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Abstract Many experiments affirm the notion that augmenta-
tion of neurotrophic factors (NTFs) activity, especially brain-
derived neurotrophic factors and glial cell-derived neurotrophic
factors, could prevent or halt the progress of neurodegeneration
in Parkinson’s disease (PD). In this study, we investigated the
therapeutic accomplishment of geraniol (GE 100 mg/kg) on 1-
methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced
mice model of PD. Current investigation proved that pretreat-
ment with GE ameliorates the MPTP-induced alterations in
behavioral, biochemical, immunohistochemical, and immuno-
blotting manifestations in mice. Systematically, the loss of
dopaminergic neurons and reduced NTFs mRNA expressions
induced by MPTP was ameliorated to a significant extent by
pretreatment with GE. We found that GE confers a potent
neuroprotective agent against MPTP-induced dopaminergic
denervation and may become a potential therapeutic agent for
PD and/or its progression.
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GAPDH  Glyceraldehyde-3-phosphate dehydrogenase
Introduction

Parkinson’s disease (PD) is one of the most studied neurological
diseases (Wu and Frucht 2005) characterized by a progressive
degeneration of dopaminergic neurons in substantia nigra (SN)
(Collier et al. 2011). The loss of SN neurons leads to dopamine
(DA) depletion in the striatum (ST), which results in motor
impairments. Nowadays, many animal models of PD are
obtainable (Hirsch 2007) by 1-methyl-4-phenyl-1, 2, 3,
6-tetrahydropyrindine (MPTP) and 6-hydroxydopamine
(Schober 2004; Schwarting and Huston 1996). The MPTP
model constitutes the best characterized toxin paradigm for
PD, faithfully replicating most of its clinical and pathological
hallmarks (Eberhardt and Schulz 2003). Since it is a lipophilic
molecule that crosses the blood—brain barrier and converted to
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1-methyl-4-phenylpyridinium ion (MPP"), which is taken up
by dopaminergic terminals and cell bodies by the dopamine
transporter (DAT) (Smeyne and Jackson-Lewis 2005). It ac-
cumulates in mitochondria resulting in oxidative stress and
cell loss (Nicholas 2007; Przedborski et al. 2004; Wu et al.
2002).

Microglia are the major resident immune cells in the brain
providing innate immunity; however, astrocytes and oligo-
dendrocytes are also involved in the neuroinflammatory
response (Tansey et al. 2007). It maintains the homeostasis
of the brain through the production of various NTFs. NTFs,
such as brain-derived neurotrophic factor (BDNF), insulin-
like growth factor 1, glial cell-derived neurotrophic factor
(GDNF), and neurotrophin nerve growth factor that are
important for the survival, maintenance, and regeneration
of specific neuronal populations in the adult brain (Mogi
et al. 1999).

The neuroprotective or neurorescue activities of these NTFs
have been demonstrated in a number of in vitro and in vivo
experiments (Peterson and Nutt 2008). The depletion of these
neurotrophic factors has been linked with disease pathology
and symptoms of PD. BDNF accelerate DA turnover in the ST
and plays an important role in maintaining the normal function
and regeneration of DA neurons in the adult brain (Lindsay
et al. 1994). GDNF is a member of the transforming growth
factor-f3 super family of neurotrophic factor (Saarma 2000). It
is required for the survival of dopaminergic neurons (Lin et al.
1993) and promotes recovery in rodent and nonhuman primate
models of PD (Kordower et al. 2000; Dowd et al. 2005).
GDNF levels are decreased in the SN of PD patients (Jenner
and Olanow 1998) and in normal aged rodents (Yurek and
Fletcher-Turner 2001), suggesting its involvement in motor
dysfunction and DA neuron degeneration. It has been hypoth-
esized that neurotrophic factors might have the ability to
restore the function of dopaminergic neurons (Hong et al.
2008; Yang et al. 2009). However, these factors cannot reach
their target areas in the brain by systematic administration.
Therefore, an important new research field which involves
the search for small molecules that can enter the brain tissue
and then trigger the endogenous neuroprotective mechanisms
(Xu et al. 2010) is the potential therapeutics for neurodegen-
erative diseases.

