Automated immunohistochemistry
(IHC) is performed on 2 serial sections with one slide
stained with anti-CD45RO antibody and one slide with
anti-CD8 antibody [3, 7]. As detailed in the following
sections, measurement of the immunodynamic effects
within the tumor site extend beyond assessment of the
T-cell infiltrate. The additional analysis of the immuno-
profile of tumors will likely identify other prognostic
markers that may be histology dependent. For example,
tumor-infiltrating myeloid cells have been associated
with poor prognosis in some cancers [8] as well as
markers for antigen-presenting cells, B cells, Tregs, and
activation and inhibitory or suppressive molecules [9].
It is believed that the immunoprofile correlates with
the mutational status of a patient’s tumor: high muta-
tional status would be expected to result in a strong
immunoprofile. A limitation of these assessments is the
potential heterogeneity of a given tumor, which could
alter immune infiltrates of the primary or metastatic
sites. Tumor heterogeneity is widely recognized as a
hurdle for cancer immunotherapy [10] and may limit
the current strategy for immunoprofiling on a single
specimen or biopsy due to the confounding nature of
intratumor heterogeneity (i.e., variation within a tumor
lesion) and intertumor heterogeneity (i.e., variation be-
tween metastatic sites). An alternative approach might
be to apply novel imaging methods and reagents with
short half-lives that identify specific markers and could
provide real-time in vivo imaging of an immunoprofile
for all metastatic sites simultaneously.

As detailed in the remainder of our review, assessment
of the tumor in addition to prognostic value provides
predictive import to response to immunotherapy as ex-
emplified by a 3- to 4-fold higher response rate to PD-1/
PD-L1 pathway targeted agents among patients with
PD-L1-positive tumors. It is anticipated that immuno-
profiling of tumors will become a routine evaluation for
predictive biomarkers to guide patient selection for spe-
cific agents and combination therapies.

Immuno-oncology treatments

Therapeutic, conventional therapies

Regulatory approval of ITAs and their development in
earlier stages of disease requires comparison to and
combination with standards of care. Therefore, deter-
mining the immunodynamic effects of chemotherapy,
radiation therapy, or immunotherapy/chemotherapy
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Table 2 Immunodynamic endpoint assessment

Immuno-prognostic Immunodynamic Endpoint  Method of Assessment Site of Assessment
Immunotherapeutic Area

Prognostic

Immunoscore T-cell infiltrate [HC: 1. CD8 2. CD45R0O Tumor
Therapeutic

Conventional Therapies

Chemotherapy Immunogenic Cell Death  IHC: 1. phosphorylated elF2a 2. nuclear HMGB1 (late apoptosis-related ~ Tumor
marker) 3. LC3-B (autophagosome-related marker) 4. Mx1 and TLR3
(IFN signature) 5. CD8/Foxp3 or CD8/CD68 ratios

Gene expression analyses: 1. Cxcl10 2. IFNb 3. TLR3 Tumor
Radiation therapy Tumor immunogenicity Gene expression analysis: 1. Immunologic constant region (ICR) Tumor
Radiation induced T and HC: 1. MICA Tumor
NK activation
ELISPOT: 1. sMICA 2. anti-sMICA antibodies Peripheral Blood -
Serum
Memory T cell response T cell receptor (TCR) repertoire analysis PBMCs

[TAs - Passive
Cellular Therapy

Adoptive T and NK cells  Quantification of adoptive  Flow cytometry—based or PCR-based assessment of unique label PBMCs
cell population in adoptive cell population

Chimeric AntigenReceptor Phenotype of adoptive cell Flow cytometry based or PCR based assessment of phenotype of PBMCs
(CAR) T cells population adoptive cell population (see Tables 3 and 4; activation and

inhibitory markers including ICOS, 4-1BB, PD-1, PD-L1, OX-40, LAG-3,

GITR, VISTA, LIGHT)

Function of adoptive cell  Flow cytometry based (perforin, granzyme, intracellular cytokine PBMCs
population expression including IFN-y), ELISPOT, in-vitro cytotoxicity (ie chromium

release) or PCR based assessment of phenotype of adoptive cell

population after antigen-specific (preferred, ie autologous tumor cells

or tumor peptide pulsed T2 cells) or nonspecific stimulation (ie CD3/

CD28, PMA, or ionomycin)

Toxicity Comprehensive cytokine assessment, CRP Peripheral Blood -
Serum or plasma

ITAs - Active & Specific
Monoclonal Antibodies

Tumor-targeting Target antigen expression  IHC, multicolor IF, and/or in-situ gene expression of target Tumor (primary,
in tumor antigen of mAb on tumor (CD20, HER2, EGFR) metastatic and
circulating disease)

FcR polymorphism FcR genotype (FcgRIIIA, FcgRIIA) Peripheral blood -
Mononuclear cells
(genomic DNA)

Phenotype and function of T cell receptor (TCR) repertoire analysis Flow cytometry based or PCR~ PBMCs
immune (T and NK cell) based assessment of phenotype of T and NK cells (see Tables 3 and 4)
response and flow cytometry based (perforin, granzyme, intracellular cytokine

expression including IFN-y), ELISPOT, in-vitro cytotoxicity (ie chromium

release) or PCR based assessment of phenotype T and NK cells after

antigen-specific (preferred, ie autologous tumor cells or tumor peptide

pulsed T2 cells) or nonspecific stimulation (ie CD3/CD28, PMA, or

jonomycin)
Systemic cytokine Comprehensive cytokine assessment (IL-6, IFN-y, IL-10) and serologic  Peripheral Blood -
response assessment (sIL-2Ra, MCP) Serum or plasma
Immune-targeting, Target expression in tumor  IHC, multicolor IF, and/or in-situ gene expression of target on tumor ~ Tumor
including checkpoint microenvironment and stroma (CTLA-4, PD-1, PD-L1, OX-40, 4-1BB, LAG-3, GITR, CD40)

inhibitors

Tumor infiltrating immune  IHC: 1. Quantity and phenotype of tumor-infiltrating lymphocytes ~ Tumor
response (TILs) 2. CD8 effector: CD4 regulatory T cell ratio

