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Gut virome profiling identifies a widespread
bacteriophage family associated with metabolic
syndrome
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There is significant interest in altering the course of cardiometabolic disease development via
gut microbiomes. Nevertheless, the highly abundant phage members of the complex gut
ecosystem -which impact gut bacteria- remain understudied. Here, we show gut virome
changes associated with metabolic syndrome (MetS), a highly prevalent clinical condition
preceding cardiometabolic disease, in 196 participants by combined sequencing of bulk whole
genome and virus like particle communities. MetS gut viromes exhibit decreased richness and
diversity. They are enriched in phages infecting Streptococcaceae and Bacteroidaceae and
depleted in those infecting Bifidobacteriaceae. Differential abundance analysis identifies eighteen
viral clusters (VCs) as significantly associated with either MetS or healthy viromes.
Among these are a MetS-associated Roseburia VC that is related to healthy control-associated
Faecalibacterium and Oscillibacter VCs. Further analysis of these VCs revealed the Candidatus
Heliusviridae, a highly widespread gut phage lineage found in 90+% of participants. The
identification of the temperate Ca. Heliusviridae provides a starting point to studies of phage
effects on gut bacteria and the role that this plays in MetS.
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ARTICLE

he human gut microbiome influences many (metabolic)

processes, including digestion, the immune system!, and

endocrine functions?. It is also involved in diseases such as
type 2 diabetes?, fatty liver disease* and inflammatory bowel
disease®. Though studies of these gut microbiome effects on
health and disease mostly focus on bacteria, increasing attention
is devoted to bacteriophages (or phages).

Phages are viruses that infect bacteria. By infecting bacteria,
they can significantly alter gut bacterial communities, mainly by
integrating into bacterial genomes as prophages (lysogeny) or
killing bacteria (lysis). Such alterations to bacterial communities
in turn affect the interactions between bacteria and host, making
phages part of an interactive network with bacteria and hosts. For
example, an increase in phage lytic action is linked to decreased
bacterial diversity in inflammatory bowel disease®’, prophage
integration into Bacteroides vulgatus modifies bacterial bile acid
metabolism8, and dietary fructose intake prompts prophages to
lyse their bacterial hosts®.

Gut virome alterations have been linked to several disease
states like inflammatory bowel diseases®’, malnutrition!, and
type 2 diabetes!!. But many such studies have not been able to
identify specific viral lineages that are involved in such diseases,
mainly due to the lack of viral marker genes!?!3 and high phage
diversity due to their rapid evolution!4, Consequently, human gut
phage studies are limited to relatively low taxonomic levels. While
recent efforts uncovered viral families that are widespread in
human populations, such as the Crassvirales phages!>16, these
have not been successfully linked to disease states. In order to
develop microbiome-targeted interventions to benefit human
health, it is pivotal to study such higher-level phage taxonomies in
the gut among relevant cohorts.

Here, we report on gut virome alterations in metabolic syn-
drome (MetS) among 196 people. MetS is a collection of clinical
manifestations that affects about a quarter of the world popula-
tion, and is a major global health concern because it can progress
into cardiometabolic diseases like type 2 diabetes, cardiovascular
disease, and non-alcoholic fatty liver disease!”~1%. As gut bacteria
are increasingly seen as contributing agents of MetS20-22, it
stands to reason that the phages which infect these bacteria
exhibit altered population compositions in MetS. Whereas recent
research compared gut viromes in relation to MetS23, this study
was limited to 28 children, in which MetS manifests markedly less
well defined than in adults?4. For our analysis, we focused on
dsDNA phages, which form a large majority of gut phages in
particular and gut viruses in generall42°.