Geraniol (GE), an acyclic monoterpene alcohol found in
lemongrass and aromatic herb oils, proved to have cytoprotective
and antioxidant potential in oxidative stress-induced animal
models (Tiwari and Kakkar 2009). It also modulates
the activity of enzymatic and nonenzymatic antioxidants
(Madankumar et al. 2013). The protective effect of this
compound against oxidative stress will open new insights for
their therapeutic use in inflammatory diseases and other dis-
eases where oxidative stress is a crucial event. Consequently,
in the present investigation, we demonstrate the neuro-
protective effects of GE on MPTP-induced behavioral
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deficits, oxidative stress, and alter the expressions of NTFs,
tyrosine hydroxylase (TH), DAT, and vesicular monoamine
transporter 2 (VMAT?2) in a mouse model of PD.

Materials and Methods
Animals

Ten-week-old male C57BL/6 mice (25-30 g) purchased from
the National Institute of Nutrition, Hyderabad were used in the
present study. The animals were group-housed two animals per
cage in a 12:12 h light/dark cycle with free access to food
pellets and water. All experimental procedures were conducted
according to the National Guidelines on the Proper Care and
Use of Animals in Laboratory Research (Indian National
Science Academy, New Delhi, 2000) and were approved by
the animal ethics committee of the institute (reg. no. 160/1999/
CPCSEA,; approval no: 881/2012) RMMC.

MPTP Challenge
Experimental Design and Dosage Fixation

A pilot study was conducted with four different doses of GE
(50, 100, and 200 mg/kg) to determine the dose-dependent
effect of GE in MPTP-induced PD mice. It was observed that
after the experimental period of 7 days, GE oral pretreatment
at the doses of 50, 100, and 200 mg/kg significantly im-
proved the levels of dopamine and its metabolites in MPTP-
induced mice. From the results, it was observed that 100 and
200 mg/kg of GE administration showed similar induction in
dopamine levels but more significant than 100 mg/kg. As per
result, we have selected the optimum dose (100 mg/kg) for
our acute study.

The mice were randomized and divided into 4 groups of 18
mice each. Six mice in each group were used for biochemical
analysis, another six mice were used for catecholamine, and
the remaining mice were used for molecular studies (immu-
nohistochemical studies, mRNA expressions, and western
blot analysis). We followed the safety guidelines for handling
of MPTP as reported previously (Lau et al. 2005).

Group I mice were treated with saline served as control.
Groups II and III mice received intraperitoneal injection of
MPTP (30 mg/kg body weight (bw); Lin et al. 2004) for
4 days consecutively starting from 4th to 7th day of the
experimental period. In addition, group III mice received
GE (100 mg/kg bw in absolute ethanol) orally (1 h prior to
each MPTP injection) for 7 days consecutively, starting from
Ist to 7th day of the experimental period. Group IV mice
received GE (100 mg/kg) dissolved in absolute ethanol and
administered for 7 days by oral gavage. At the end of the



J Mol Neurosci (2013) 51:851-862

853

experiment (8th day), the following behavioral tests were
performed.

Behavioral Studies
Rotarod Performance

The rotarod test, in which animals walk on a rotating rod, is
widely used to assess motor status in laboratory rodents.
Performance is measured by the duration that an animal stays
upon the rod as a function of rod speed. Here, we report that
the task provides a rich source of information. Mice were
allowed to adjust their posture in order to maintain their
balance on a rotating rod at speeds of 5, 10, 15, and 20 rpm.
The average retention time on the rod was calculated as
described previously (Rozas et al. 1998).

Drag Test

This test was performed to measure the ability of the animal
to balance its body posture using forelimbs in response to
an externally imposed dynamic stimulus (Viaro et al.
2008). Each mouse was gently lifted using the tail (allowing
the forepaws on the table) and dragged backwards at a con-
stant speed (about 20 cm/s) for a fixed distance (120 cm). The
number of touches made by each forepaw was counted by two
independent observers (mean between the two forepaws).