Memory T cell response T cell receptor (TCR) repertoire analysis PBMCs
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Table 2 Immunodynamic endpoint assessment (Continued)

Clinical response CRP, LDH, WBC, ALC, MDSCs Peripheral Blood -
Serum or plasma
Toxicity Comprehensive cytokine assessment Peripheral Blood -
Serum or plasma
Vaccines
In-situ VaccinesCell-based  Target antigen expression  IHC, multicolor IF, and/or in-situ gene expression of target vaccination ~ Tumor
Vaccines in tumor antigen on tumor (gp100, MART, Mucin)
Dendritic Cell-based T cell response IHC, multicolor IF (pre/post assessment of ratio of Treg to Teffectors Tumor
Vaccines Non—cell-based  postvaccination in tumor  and CD1a, CD8, CD9%4; CD207 and HLA-DR), and/or in-situ gene
Vaccines expression of intratumoral T cell population
Quantification of T cell T cell receptor (TCR) repertoire analysis Flow cytometry based or ~ PBMCs)
response PCR based assessment of tumor-specific T cells (dimer, tetramer,
dextramer)
Phenotype of T cell T cell receptor (TCR) repertoire analysis Flow cytometry based or PCR~ PBMCs)
response based assessment of phenotype of tumor-specific T cells (see Table 3)
Function of T cell response  Flow cytometry based (perforin, granzyme, intracellular cytokine PBMCs

expression including IFN-y), ELISPOT, in-vitro cytotoxicity (ie chromium
release) or PCR based assessment of phenotype of tumor-specific T
cells after antigen-specific (preferred, ie autologous tumor cells or
tumor peptide pulsed T2 cells) or nonspecific stimulation (ie CD3/
CD28, PMA, or ionomycin)

Humoral response ELISPOT tumor/antigen antibody response Comprehensive Peripheral Blood -
Systemic cytokine cytokine assessment (GM-CSF) Serum or plasma
response
[Targeted AgentsActive &
Nonspecific
Cytokines Intratumoral immune IHC, multicolor IF, and/or in-situ gene expression of intratumoral Tumor
response lymphocyte (T, B, and NK cell) population
Phenotype and function of T cell receptor (TCR) repertoire analysis Flow cytometry based or PCR~ PBMCs
immune(T and NK) based assessment of phenotype of T and NK cells (see Tables 3 and 4)
response and flow cytometry based (perforin, granzyme, intracellular cytokine
expression including IFN-y), ELISPOT, in-vitro cytotoxicity (ie chromium
release) or PCR based assessment of phenotype T and NK cells after
antigen-specific (preferred, ie autologous tumor cells or tumor peptide
pulsed T2 cells) or nonspecific stimulation (ie CD3/CD28, PMA, or
jonomycin)
Systemic serologic and Comprehensive cytokine assessment (IL-6, IFNy, IL-10) and Peripheral Blood -
cytokine response serologic assessment (sIL-2Ra, MCP) Serum or plasma
IDO Inhibitors IDO expression in tumor IHC and/or in-situ gene expression of IDO1 Tumor
Inhibition of IDO1 based Kyn/Trp level and IHC of DC maturation status (CD80, CD86) Tumor & Peripheral
on Kyn/Trp ratio Blood - Serum or
plasma
Phenotype and function of T cell receptor (TCR) repertoire analysis Flow cytometry based or ~ PBMCs
immune (T and NK cell) PCR based assessment of phenotype of T and NK cells (see
response Tables 3 and 4) and flow cytometry based (perforin, granzyme,

intracellular cytokine expression including IFN-y), ELISPOT, in-vitro
cytotoxicity (ie chromium release) or PCR based assessment of
phenotype T and NK cells after antigen-specific (preferred, ie
autologous tumor cells or tumor peptide pulsed T2 cells) or
nonspecific stimulation (ie CD3/CD28, PMA, or ionomycin)

ALC absolute lymphocyte count, CRP C-reactive protein, DC dendritic cell, IDO indoleamine-2,3-dioxygenase; IFN-y interferon gamma, LDH lactate dehydrogenase,
MCP Monocyte Chemotactic Protein-1; MDSC myeloid-derived suppressor cells, PBMC peripheral blood mononuclear cells, sIL-2Ra, soluble IL-2 receptor-alpha, WBC
white blood cell count

combinations will be limited if the immunodynamic and after today’s standard treatment modalities. In the
properties of chemotherapy and radiation therapy are following sections we aim to bridge basic science mech-
not established. Recent studies suggest that both have anistic information from murine models and/or human
consequences on the immune response, further sup- in vitro systems with supportive evidence from patients
porting the value of evaluating tumor biopsies before enrolled in clinical trials.
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Chemotherapy

Guido Kroemer and Laurence Zitvogel

The antitumor activity of conventional cancer therapies is
dependent, at least in part, on the immune response. How-
ever not all therapies induce equivalent immune responses
in patients, as the manner of cell death induced may be si-
lent, tolerogenic, or immunogenic [11, 12]. Immunogenic
cell death (ICD) inducers including radiation therapy,
anthracyclines, and oxaliplatin, as well as unconventional
cytotoxic agents (e.g., cardiac glycosides, bortezomib, crizo-
tinib) are endowed with the capacity of stimulating premor-
tem stress responses [13—18]. ICD [19, 20] generates an
endoplasmic reticulum (ER) stress response and the activa-
tion of the autophagy machinery, both producing a series
of damage-associated molecular pattern molecules
(DAMPs) culminating in Cxcl10 release promoting the re-
cruitment of intratumoral Th1l-Tcl cells indispensable for
tumor control [21, 22].