Here, we detail differences in the gut virome in MetS versus
healthy controls. We find MetS-connected decreases in virome
richness and diversity, which are correlated to bacterial popula-
tion patterns. We further find that MetS viromes are character-
ized by high levels of Streptococcaceae and Bacteroidaceae phages,
while Bifidobacteriaceae phages were less abundant. Finally,
among viral clusters (VC) that are differentially abundant in
either MetS or controls, we identify four with significant inter-
relatedness. These phages are part of a previously undescribed
family, which we dub the Candidatus Heliusviridae, and which is
highly widespread in this and several validation cohorts.

Results

Metagenomic sequencing identifies high divergence in MetS
viromes. To study gut phage populations, we performed meta-
genomic sequence analyses on fecal samples of subjects from the
Healthy Life in an Urban Setting (HELIUS) cohort?®, a large
population study in Amsterdam, the Netherlands. Because gut
phages largely exist in two forms: intracellularly (e.g., integrated
into bacterial genomes as prophages) and as free-floating

particles, we performed sequencing on two types of sample pre-
parations (Supplementary Fig. 1). Firstly, for 97 MetS and 99
healthy participants we performed bulk whole genome shotgun
(WGS) sequencing, which tends to bias in favor of intracellular
phages. Secondly, for a subset of 48 participants (24 each of
controls and MetS), we made filtrations of free-floating phage
particles and sequenced viral-like particle (VLP) metagenomes.
Among the MetS participants, central obesity and high blood
pressure were nearly universal, being found in 94/97 participants
and 91/97, respectively. For further details on the participants of
the present study, see the Methods and Supplementary Table 1.
Bulk sequencing yielded an average of 23 +3.4 million read
pairs per sample (median: 22.6 million read pairs), while VLP
sequencing yielded 16.5+2.5 million read pairs (median: 16.3
million). Per sample read assemblies and viral sequence predic-
tion resulted in a database of 45,421 unique phage contigs (non-
redundant at 90% average nucleotide identity). We grouped these
phage contigs by shared protein content?” into 6,635 viral clusters
(VCs). These comprised 30,161 contigs, while the remainder were
singletons that were too distinct to confidently cluster with other
phage contigs. Treating such singletons as VCs with one member
gave a final dataset of 21,895 VCs.

For further analysis, we mapped quality-controlled reads to
viral contigs, and constructed a per-VC RPKM table, which we
converted to relative abundances where between-sample compar-
isons were needed (Supplementary Fig. 1). Analysis of relative
abundances per VC across the 196 WGS samples (Supplementary
Data 1) showed an high inter-individual diversity in bulk gut
viromes, as 19,970 VCs (97.4% of the 20,501 VCs present in WGS
samples) were either specific to a single individual or present in
fewer than 20/196 (i.e., <10%) of the participants. Only 59 VCs
(0.3%), meanwhile, were putative members of the core human gut
virome?8, being present in over 30% of participants (Supplemen-
tary Fig. 2a). We notably found two VCs that were found in the
bulk virome of over 30% of controls and none of the MetS
participants, but none vice versa. In both cases, the viral contigs
contained in the VCs were genome fragments (i.e., checkv?®
completeness of <25%, Supplementary Data 5). The general
prevalence pattern was mirrored among the 48 VLP samples,
where 9,147 VCs (93.3% of the 9,800 VCs present in VLP
samples) were present in less than 10% of the participants, while
61 (0.6%) were present in over 30% of participants (Supplemen-
tary Fig. 2b). Interestingly, VCs observed in fewer than 10% of the
participants had much higher mean relative abundance among
bulk than VLP viromes (WGS: mean 70.1 +10.2%, median:
71.8%, VLP: mean 42.1 + 18.4%, median: 42.6%, Supplementary
Fig. 2¢, d). Much of the interpersonal gut phage diversity is thus
contained in the bulk virome.