Footprint Analysis

The footprint analysis was performed as described previously
(Tillerson et al. 2002) with slight modification. Briefly, the
mice were trained to run toward an enclosed square box in an
open-top runway. The forepaws and hind paws were dipped
with nontoxic paints, and the mice were immediately placed
on one end of the sheet of paper opposite to the square box.
The footprint patterns were analyzed for stride length by
calculating from the mid digit toe of the first step to the heel
of the second step.

Biochemical Studies
Lipid Peroxidation Assay: Malonaldehyde

Malonaldehyde (MDA), the final products of lipid peroxida-
tion (LPO), was measured by a colorimetric assay using the
Bioxytech LPO-586 colorimetric kit assay (OxisResearch,
Portland, OR, USA) (Escames et al. 1997). Briefly, ST tissue
samples were homogenized in 20 volumes (w/v) of ice cold
20 mM Tris HCI buffer, pH 7.4. The homogenates were
centrifuged at 1000xg for 10 min at 4 °C. Aliquots of the

supernatant was incubated at 45 °C for 40 min in the
presence of N-methyl-2-phenylindole/methanol and
methanesulfonic acid. The reaction was stopped by chilling
samples on ice and centrifuged at 12,000xg for 5 min at
4 °C. The absorbance in the supernatant was estimated
spectrophotometrically at 586 nm, and concentrations were
calculated from a standard curve made with known amounts
of MDA.

Reduced Glutathione The level of reduced glutathione
(GSH) in the brain homogenate was measured by the method
described by Jollow et al. (1974). Brain tissue homogenate
was centrifuged at 16,000xg for 15 min at 40 °C. The
supernatant (0.5 ml) was added to 4 ml of ice-cold 0.1 mM
solution of 5, 5-dithiobis[2-nitrobenzoic acid] in 1 M phos-
phate buffer (pH 8). The optical density was read at 412 nm
in a spectrophotometer.

Striatal Dopamine and Its Metabolites

The levels of DA, dihydroxyphenylacetic acid (DOPAC) and
homovanillic acid (HVA) were determined by HPLC appa-
ratus with an electrochemical detector (Muralikrishnan and
Mohanakumar 1998). Briefly, the striatum was sonicated in
ice-cold 0.1 M HCIO4 containing 0.01 % EDTA. The super-
natant collected after a spin of 10,000xg for 5 min was injected
(10 ml) into the HPLC system. Results were expressed as
nanogram per milligram wet weight of brain tissue.

Immunohistochemistry

For immunohistochemical analysis, mice were deeply anes-
thetized with ketamine immediately after the behavioral test
and were intracardially perfused with saline, followed by 4 %
of the fixative solution (formaldehyde in 0.1 M phosphate
buffer, pH 7.4). The brain (SN) was sectioned coronally at
5 um thickness on a cryostat. Sections were collected in
0.01 M phosphate-buffered saline (PBS) and processed.
Sections were collected in 0.01 M PBS and processed free
floating (Hartmann et al. 2001). The latter sections were
incubated with 0.3 % hydrogen peroxide for 10 min at room
temperature to remove the endogenous peroxidase activity
and then placed in blocking buffer containing 10 % normal
goat serum (NGS) with 0.2 % Triton X-100 in 0.01 M PBS
(pH 7.2) for 30 min at 37 °C. In each treatment, the slides were
washed at least three times with 0.01 M PBS each for 5 min.
Sections were incubated for 24 h with primary anti-mouse TH
(1:1,000) in 2 % NGS, 0.2 % Triton X-100, and 0.02 %
sodium azide in Tris-buffered saline (TBS). After washing
with 1 % NGS in TBS, the sections were incubated in
anti-mouse IgG-HRP conjugated antibody (1:1,000) in
1.5 % NGS for 1 h. TH immunoreactivity was visualized in
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SN after incubation in 3,4-diaminobenzidine for 2—5 min.
Sections were mounted with DPX mounting medium and
cover slip.