Monitoring of ICD requires sampling of the tumor itself,
ideally, by an excisional biopsy, a core biopsy, or least pref-
erable, a fine-needle aspirate. Immunodynamic monitoring
of ICD relies on recent results indicating that the ER stress
response, autophagy, and late apoptosis can all be detected
in tumor cells at diagnosis and correlate with immune infil-
trates and eventually with patient survival. IHC detection of
phosphorylated elF2a (ER stress-response related-marker)
[23], nuclear high mobility group box 1 (HMGBI; late
apoptosis-related marker) [24], and light chain 3 beta (LC3-
B; autophagosome-related marker) [21, 25] are feasible and
reliable on FFPE, allowing determining of a relationship be-
tween CD8 and forkhead box P3 (Foxp3) or CD8 and
CD68 ratios and response to cytotoxic compounds. As our
understanding of ICD deepens, the markers that are mea-
sured both by IHC and potentially by gene expression that
best measure the postchemotherapy immune response will
be refined.

Radiation therapy

Silvia Formenti

Combining immunotherapy with radiation therapy, simi-
lar to immunogenic chemotherapy, has demonstrated
clinical activity [26]. Radiation therapy can induce ICD
in a dose-dependent manner and enhance ICD of some
chemotherapy agents when used in concurrent regimens
[26]. In metastatic cancer, combining immunotherapy
with radiation therapy to a metastatic site can convert
into systemic responders patients who have previously
failed to respond to the same immunotherapy. In such
setting, the emergence of an abscopal response (“ab-sco-
pus”, i.e., away from the target, outside the radiation
field) appears to be an unequivocal marker of immune
response [27]. The main rationale for combining tumor
radiation therapy with immunotherapy is to convert the
irradiated tumor into an in situ, individualized vaccine
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[28]. T-cell receptor (TCR) repertoire analysis may pro-
vide proof of successful vaccination with the emergence
of antigenic spread postradiation, detectable by demon-
strating the expansion of memory T cells specific to
tumor antigens that were not recognized before radi-
ation therapy [29].

The localized nature of radiation therapy offers a unique
opportunity to follow the evolution of the irradiated
tumor microenvironment by serial biopsies and to deter-
mine the relationship between radiation-induced changes
and the development of abscopal effects. For example, bi-
opsies obtained after topical imiquimod treatment of basal
cell carcinoma in a randomized, placebo-controlled trial,
identified 637 genes induced by imiquimod (a toll-like
receptor-7 agonist). Four distinct pathways associated with
imiquimod-mediated tumor rejection were identified and
led to the definition of the immunologic constant of rejec-
tion (ICR) [30]. According to the ICR hypothesis, com-
mon effector pathways suggestive of an innate immune
infiltrate are upregulated in regressing tumors. A similar
signature may develop postradiation and serve as a bio-
marker to predict which patients will generate antitumor
immune responses sufficient to achieve abscopal effects.

A second example of the immunodynamic effects of
radiation therapy builds upon the combination with
anti-CTLA-4 antibodies [26-28, 31], which requires
CD8 T-cell expression of the immune activation marker,
NKG2D [32], expressed on NK cells. In patients, block-
ade of NKG2D is mediated by soluble major histocom-
patibility complex class I-related chain A (sMICA),
which is released by some tumors and reaches high
levels in the serum [33]. Therefore, sMICA may be the
first biomarker of combination radiation and immuno-
therapy [34], and as radiation therapy upregulates MICA
on the surface of tumor cells, serial biopsies of tumors
before and after radiation therapy and ipilimumab are
required to assess this immunodynamic endpoint with
increased expression of MICA [35].

Therapeutic, immune-targeted agents: passive
immunotherapy
Cellular therapy, adoptive T cells

Carl June, Michael Kalos, and Jan ] Melenhorst
Recent technological advances have facilitated the appli-
cation of synthetic biology to molecularly engineer T
lymphocytes by redirecting their specificity to antigens
expressed by tumor cells [36]. With this approach, T
cells obtained from patients can be manipulated to
recognize tumor cells after engineered expression of
either CAR or tumor antigen-specific TCR [37]. In both
cases, adoptive T cells may bypass immunological toler-
ance [38], leading to potent and durable antitumor im-
munity [39-41]. Considerable effort in the field is now
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focused on trying to identify immunodynamic correlates
of bioactivity and efficacy.

T cell therapy—based measures of immunodynamics
are designed to examine and quantify (1) the presence,
functionality, and phenotype of infused and persisting T
cells (Table 3), and (2) the impact of the infused cells on
patient immunobiology and the tumor microenviron-
ment [42]. Importantly, because the therapeutic agents
are patient-specific biologic entities, it is essential that bio-
marker studies for engineered T cell-based approaches
also interrogate phenotypic and functional properties of
the product, as well as the potential for these cells to ex-
pand and differentiate in vivo and manifest potent and
long-term antitumor activity. Approaches to study the
identity and persistence of T cells include quantitative
polymerase chain reaction (PCR) and flow cytometry. Ap-
proaches to study the functionality and phenotype of T
cells are often based on flow-cytometric methods, with re-
cent advances in the available assays allowing for simul-
taneous and sensitive evaluation of multiple markers.
Approaches to study the effect of T-cell transfer on patient
immunobiology, by necessity, are broader and typically in-
volve evaluating the modulation of the milieu of soluble
factors (e.g., cytokines, chemokines, growth factors) with
immune-regulatory and -effector biologic functions, as
well as high-throughput transcriptomic analyses of tumor
and T cells obtained from patients.