Gut phage and bacterial populations show altered richness and
diversity measures in MetS. To gain a deeper understanding of
MetS virome community dynamics, we first examined total read
fractions that mapped to VCs. In the bulk phage samples the
fraction of reads mapping to VCs was significantly lower in MetS
compared to controls (Wilcoxon signed-rank test, p=0.023,
Supplementary Fig. 3a). This was not caused by differential
sequencing depth between the participant groups, as this did not
significantly differ between the groups (Wilcoxon signed-rank
test, p=0.23). It could instead derive from higher bulk phage
micro-diversity causing more fragmented assemblies, thereby
decreasing the number of recognized phage sequences. To test
this, we constructed cumulative VC ranked-abundance curves of
bulk phage samples. These showed that fewer VCs represented
the full relative abundance of bulk viromes in MetS than
in controls, therefore indicating lower micro-diversity in MetS
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Fig. 1 Gut phage populations are altered in MetS. a-d Bulk phage populations measured in WGS samples (n=97/n = 99 biologically independent
samples for MetS and controls, respectively), showing: a MetS-associated decreased species richness is evidenced by the number of unique VCs observed
per sample, p=7.1x 10~7. b No change in Pielou evenness measurements, p = 0.49. ¢ Significantly decreased a-diversity measured by Shannon diversity
p=0.02. d Clear separation between populations of MetS (orange) and control (blue) participants as shown by B-diversity depicted in a principal
coordinates analysis (PCoA) of Bray-Curtis dissimilarities. e-h VLP phage populations measured in VLP samples (n = 24 biologically independent samples
for both MetS and controls), showing no significant difference in e richness (p = 0.11), f evenness (p = 0.26), and g a-diversity (p = 0.089), but

h significantly different populations between MetS (orange) and controls (blue) evidenced by B-diversity. For bulk viromes, Permanova test was adjusted
for smoking, age, sex, alcohol use, and metformin use, while analysis of VLP phage populations involved balanced populations that did not need these
adjustments. Statistical significance in a-c and e-g is according to the two-sided Wilcoxon signed-rank test, where p values are denoted as follows: * <
0.05, ** £ 0.01, *** £ 0.001, **** < 0.0001. The absence of significance level means p values were above 0.05. Box plots show the median (middle line),
25th, and 75th percentile (box), with the 25th percentile minus and the 75th percentile plus 1.5 times the interquartile range (whiskers), and outliers (single

points). Source data are provided as a Source Data file.

(Supplementary Fig. 3b). Our findings thus imply that MetS is
characterized by lower intracellular phage-to-bacteria ratios, for
example through decreased lysogeny rates. For VLP phage
populations, we observed the opposite: higher fractions of viral
reads among MetS (Wilcoxon signed-rank test, p = 0.011, Sup-
plementary Fig. 3c), while sequencing depth again did not sig-
nificantly differ (Wilcoxon signed-rank test, p=0.65). But
because VLP virome cumulative VC ranked-abundance curves
showed the same pattern as those of the bulk viromes, thereby
indicating decreased micro-diversity in MetS samples, the
increase in viral-mapped read fractions for MetS may reflect less
fragmented assemblies of these samples (Supplementary Fig. 3d).
Thus, while our results suggest decreased lysogeny rates in MetS,
we could not definitively determine whether these are paired with
increased lytic rates.

For further analysis of phage communities, we examined
virome richness and diversity. We determined phage richness by
measuring the number of VCs that were present (ie., had a
relative abundance above 0) in each participant, using a
horizontal coverage cutoff of 75%3C. This showed that besides
lowered phage-to-bacteria ratios, bulk phage populations in MetS
also had lower VC richness than controls, but equal evenness
(Wilcoxon signed-rank test, richness p=7.1 x 1077, Pielou
evenness p = 0.49, Fig. 1a and b). Nevertheless, due to the strong
differences in richness, bulk phage a-diversity was significantly
decreased among MetS participants (Shannon H' p=0.02,
Fig. 1c). This suggested that MetS bulk gut phage populations
are distinct from healthy communities. These results were
independent of sequencing depth, as significance levels in