The intensity of TH immunoreactivity in the SN was
quantified by optical density measurements using the
MicroComputer Imaging Device software; data were
presented as a percent of the control group values. The number
of TH immunoreactive cells on each representative mesence-
phalic section was counted for the SN region by persons who
were blind to the treatment. Cell counts were determined
every sixth section (total 8—10 sections) through SN corre-
sponding to the bregma —2.92 to —3.64 mm from each of the
animals, and three animals/group were used for cell counts.
All raw cell counts were adjusted with a correction formula for
cell size and section thickness according to the method of
Abercrombie (1946). When counting was complete, the slides
were decoded and arranged based on treatment group. The cell
counts were then averaged for each animal, and these averages
were used to calculate a mean + SD for each treatment group,
and data were presented as a percent of the control group.

Extraction of Total mRNA

After the 24 h last GE administration, the mice were
sacrificed, the brains were removed immediately, and the ST
was dissected on ice and immediately transferred to dry ice to
preserve mRNA integrity. These regions were used to analyze
the dopaminergic nigrostriatal pathway affected by MPTP-
induced neurodegeneration. Total mRNA was isolated from
the ST using mRNA extraction kit (Genei Bangalore, India),
following the manufacturer’s instructions. The mRNA integ-
rity was determined by agarose gel electrophoresis, and the
concentration and purity were measured spectrophotometri-
cally (Kingston et al. 1996).

Total mRNA was converted to single stranded cDNA using
2 ug of total mRNA as a template. Oligo(dT) 12—18 primer
(Invitrogen Life Technologies) and Moloney murine leukemia
virus reverse transcriptase (RT; Invitrogen Life Technologies)
were used as per manufacture’s instruction. The following
primers were used for the mRNA expression: BDNF: (Gene
ID NM_007540.4) forward primer: 5'-ATCCAAATATGG
CACAGCAA-3' reverse primer: 5'-TTCTGCCTGAGTT
TTGATGC-3’; GDNF: (Gene ID NM_010275.2) forward
primer: 5'-AAGGTCACCAGATAAACAAGCGG-3' reverse
primer: 5'-TCACAGGAGCCGCTGCAATATC-3'"; (3-actin:
forward primer 5'-AGC CAT GTA CGT AGC CAT CC-3'
reverse primer 5-CTC TCA GCT GTG GTG GTG AA-3';
GAPDH: forward primer 5'-GACCACAGTCCATGC
CATCAC-3' reverse primer 5'-GCTGTTGAAGTCGCAG
GAGAC-3'.
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Real Time-PCR

The specific mRNA expressions were performed by real-time
PCR, by subjecting the resulting cDNA to PCR amplification
using 96-well optical reaction plates in the Eppendorf
(Thermocycler) real-time PCR instrument, software version
V1.5.0.39 (Genei Bangalore, India). Twenty-five microliter
of reaction mixture contained 0.1 pl of 10 uM forward primer
and 0.1 pl of 10 uM reverse primer (40 nM final concentration
of'each primer), 12.5 pl of Red Eye RT Mastermix, 11.05 pul of
nuclease-free water, and 1.25 pl of cDNA sample. The primers
used in the current study were chosen from previously pub-
lished studies and are listed above. Assay controls were incor-
porated on to the same plate, namely, no template controls to
test for the contamination of any assay reagents. After sealing
the plate with an optical adhesive cover, the thermocycling
conditions were initiated at 95 °C for 10 min, followed by 40
PCR cycles of denaturation at 95 °C for 15 s, and anneal/
extension at 60 °C for 1 min. Melting (dissociation stage) was
performed by the end of each cycle to ascertain the specificity
of the primers and the purity of the final PCR product.