Immunodynamics assays of T-cell therapy to date illus-
trate a correlation of clinical response with robust in vivo
expansion of T cells, intratumoral accumulation [43], and
long-term persistence of engineered cells, as well as strong
and transient elevation in systemic levels of proinflamma-
tory cytokines, notably systemic interleukin 6 (IL-6) and
C-reactive protein (CRP), coincident with the peak kinet-
ics of in vivo T-cell expansion [40, 41], as well as cytokine-
release—associated toxicity [44].

Cellular therapy, adoptive NK cells

Don Benson, Lewis Lanier, Jeffrey Miller, and Eric Vivier

NK cells are a population of innate lymphoid cells
(ILC) that provide host defense against viruses, bac-
teria, parasites, and fungus, as well as immune surveil-
lance for cancer. In the peripheral blood of healthy
individuals, NK cells comprise between 10-20 % of the
lymphocyte population [45]. In humans, NK cells are
identified as CD3", CD56" lymphocytes [45]. The NK-
cell population found in peripheral blood includes im-
mature NK cells, identified as CD3", CD56""¢", CD16’
lymphocytes, and mature NK cells, which are CD3’,
CD56", CD16". CD56 and CD16 can also be expressed
on subsets of myeloid cells in peripheral blood, which
can result in the misidentification of the CD3", CD56’,
CD16" NK cell. A more definitive identification of this
NK-cell subset can be obtained by costaining for CD7
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(CD37, CD567, CD7", CD16"), which is expressed on all
NK cells, but not myeloid cells. NK cells express an ex-
tensive repertoire of activating and inhibitory receptors,
including KIR2DL, KIR3DL, and CD94-NKG2A recep-
tors, which recognize human leukocyte antigen (HLA)
class I molecules as ligands and suppress NK-cell acti-
vation. Activating or coactivating receptors on NK cells
include CD16, a low-affinity receptor for immuno-
globulin G (IgG) that is responsible for antibody-
dependent cellular cytotoxicity (ADCC); the NKG2D
receptor that recognizes stress-induced ligands MICA,
major histocompatibility complex class I-related chain
B (MICB), and the UL1-6 binding proteins (ULBP1-6,
CD226, DNAX accessory molecule-1; DNAM-1), which
recognizes CD112 and CD155; CD244 (2B4), which
recognizes CD48, and others. NK cells mediate immune
protection by release of perforin, granzymes, cytokines,
and chemokines, in particular IFN-y. Upon activation,
NK cells can produce abundant amounts of tumor ne-
crosis factor alpha (TNF-a), granulocyte-macrophage
colony-stimulating factor (GM-CSF), IL-10, and che-
mokine (C-C motif) ligands 3 and 4 (CCL3, CCL4) [46,
47].

Based on the premise that autologous NK cell-based
therapies are limited by self-tolerance mediated by in-
hibitory killer-cell immunoglobulin-like receptor (KIR)
recognizing residual self—class I major histocompatibility
complex (MHC) molecules on tumors, adoptive transfer
of haploidentical NK cells with exogenous IL-2 has been
used to treat patients with acute myeloid leukemia
(AML), non-Hogdkin lymphoma, and ovarian cancer
[48-50]. IL-15 administration may be optimal for stimu-
lating the selective expansion of NK cells and not Tregs.
Bispecific killer engagers (BIKEs), which can impart
antigen-specific selectivity to NK cells as one created
from single-chain Fv specific for CD16 and CD33
(expressed on AML targets) can trigger CD16 on NK
cells to kill primary AML and induce cytokine produc-
tion [51, 52]. The standardization of methods to define
and measure NK-cell persistence, expansion, and func-
tion after adoptive therapy will facilitate the comparison
of different NK-cell products and treatment platforms.

Monitoring the immunodynamics of the NK-cell com-
partment should include the evaluation of both immu-
nophenotype and function of tumor-infiltrating NK cells
(Table 4). Quantifying NK-cell subsets by multiparame-
ter flow cytometry or CyTOF can be useful to under-
stand the immunophenotype of CD56"¢"* and CD56%™
NK cells, and predict their function based on the expres-
sion of CD107a (indicating NK-cell degranulation) or
intracellular staining for cytokines, usually IFN-y. Many
studies support the notion that NK cells may be integral
to the immune response against tumors, justifying par-
ticular attention to understand the diversity of this
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Table 3 Important human T cell receptors in cancer
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Table 4 Important human NK cell receptors in cancer