richness, evenness, and diversity were unchanged upon calcula-
tions with the median of 1000 random data sub-samplings.
Indeed, the differences between the two participant groups were
underscored by our observation of significant separation between
controls and MetS when assessed by principal covariate analyses
(PCoA) of p-diversity based on Bray-Curtis dissimilarities
(Permanova p =0.001, Fig. 1d). Similar analyses less notably
differed among the VLP phage populations, where richness,
evenness, and a-diversity were all non-significantly higher in
controls (Wilcoxon signed-rank test, richness p = 0.11, evenness
p =0.26, and a-diversity p = 0.089, Fig. 1le-g), though B-diversity
still displayed significant separation between the two groups
(Permanova p = 0.038, Fig. 1h). As both richness and a-diversity
were highly positively correlated between the VLP and WGS
datasets among the subset of 48 participants (richness: Spearman
p=0.68, p=1.1 x 1077, a-diversity: p = 0.5, p=3.6 x 10~%), we
hypothesize that the lack of significance between controls and
MetS VLP datasets was driven by the smaller sample size of the
VLP dataset.

Because phages are obligate parasites of bacteria, we also
studied bacterial community using 16s rRNA amplicon sequen-
cing data. We opted to analyze 16s rRNA amplicon sequencing
data over analysis of the metagenomic samples for its greater
taxonomic resolution. Bacterial gut populations are often found
to be less diverse in obesity-related illnesses such as MetS3!. Our
data underscored this, and showed that MetS bulk viromes mirror
bacterial communities in species richness and a-diversity,
but not evenness, which was significantly lowered in MetS
bacterial populations (Wilcoxon signed-rank test, Chaol richness
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Fig. 2 Correlations between phage and bacterial populations as well as between population measures and MetS clinical parameters. Strong
correlations between a phage richness (observed VCs) and bacterial richness (Chaol index), as well as between b phage and bacterial evenness (Pielou’s
index), both with significant positive two-sided Spearman'’s rank correlation coefficient. Colors refer to participant groups: MetS (orange) and controls
(blue). Both of these measures were correlated to MetS clinical parameters. Plotted are the Spearman’s rank correlation coefficients between the five MetS
risk factors and ¢ richness and d evenness. Points with g values below 0.05 are colored in and labeled. Q values were obtained after adjusting p values for
multiple testing with the Benjamini-Hochberg procedure. Source data are provided as a Source Data file.

p=9.1 x 1074 Shannon H' p=15 x 1071, Pielou evenness
p = 1.8 x10~14, Supplementary Fig. 4a—c). Additionally, bacterial
communities separated in PCoA analysis in similar fashion to
viromes (Permanova p =0.001, Supplementary Fig. 4d). These
results were replicable with data derived from taxonomic profiling
of the bulk sequences. Population-level bulk virome changes in
MetS are thus directly related to a depletion of host bacteria
populations, an assertion strengthened by significant direct
correlations between bulk phage and bacterial communities in
richness (Spearman p=0.42, p=1.3 x10~9, Fig. 2a), evenness
(Spearman p=0.24, p=5.7 x 1074, Fig. 2b). Though for the
subset of 48 samples with VLP data no such correlations were
detected, this could have been due to the smaller sample size.
Finally, we studied the relationship between both bulk phages
and bacteria on the one hand and the five clinical parameters that
constitute MetS on the other. As the bacterial and bulk phage
populations did not equally decrease in richness and evenness,
they also did not equally correlate with MetS clinical parameters.
Rather, bulk phage richness was significantly negatively correlated
with obesity, blood glucose levels, blood pressure, and triglyceride
concentrations but bacterial richness was not (g <0.05, Fig. 2c
and Supplementary Fig. 5). Bacterial evenness, meanwhile, did
significantly negatively correlate with these clinical parameters
while bulk phage evenness did not (g<0.05, Fig. 2d and
Supplementary Fig. 5). Increasingly severe MetS phenotypes thus
result in stronger decreases in bacterial evenness than richness,
while bulk phage populations exhibit stronger decreases in
richness than evenness. The decreasing bacterial evenness could
be caused by depletion of certain bacterial species in MetS, which
results in the bulk phages infecting these depleted bacteria to
become undetectable, thereby decreasing richness more than

evenness. Otherwise, the success of certain bacterial species could
also decrease evenness. In the process this could conceal rare
phage species, which could cause the decreased bulk phage
richness. Combined with the results showing MetS-associated
reduction in total bulk phage abundance and richness, but not
those of VLP populations (Supplementary Fig. 3), our findings
indicate that certain phages are either completely absent from the
gut or are too rare to detect in MetS.