Western Blotting

Striatal synaptosomes were prepared according to the
methods described by Wright et al. (1998). In brief, ST tissue
was homogenized in an ice-cold RIPA buffer (1 % Triton,
0.1 % SDS,0.5 % deoxycholate, 1 mmol/L EDTA, 20 mmol/
L Tris (pH 7.4),150 mmol/L NaCl, 10 mmol/L NaF, and
0.1 mmol/L phenyl-methyl sulfonyl fluoride). The homog-
enate was centrifuged at 12, 000 rpm/min for 15 min at 4 °C
to remove debris. Protein concentration was measured by the
method of Lowry et al. (1951). Samples containing 40 ng of
total cellular proteins were loaded and separated on 10 %
SDS polyacrylamide gel electrophoresis. The gel was then
transferred on to a PVDF membrane (Millipore). The mem-
branes were incubated with the blocking buffer containing
5 % nonfat dry milk powder or bovine serum albumin for 2 h
to reduce nonspecific binding sites and then incubated in
mouse anti-GDNF, BDNF (1:200, Santa Cruz Biotechnology,
USA), TH (1:1,500, Santa Cruz Biotechnology, USA),
DAT(1:500), and VMAT?2 (1:1,000) with gentle shaking over-
night at 4 °C. After this, membranes were incubated with
their corresponding secondary antibodies (anti-rabbit or
anti-mouse IgG conjugated to horseradish peroxidase)
for 2 h at room temperature. The membrane was washed thrice
with Tris-buffered saline and 0.05 % Tween-20 for 30 min.
Protein bands were visualized by an enhanced chemilumines-
cence method using ECL kit (GenScript ECL kit, USA).
Densitometric analysis was performed with a computer using
a gel image analysis program.
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Statistical Analysis

All the data were expressed as mean + SD of number of
experiments (7 =6). Statistical significance was evaluated by
one-way analysis of variance using SPSS version 15.0 soft-
ware, and individual comparisons were obtained using
Duncan’s multiple range test. Values were considered statis-
tically significant if P<0.05.

Result
Behavioral Studies
Effect of GE on Behavioral Recovery

The results of spontaneous motor activity performance by
behavioral tests were shown in Figs. 1, 2, and 3, respectively.
Compared with control mice, the MPTP-treated mice displayed
a significant decrease in spontaneous motor activity by latency
to fall of the rotarod test, reduce forepaw stride distance, and
decreased the number of steps in footprint test (P<0.05).
However, GE pretreatment significantly ameliorated these be-
havioral deficits induced by MPTP toxicity (P <0.05)

Biochemical Studies
Effects of GE on the Levels of MDA and GSH in the ST

To understand the mechanisms of the protective effects of GE,
we measured the activities of GSH and the MDA contents in
the ST of every group of mice. The results of these biochem-

Fig. 1 Rotarod performance 30 1
after the acute regimen of GE and
MPTP: pretreatment with GE
improved MPTP-induced motor
deficits. Mice were tested for
motor function using the rotarod
(motor function) test in different
rpm (5, 10, 15, and 20 rpm).
Values are given as mean + SD
for six mice in each group. a
P<0.05 compared to the control,
b P<0.05 compared to the
MPTP control
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Fig.2 Drag test performance after the acute regimen of GE and MPTP:
Pretreated with GE to MPTP group a profound improvement in sensory
motor performance. Values are given as mean + SD for six mice in each

group. a P<0.05 compared to the control, b P<0.05 compared to the
MPTP control

ical parameters were shown in Table 1. The contents of MDA
in the ST of MPTP-treated mice were significantly increased
compared with those in the control group (P <0.05). However,
the increase in MDA level was significantly ameliorated when
the mice received GE pretreatment (P <0.05). In addition, the
GSH activity in MPTP-treated mice was significantly de-
creased compared with control group (P<0.05), and GE pre-
treatment largely attenuated the decrease in GSH (P <0.05).