immunotherapy immunotherapy
Receptor family Cluster of Ligands Receptor family Cluster of Ligand
Designation Designation
Activating Activating receptors
receptors FoyRIlla (CD16) D16 Immunoglobulin G
Iocni‘glf;eptor b3 MHCpeptide DNAM-1 D226 Nectin-2 (CD112), PVR
(CD155)
Correceptors NKG2D D314 MICA, MICB, ULBPs
b2 2 D38 NKp46 CD335 Viral HA, HN
D4 D4 MHC class Il NKp30 CD337 B7-H6
?
05 05 b72) 2B4 CD244 D48
CD8 CD8 MHC class | s D319 s
o7 o7 cb7o NKG2C CD158c HLA-E
Activating )
receptors KIR2DS1/2/3 CD158h)j HLA-C2
D28 D28 B7.1 (CDS80), B7.2 (CD86), B7H2 ~ NKP80 n/a AlCL
(CD275) Inhibitory receptors
OX40 D134 OX40L (CD252) KIR2DLs CD158a,b HLA-C1,C2
4-1-BB D137 CD137L KIR3DLs CD158,efk HLA-AB
CD4oL CD154 CD40 NKG2A CD15%a HLA-E
DNAM-1 CD226 PVR (CD155), PVR2 (CD112) LIR-1 CD85j HLA-AB,C
TACI D267 BAFF (CD257), APRIL (CD256) (allele-specific HLA-B and
BCMA CD269 BAFF (CD257), APRIL (CD256) HLAC)
ICOS D278 B7H2 (CD275) Adhesion/Trafficking
receptors
GITR cb3s7 GITRL O N-CAM (D56 CD56, FGFR1
BAFFR a BAFF ((D257) L-selectin CD62L GlyCAM-1, CD34, PSGL-1
Inhibitory )
receptors PEN-5/PSGL-1 CD162 Selectins
B7.1 D80 PDL-1 (CD274), CD28, CTLA4 LFA-T bria ICAMs
(CD152) LFA-2 D2 CD58
CTLA4 CD152 B7.1(CD80), B7.2(CD86), B7H2 LFA-3 CD58 cD2
(CD275) o )
aMpB2 CD11b fibrinogen, C3bi, ICAM-4
CD160 D160 HVEM (-)
CD200R CD200R CD200
LAG-3 D223 MHC class II, other? Therapeutic, immune-targeted agents: active immuno-
284 D244 D48 therapy - specific
LIGHT D258 HVEM () Monoclonal antibodies, tumor-targeting
BILA cb272 HVEM O Ron Levy Tumor-directed antibodies are thought to exert
PDL-1 D274 PD-1 (CD279) their antitumor activity through various mechanisms,
PD-1 (D279 PD-L1 (CD274), PDL-2 (CD273) including direct Kkilling (signalling-induced apoptosis),
TIM-3 n/a Galectin-9 (), other? complement-dependent cytotoxicity (CDC), and ADCC.
TIGT n/a PVR (CD155), PVR2 (CD112) To SeleCt the Optlmal immunodynamic monitoring, an
VISTA (PD-TH) o/ B7HA (), other? awe}reness‘of thé 1nt‘r1n51c. propgrtles of the t‘he‘rapel‘ltlc
antibody, including its biochemical characteristics (iso-
B7H4 n/a Unknown s .
type, degree of humanization, mutations, and glycosyla-
KLRG-1 n/a E-Cadherin (CD324)

immune subset. The ideal approach to test the function-
ality of NK cells is to use autologous tumor to determine
ex vivo anti-tumor activity.

tion/fucosylation of the Fc fragment) as well as its in vitro
mechanisms of action (apoptosis, CDC, ADCC), is re-
quired. In patients, studies have demonstrated that the
therapeutic efficacy of antitumor antibodies correlated
with Fc receptor (FcR) polymorphism in various cancers
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including lymphoma [53-56], breast cancer [57, 58], and
colorectal cancer [59]. Patients harboring FcRs with high
affinity for IgG have a better outcome after antibody ther-
apy due to a greater capacity to mediate ADCC. There-
fore, FcR polymorphisms should be characterized (at least
FcgRIIla and FcgRIla) in patients receiving antitumor anti-
bodies. Tumor-directed antibodies can also generate an
adaptive immune response, as illustrated by the presence
of antitumor T cells in cancer patients after antibody ther-
apy [60-62]. Monitoring the adaptive immune response
may be performed using tetramer analysis from the blood
and/or directly from the tumor.

Monoclonal antibodies, immune-targeting (checkpoint
inhibitors)

Michael Kalos, Ignacio Melero, Antoni Ribas, Paul C Tumeh,
and Jedd Wolchok

The success of therapeutics that block the PD-1/PD-L1
inhibitory axis has ushered in a new era in oncology,
with these agents likely to become the backbone of can-
cer therapy in a wide range of cancer types. The immune
checkpoints, CTLA-4 and PD-1, are cell-surface recep-
tors that upon binding to their ligands, trigger down-
stream signaling pathways that serve to inhibit T-cell
activity [63, 64]. Therapies that target PD-1 or PD-L1
have shown significant clinical activity in patients with
advanced melanoma [65-68], non—small cell lung cancer
[69-72], renal cell cancer [73-75], Hodgkin lymphoma
[76], head and neck cancers [77], and metastatic bladder
cancer [78, 79].

Leading this therapeutic class are anti-PD-1 agents
pembrolizumab (Keytruda, Merck & Co), and nivolumab
(Opdivo, Bristol-Meyers Squibb Co), which the FDA
approved for unresectable or metastatic melanoma in
September and December 2014, respectively. These
build on a previously approved immune-checkpoint in-
hibitor, anti-CTLA4 (Yervoy, Bristol-Meyers Squibb Co)
in 2011 for the same indication. Based on these findings
and the expectation that immunotherapy will impact all
fields of oncology, Science magazine selected cancer im-
munotherapy as the breakthrough of 2013 [80].

Critical to understanding how these therapeutic anti-
bodies promote tumor rejection is both the identification of
cell types that are altered during blockade and the subse-
quent mechanistic analysis of how these cell types promote
or inhibit tumor regression [81]. Recent investigatory ef-
forts have shown that these antibodies are more clinically
effective when preexisting immunity is present in tumors;
that is, when tumors have already been identified by the
immune system, functionally as a result of local levels of
IFN-y leading to the expression of PD-L1 in the tumor and
stroma [75, 82]. Hence, approaches that determine the
density, phenotype, and location of immune cell types
within the tumor microenvironment and respective PD-L1
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expression levels represent one key approach to under-
standing which cell types and their discrete microenviron-
ments promote or inhibit tumor rejection.

Platforms based on this approach include slide-
based, quantitative IHC [5, 82-84] and quantitative
multiplexed IHC [85, 86] on tumor samples, as well as
assays that reveal in situ gene expression, including
transcriptomic profiles on microarrays performed
using laser captured microdissected tissue [87, 88]. As
the target of interest, PD-L1 may be expressed in the
tumor, the stroma, or both, and hence, spatiotemporal
information is required, including the invasive tumor
margin, stromal components, tumor center, and peri-
vascular niches. As a consequence, optimization in
small samples (such as fine-needle aspirates and small
core biopsies) represent significant challenges with
this approach [65, 66]. PD-1 expression shows super-
ior AUC values and predictive value when compared
to single agent PD-L1. Furthermore, the use of differ-
ent anti-PD1 and anti-PDL1 primary antibodies and
the vast number of detection systems available and
used by different labs have made it difficult to
harmonize IHC read-outs The cellular sources of PD-
1 and PD-L1 must be defined and then systemically
investigated according to clinical response. Addition-
ally, multiplexed IHC approaches can be used generate
to multiparametric, spatially resolved information and
capture spatiotemporal interdependencies that are
clinically relevant. the presence of constitutive PD-L1
expressing cancer cells without TILs present in the
tumor correlates with non-responsiveness to anti-PD1
therapy. The presence of CD68"PD-L1" cells at the in-
vasive margin is significantly associated with the pres-
ence of interfacing or neighbouring CD8" and PD-1"
cells. Determining the relative presence of PD-1 on
CD8" and CDS8 cells in tumors at baseline remains
largely unknown but potentially very important in
terms of predicting response. Adding another dimen-
sion to understanding the preexisting immunity in the
tumor microenvironment is the application of TCR
next-generation sequencing based on the unambigu-
ously identifiable TCR-f CDR3 region using genomic
DNA from tissue samples that can be used to quantify
the diversity and repertoire of the T-cell infiltrate in
tumor tissues [89].

In serum, absolute lymphocyte count, baseline eosinophil
count, CRP, lactate dehydrogenase, and white blood cell
count have been shown to correlate with improved survival
in patients receiving ipilimumab (anti-CTLA4) [90-93]. On-
going studies are investigating the correlative relationships of
serum markers with treatment outcome to therapies that
block the PD-1/PD-L1 axis with, thus far, the tumor micro-
environment expression of PD-L1 demonstrating the tightest
relationship with response.



Kohrt et al. Journal for InmunoTherapy of Cancer (2016) 4:15

Vaccines, In Situ Vaccines

Josh Brody and Aurelien Marabelle

The in situ vaccination (ISV) strategy consists of intratu-
moral administration of immunostimulatory products to
stimulate antitumor immunity. As with other cancer vac-
cines, ISV presents tumor-associated antigens in an im-
munogenic context by using the tumor itself as an antigen
source. ISV is actually the first cancer immunotherapy
paradigm ever tested, as it has been used in clinical prac-
tice since the end of the XIX™ century in Europe and in
the United States [94]. In the modern era, ISV can be per-
formed with many types of immunostimulatory products,
including clinical-grade, live, infectious pathogens such as
Bacillus Calmette-Guerin in the treatment of cutaneous
metastatic melanoma [95] as well as its peritumoral use in
superficial bladder cancer’’. Toll-like receptor 7 (TLR7)
and TLRY agonists mimicking bacterial nucleic acid have
demonstrated their ability to generate antitumoral immun-
ity upon direct administration to vulvar intraepithelial neo-
plasia [96] and low-grade lymphomas, respectively [97, 98].
ISV using vaccinia viruses genetically modified for prefer-
ential infection of cancer cells and expressing GM-CSF
have the ability to induce tumor responses and survival
benefit in patients with hepatocellular carcinoma [99], and
modified herpes virus expressing GM-CSF have generated
antitumor immune responses and prolonged disease-free
survival in patients with melanoma [100]. Importantly, be-
sides their local, immune-mediated, antitumoral activity,
these immunostimulatory products also have the ability to
generate a systemic antitumor immune response against
distant, noninjected, tumor sites [95, 97, 99].

Vaccines, cell-based vaccines (dendritic cell-based
vaccines)

Nina Bhardwaj, Nora Disis, and Karolina Palucka

There are common immunodynamic elements to most
agents studied in cancer vaccines, including dendritic
cell (DC)-based approaches. DCs can be exploited for
vaccination against cancer through various means in-
cluding (1) nontargeted peptide or protein and nucleic
acids—based vaccines captured by DCs in vivo, (2) vac-
cines composed of antigens directly coupled to anti-DC
antibodies, or (3) vaccines composed of ex vivo—gener-
ated DCs that are loaded with antigens. Immunody-
namic investigation of cancer vaccines has demonstrated
that the absolute number of tumor-specific T cells in-
fused or generated with immunization is critical in
obtaining a beneficial clinical outcome [101, 102]. Fur-
ther, recent studies suggest that functional phenotypic
changes in immune system cells, such as the induction
of polyfunctional T cells, represent a desired endpoint
[103]. Flow cytometric—based methodologies are highly
quantitative, are reproducible, and can be standardized,
and through the use of multiple intracellular and
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extracellular markers can provide detailed information
about both the phenotype and the activation status of
the adaptive immune response elicited with immunomo-
dulation [81]. One of the most commonly used quantita-
tive assays in immune-oncology today is enzyme-linked
immunospot (ELISPOT) [104]. ELISPOT can enumerate
cellular immunity, is possible to standardize, but pro-
vides limited functional information [105]. ELISPOT
results are limited by lack of reproducibility and require-
ment for knowledge of antigens recognized or the avail-
ability of autologous tumor or tumor lysates with
significant clinical material for analysis.