Effects of GE on the Levels of Dopamine and Its Metabolites
in the Striatum

The results of catecholamine measurement were shown in
Table 2. The present study confirmed that catecholamine levels

Rotarod Test

10rpm
EMPTP

15rpm
B MPTP+GE
Groups

Srpm
B Control
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Fig. 3 Comparison of behavioral output between control and MPTP-
treated mice. The footprint patterns were calculated from the stride
length, mid digit toe of the first step, to the heel of the second step.
The GE pretreatment improves the stride length after MPTP treatment.
Values are given as mean + SD for six mice in each group. a P<0.05
compared to the control, b P<0.05 compared to the MPTP control

were significantly decreased in MPTP-treated mice as com-
pared to control mice. Pretreatment with GE following MPTP
exposure significantly attenuated the decrease in the levels of
DA, DOPAC, and HVA (P<0.05). However, treatment with
GE alone in MPTP-treated mice did not change the levels
of DA and its metabolites as compared to control mice.

Effect of GE on MPTP-Induced Reduction of TH
Immunoreactivity in the SN

Representative microphotographs of TH immunostaining in
the SN were shown in Fig. 4a, b. Animals that received the
treatment of MPTP injection showed a marked loss of TH-
immunopositive neurons in the SN compared with the con-
trol group. In contrast, GE-treated mice showed significantly
reduced nigrostriatal dopaminergic neuron loss following
MPTP injection at the dose of 30 mg/kg as compared to
MPTP alone treated group (P <0.05).

Table 1 The effects of GE on the levels of MDA and GSH in the
striatum

Groups/variables MDA GSH (mg/g of tissue)
(nmol/mg protein)

Control 1.3533+0.04 23.423+0.17

MPTP 0.7683+0.03" 16.613+0.16*

MPTP+GE 0.9217+0.04° 19.411£0.17°

GE 1.2850+0.09 23.500+0.13

Mice were sacrificed after the last behavioral assessment, and the
striatum was dissected for biochemical evaluation. All values are
expressed as mean + SD

#P<0.05 compared with control group
® P<0.05 compared with MPTP treatment group
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Table 2 The effects of GE on the levels of catecholamine in the striatum

Groups/ DA DOPAC HVA

variables (ng/mg tissue) (ng/mg tissue)  (ng/mg tissue)
Control 13.7917+1.04836 2.0900+.16125 1.3000+.09879
MPTP 3.1900+.24633* 0.9867+.06976" 0.4200+.03162*
MPTP+GE  10.2917+.78418" 1.3500+.10296" 0.7000+.05367°
GE 13.8017+1.04836 1.9967+.11075 1.3100+.09879

Mice were sacrificed after the last behavioral assessment, and the
striatum was dissected for dopamine and its metabolites (DOPAC and
HVA) evaluation. All values are expressed as mean = SD

* P<0.05 compared with control group
5 P<0.05 compared with MPTP treatment group

The Expression of BDNF and GDNF in the MPTP
Lessoned ST

The mRNA and proteins expressions of BDNF and GDNF
revealed that the MPTP treatment significantly decreased
mRNA (Fig. 5a, b) and protein expression level (Fig. 6a, b)
of BDNF and GDNF as compared to control group, but GE
pretreatment retained both expression and production of BDNF
and GDNF activity as compared to the MPTP-treated group of
mice (P<0.05). No significant changes were observed between
control and GE alone treated mice.

The Effect of GE on MPTP-Induced TH, DAT, and VMAT2
Level in ST

As shown in Fig. 7a, b, MPTP treatment significantly de-
creased the protein expression of TH, DAT, and VMAT?2 in
ST as compared to control group (P <0.05). GE pretreatment
restored TH, DAT, and VMAT?2 protein generation as com-
pared to the MPTP-treated group of animal (P<0.05). No
significant changes were observed between control and GE
alone treated mice.

Discussion

In this study, we demonstrated that GE, which is capable of
traversing the cellular membrane and can suppress MPP"
(toxic metabolite from MPTP)-induced lipid peroxidation and
mRNA expressions and protect dopaminergic neurons in the
ST of the brain from MPTP insult through upregulating NTFs
and dopaminergic transporters in mice. As a novel astrocyte
modulating agent, GE has a potent neuroprotective affect in
mice model PD providing evidence that astrocytes can be a
new target of neuroprotection. Intraperitoneal administration of
neurotoxin MPTP induces more obvious loss of dopaminergic
neurons in the ST and SN in C57BL/6 mice (Filipov et al. 2009;
Yasuda et al. 2008).
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Fig. 4 a Effect of GE on TH expression in SN. Representative micro-
photographs of the expression of TH was almost negligible in MPTP
group as compared to control group, while the MPTP group treated with
GE has shown a moderate staining of TH. However, the GE control
group has shown no discernible change in TH staining as compared to
control group. Original magnifications at x4 and x40. b Quantification