One newer method that may useful is the detailed ana-
lysis of the T-cell repertoire via CDR3 spectratyping
strategies or deep sequencing with next generation se-
quencing technology to assess T-cell diversity [106]. The
benefit of repertoire analysis is that the method can be
quantitative and does not require an a priori knowledge
of a specific antigen or depend on T-cell stimulation ex
vivo. Repertoire analysis can be accomplished with less
than 1 mL of whole blood. While the analysis of the T-
cell repertoire is not directly functional, evolution from
polyclonality to monoclonality of specific TCRs would
suggest an evolving immune response with treatment
[101]. Moreover, the development of multiple monoclo-
nal populations could indicate the development of epi-
tope spreading, which has been shown by multiple
groups to be predictive of beneficial clinical outcome
after cancer vaccination [107]. Unlike flow cytometry or
ELISPOT, TCR spectratyping can be applied to direct
analysis of tumors as well.

Site of monitoring the immune response postvaccina-
tion remains a critical consideration. One of the key
locations to examine immune-cancer interactions is the
tumor-draining lymph node (TDLN). It has been dem-
onstrated that significant changes in immune-cell pop-
ulations arise within TDLNs in breast cancer,
specifically in CD4" T cells and CDla" DCs, and such
changes strongly correlated with clinical outcome [108,
109]. Data from the site of vaccination supports a direct
correlation with antitumor activity and tumor-specific
T-cell responses [108]. Delayed-type hypersensitivity
(DTH) skin tests have been used to assess cell-
mediated immunity in vivo. During a DTH, an antigen
(Ag) is introduced intradermally, and induration and
erythema at 48 to 72 h postinjection indicate a positive
reaction. Lack of a DTH response to a recall Ag is often
regarded as an evidence of anergy.

Vaccines, Non-cell-based vaccines

George Peoples and Jeff Weber

Immunodynamic monitoring of peptide-based vaccines
provides an advantage to this vaccine strategy. Given that
these peptide vaccines stimulate specific T-cell populations
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with TCRs specific for the peptide-HLA complexes, then
clonal expansion or phenotypic assays may be employed.
These assays enumerate vaccine-specific T cells by flow cy-
tometry—based testing using peptide-specific dimer, tetra-
mer, or dextramer reagents. Of course, these clonally
expanded T cells must also be shown to be functional in
cytokine-release or cytotoxicity-measuring assays. Add-
itionally, peptide-based vaccines lend themselves well to
DTH monitoring, as these peptides alone are biologically
inactive and will only produce a DTH reaction if a peptide-
specific cellular immune response has been induced.
Immunodynamic studies have demonstrated that vaccine-
elicited T cells are heterogeneous with respect to tumor-
killing capacity, and only a small subset of vaccine-elicited
T cells are efficient at tumor-cell lysis [110, 111]. This is
largely due to differences in functional avidity (also known
as recognition efficiency): peptide-specific T cells indistin-
guishable by tetramer staining may differ by up to 1000-
fold in peptide requirement for target lysis [111]. Only
high-avidity cytotoxic T lymphocytes (CTLs), which may
represent 10 % or less of a vaccine-elicited response, could
lyse tumor targets [110, 111]. This can be assayed via a
flow-cytometric method for rapid assessment of recognition
efficiency and functional capacity of antigen-specific T-cell
responses [112].

Therapeutic, immune-targeted agents: active immuno-
therapy - nonspecific
Cytokines

Kim Lyerly and Paul Sondel Cytokine-based approaches
in cancer immunotherapy have been tested as single agents
and combined with other agents including fusion proteins
linking cytokines to other therapeutics [113], such as
monoclonal antibodies (immunocytokines) [90, 114]. Cyto-
kines may be delivered as proteins or as more innovative
strategies such as DNA, enabling in vivo production of the
cytokine. IL-2 is the most well-investigated cytokine,
though despite extensive investigations and approximately
20 years of post-approval testing, the exact mechanism of
its antitumor benefit remains controversial. Thus efforts to
analyze in vivo immunodynamics are needed to evaluate
known, desired cellular and humoral responses as well as
potential antitumor effects [91-95].

Serological parameters after cytokine therapy include
downstream cytokines induced by IL-2 that might either
be desired or unwanted (ie, IL-6, IFN-y, IL-10, MCP,
etc.), or molecules known to be released by IL-2 in re-
sponse to activation (such as soluble IL-2 receptor-
alpha; Table 5) [115]. More complex functional testing
includes the “gold standard” evaluation of the patients’
circulating immune cells for their ability to actually
recognize and destroy autologous tumor cells or a cell
line derived from autologous tumor [96]. Site of

Page 11 of 16

sampling is equally critical, due to the variable systemic
effects of cytokine treatment. The parameters measured
at the tumor site should include specific tumor and im-
mune changes before and after treatment [97-99, 116].
Noninvasive imaging strategies are just beginning to be
incorporated into these monitoring strategies, but could
be of future promise [98]. While improved clinical out-
comes remain the ultimate goal, immunodynamic as-
sessment will contribute to maximizing the potential of
this class of therapeutics, while minimizing the toxicities,
and improving the efficiency of finding those strategies
that are most effective for patients [117].

Indoleamine-2,3-dioxygenase inhibitors

Kunle Odunsi

The immunoregulatory enzyme IDO catalyzes the rate-
limiting step of tryptophan (Trp) degradation along the
kynurenine (Kyn) pathway [101]. Both the reduction in
local tryptophan concentration and the production of
tryptophan metabolites contribute to the immunosuppres-
sive effects of IDO, resulting in multiple negative effects
on T lymphocytes notably on proliferation, function, and
survival. Tryptophan deprivation also biases the differenti-
ation of naive mouse and human CD4" T cells toward
Foxp3-expressing regulatory T-like cells. Moreover, cer-
tain tryptophan metabolites activate the aryl hydrocarbon
receptor, which has been linked to Treg differentiation
[102, 103]. IDO is expressed by activated immune and in-
flammatory cells in TDLNs and in several human malig-
nancies [118]. IDO1 has been observed to be chronically
activated in many cancers, and IDO expression and

Table 5 Important human cytokine and chemokine receptors in
cancer immunotherapy

Receptor family Cluster of Ligands
Designation

Cytokine/Chemokine

receptors

IL-1R CD121a IL-18

IL-2Ra D25 IL-2 (high affinity)

IL-2/15RBy CD122/CD132 IL-2/15 (intermediate
affinity)

IL-7Ra CcD127 IL-7

c-KIT D117 stem cell factor

CCR2 CD192 MCP-1 (CCL2)

CCR5 CD195 MIP-1q, RANTES, MCP-3,
MIP5

CCR7 CD197 CCL19,CCL21

CXCR1 CD128 IL-8

CXCR3 CD183 CXCL9-11

CXCR4 D184 CXCL2

CX3CR1 n/a Fractalkine
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enzymatic activity correlates strongly with extent of dis-
ease and is an independent prognostic factor for reduced
overall survival in several malignancies [104, 105].

To assess the impact of IDO inhibition in human clinical
trials, a number of correlative immunodynamic endpoints
are important to develop [102]. The first is to determine
the extent to which the IDO inhibitor alters the Kyn/Trp
ratios in the serum and tumor microenvironment of treated
patients. The second is to determine immunological end-
points of treatment. Pretreatment and post-treatment biop-
sies should be analyzed for lymphocyte infiltration by IHC
and flow cytometric—based immunophenotyping assays.
For THC, the most critical analyses include IDO1 expres-
sion, changes in number, distribution, and phenotype of
CD8" and CD4" T cells infiltrating tumor, and changes in
patterns of CD4" FoxP3" Treg infiltration. Flow cytometric
analyses for the effects of treatment on peripheral blood,
tumor lymphocyte numbers, and phenotype (i.e., CD8" and
CD4" naive/effector/central memory subsets, Tregs, and
exhaustion markers). Finally, changes in myeloid-derived,
suppressor-cell populations can also be assessed by flow cy-
tometry and may be an important endpoint of cytokine
treatment [106]. There is currently no widely accepted con-
sensus on how to phenotypically and functionally define
this cell population. This represents an area of intense
investigation.

Harmonization and standardization

Michael Kalos and Jeff Weber

The past few years have seen a profound conceptual
shift in how immunodynamic studies are designed and
incorporated into clinical trial design, with an increased
appreciation for the fundamental contribution of well-
executed correlative immune endpoints to the outcome
and interpretation of clinical trials.

Informative immunodynamic studies are defined by ra-
tionally driven breadth, emphasis on quality, and sample
collection schemes based on an appreciation for product-
specific biology [119]. With regard to breadth, the major
paradigm shift has been an appreciation that, in the context
of evaluating agents with pleiotropic and complex biology,
studies driven principally or exclusively by the testing of
specific hypotheses are unlikely to generate ultimately
meaningful and mechanistic data sets. This realization, to-
gether with the parallel development of molecular, bio-
chemical, and flow-based platforms that capture large
amounts of broad-based immune data, has precipitated a
revolution in data generation, the fruits of which are just
beginning to become apparent. With regard to quality, the
major paradigm shift has been a fundamental acceptance
that the establishment of objective quality standards is an
essential prerequisite for all but the most preliminary ex-
perimentation. Beyond the formal accreditation processes
that are in place for clinical laboratories, the issue of quality
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in correlative studies has been addressed most robustly
through consortium or multi-institutional efforts. Such ef-
fort has involved either approaches to standardize assays
[120, 121] or efforts to harmonize assays across laboratories
by defining and ultimately implementing critical platform-
and assay-specific variables important for quality [122, 123].
An important parallel effort has involved the development
of robust approaches to allow for the collection and analysis
of the generated data sets, perhaps best exemplified by the
MIBBI (Minimum Information for Biological and Biomed-
ical Investigations), which provides critical conceptual and
methodological infrastructure support to this end [124].
With regard to sampling schemes, the major paradigm
shifts have involved an appreciation for the temporal kinet-
ics and often transient nature of biomarker responses that
necessitate robust and thought-informed sampling, the de-
velopment of new multiplex assay platforms with minimal
sample requirements, as well as the relevance for the need
to be able to interrogate relevant and often difficult-to-
access biologic specimens such as tumor tissue, lymphatics,
and sites of adverse events.

Conclusion

As the field of immunodynamics continues to mature, ap-
plication of novel and multidimensional platforms and
sensitive assays will enhance the ability to interrogate at a
single-cell level and with unprecedented depth to deter-
mine the phenotypic and functional attributes of immune
cells, providing investigators the possibility of understand-
ing the impact of treatment at the individual-cell level and
identify correlates of bioactivity, efficacy, and toxicity.
Despite immunotherapy’s current progress toward adop-
tion as a standard of cancer treatment, the majority of
cancer is insensitive to or becomes resistant to immune
therapy. Only through the adoption of immunodynamic
endpoints that are clinically meaningful will immunother-
apeutic mechanisms be understood to allow the selection
of the most effective front-line agents or combinations, or
second-line immune agents if and when immunotherapy
fails.
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