Our experiments on the behavioral study suggesting that
MPTP-induced DA depletion relate specifically to the di-
minished muscular coordination and balance (Moon et al.
2009) rather than an influence on the motor capacity of mice.

of TH-IR was performed by counting the number of TH-IR neurons in
SN. The mean value for TH-IR was determined for each group and was
expressed as a percentage of that matched control mice. Values are
expressed as mean+SD of three mice per group. a P<0.05, compared
with the control. b P<0.05, compared with the MPTP control group

The behavioral effects are intertwined with the degree of
dopaminergic neuronal dysfunction (Schwarting et al. 1991);
its assessment is a more powerful endpoint in evaluating
neuroprotection against degeneration. Therefore, testing the
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Fig. 5 a BDNF and GDNF mRNA expression level changes in ST of control and experimental mice, and (3-actin and GAPDH mRNA were used as
housekeeping gene for the normalization of mRNA expressions. b Quantification graphs values are expressed as mean + SD of three mice per group. a
P<0.05, compared with the control. b P<0.05, compared with the MPTP control group
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Fig. 6 a Western blot analysis of a
BDNF and GDNF expression
levels in ST. Western blot was BDNF
performed to study the protein (13.6kDa)
expression levels of BDNF and
GDNF in the striatal tissue after
GE treated and GE non-treated GDNF
mice. b Bar graph shows the (15kDa)
comparison among the group,
and density was quantified by
scanning densitometry. Values .
are expressed as mean=SD of p-actin
three mice per group. a P<0.05, (43kDa)
compared with the control. b
P<0.05, compared with the
MPTP control group
b
1.4
1.2
= 1
5t
=
)
]
g = 06
2 s
2 04
0.2
0

behavioral function in the current study provides a sensitive
evaluation of new therapeutic agent without any undesirable
effects. Our study results suggest that acute MPTP injections
caused severe motor deficits as assessed by rotarod, foot
print analysis, and drag test in mice after the last MPTP
administration. Pretreatment with GE significantly alleviate
these behavior deficits by improved motor coordination.
Moreover, it was revealed that this effect of GE was closely
associated with the protection of nigrostriatal dopaminergic
neurons against MPTP-induced neurotoxicity in the brain.
Pretreatment with GE was found to improve motor deficits
by increase of striatal catecholamine levels after MPTP injec-
tion. These behavioral alterations were consistent with a pre-
vious report (Sundstrom et al. 1990).

While this study provides evidence against MPTP-induced
LPO by evaluating MDA, it is a well-known mechanism of
cellular injury initiated by ROS (Sayre et al. 2001). The cyto-
toxic aldehydes produced in the process of LPO and produc-
tion could reflect the oxidative damage to lipids and proteins
that leads to the pathological process of PD (Esterbauer et al.
1991; Alam et al. 1997). We revealed that pretreatment with
GE evidently decreases the formation of MDA of MPTP-
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treated mice ST tissue. GSH is the most important thiol-
containing antioxidant in the brain (Meister and Anderson
1983), and it plays a pivotal role in preventing oxidative
damage. It also has been used as a biomarker of oxidative
stress in biological systems (Reed and Savage 1995).
Depletion of GSH has been observed in the ST of PD patients
and in the MPTP model (Ferraro et al. 1986). These results
demonstrated that GE restore the MPTP-induced oxidative
insults in striatal systems, and it confers potent protection of
GE for the DA neurons by acting in both directions to restore
the balance of oxidant accumulation and clearance.
Additionally, present findings are in agreement with the ear-
lier reports that DA level and motor deficits in Parkinsonian mice
have been attenuated by antioxidant supplementation (Chung
etal. 2011; Khan et al. 2010; Moon et al. 2009). The degrees of
DA depletion are established by the evaluation of TH levels, the
rate limiting enzyme of DA biosynthesis, as an indirect indicator
of DA, which could be markedly decreased by MPTP
(Stephenson et al. 2007; Chen et al. 2009). The observed result
showed that the administration of MPTP in ST could reach a
modest but statistical significance to reduce the level of TH in
ST. GE effectively reversed the reduced expression of TH and
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Fig.7 a Western blot analysis of a
TH, DAT, and VMAT?2 in ST of

control and experimental mice. b TH
The band density was quantified 5
by scanning densitometry. Bar (621(])8) A-Control
graph shows the comparison
among groups. Values are
expressed as mean = SD of three DAT B-MPTP
mice per group. a £<0.05,
compared with the control. b (801(])3)
P<0.05, compared with the C-MPTP+GE
MPTP control group
VMAT-2
(80 kDa) D-GE
B-actin
(43 kDa)
b
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prevented gradual loss of neurons in SN and ST. DAT and
VMAT?2, two different transporters for DA and the dopaminergic
toxins, had been regarded as injury index of dopaminergic
neurons, which is helpful for early detection and intervention
of PD. DAT is a critical regulator of DA distribution within the
brain and is also a crucial determiner of the neurotoxicity of
MPP". DAT downregulation was probably a long-term compen-
satory mechanism directed at maintaining DA input in the ST
(Afonso-Oramas et al. 2010) or preventing toxin to enter into
neurons (Bezard et al. 2003). The study demonstrated that one
component of the neuroprotection conferred by GE is to regulate
the expression of DAT and VMAT2 in the MPTP-induced mice,
which may influence the amount of neurotoxin uptake and the
degree of lesion. Otherwise, the reduction of DAT may be
correlated which influenced the transport of monoamine trans-
mitter. The VMAT2 may serve as a neuroprotective factor by
sequestering monoamines into vesicles and preventing the

@ Springer

interaction with their catabolic enzymes (Caudle et al. 2008).
In the present study, a decreased expression of DAT and VMAT?2
were observed in the ST of MPTP-treated mice, which corre-
sponds to the results of previous reports (Erickson et al. 1996;
Weihe and Eiden 2000; Kurosaki et al. 2003).

The neuronal survival requires NTFs support. A limited
availability of NTFs has been suggested to contribute to the
mechanism of DA neurodegeneration in PD (Mogi et al. 1999),
while they promote dopamine neurorescue in the mice and
nonhuman MPTP models (Date et al. 1998; Lapchak et al.
1998; Wang et al. 2002). BDNF and GDNF are the most
promising trophic factors in neurorescue or restorative treat-
ment of neurodegenerative diseases, particularly in PD (Anand
2004; Bespalov and Saarma 2007). The development of ther-
apeutic drug that modulate the functions of these factors, study
from our laboratory established that a partial loss of GDNF and
BDNF mice decline in motor function and the DA system
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(Boger et al. 2006, 2007). Furthermore, we found that pre
intake of GE markedly counteracted neurotoxic effects of
MPTP and restored the expression, activity, and generation of
BDNF and GDNF, which benefited dopamine synthesis in
brain. These findings implied that GE could prevent PD pro-
gression through regulating neurotrophic factors, stabilizing
TH, and protecting dopaminergic neurons, which consequently
favored dopamine formation (Tsai et al. 2011).

Conclusion

In conclusion, the present study corroborated that the
neuroprotective efficacy of GE in MPTP induced neurotox-
icity. The protective effects were affirmed by improved mo-
tor coordination, expressions of NTFs, and inhibiting oxida-
tive stress, increasing the counts of dopaminergic immuno-
reactive neurons. Based on the current result of our investi-
gation, we speculate that GE might be a promising contender
for the prevention or treatment of oxidative stress-related
neurodegenerative disorders such as Parkinson’s disease,
but further studies are warranted to determine the possible
role of GE in neurodegenerative process.
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