Phages infecting select bacterial families are more abundant in
MetS viromes. We next studied individual bacterial lineages and
the phages that infect them. To do this, we linked viral contigs
to bacterial hosts by determining CRISPR protospacer align-
ments, taxonomies of prophage-containing bacterial sequences,
and hosts of previously isolated phages co-clustered in VCs (see
methods for details). We found 50,322 host predictions between
7463 VCs (34.1% of all VCs) and 12 bacterial phyla, most
commonly Firmicutes (5301 VCs) and Bacteroidetes (1284 VCs,
Supplementary Data 2). We also identified 164 VCs with multi-
phyla host range predictions, similar to previous works32.

To increase statistical accuracy, we selected the predictions
between the 12 most commonly occurring host families and
5188 VCs that were present in bulk viromes (23.7% of VCs).
We then performed an analysis of compositions of microbiomes
with bias correction (ANCOM-BC)33 on the bulk phage
population datasets. This showed higher relative abundances
in controls for Bifidobacteriaceae (¢ =0.004), and in MetS for
Bacteroidaceae (q=0.004), and Streptococcaceae (q=0.004,
Fig. 3a). A complementary analysis of the same 12 families
based on 16s rRNA amplicon data showed similar differentially
abundance patterns for all three families (Supplementary Fig. 6).
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Fig. 3 Phages infecting selected bacterial families are differentially abundant in MetS or healthy controls. a ANCOM-BC33 analysis of bulk phages that
infect the 12 bacterial families to which the most VCs were linked shows significant association between Bifidobacteriaceae VCs and controls, as well as
between Streptococcaceae and Bacteroidaceae VCs and MetS. Closed circles denote significance, open circles lack of significance. b ANCOM-BC of bulk
phages infecting the families depicted in a and with host predictions at the species level. € Same as b for VLP phages. For a and b, n=97/n=99
biologically independent samples for MetS and controls, respectively. For €, n = 24 biologically independent samples for both MetS and controls. Points
show the log fold change as given by ANCOM-BC, error bars denote the standard error adjusted by the Benjamini-Hochberg procedure for multiple testing.
In b and ¢ only, significant species are shown (g < 0.05) for brevity. Source data are provided as a Source Data file.

Notably, the Ruminococcaceae and Clostridiaceae bacteria were
significantly more abundant in controls, while their bulk phages
slightly trended toward MetS. This likely indicates that the
various species within these families are unevenly predated
upon by phages.

We next performed ANCOM-BC on a subset of 2440 VCs
that infected within the most abundant host families and for
which host predictions were resolved to the species level
(Fig. 3b). This showed that MetS bulk viromes were dominated
by phages infecting Ruminococcaceae, Clostridiaceae, Bacter-
oidaceae, and Streptococcaceae. Phages infecting species belong-
ing to the former two families were also differentially abundant
among controls, together with those infecting Bifidobacteriaceae
species. Due to difficulties in taxonomic assignments across
metagenomic and 16s rRNA amplicon datasets, we were unable
to ascertain whether these specific host species were also
differentially abundant in bacteriomes. However, the species
found as significantly differentially abundant hosts in MetS and
control bulk viromes largely conformed with previous findings
linking these bacteria to either MetS and related diseases or

healthy gut microbiomes®*. Among free-floating viromes, the
top 12 most common host families were the same as in the bulk
populations, though no host family was differentially abundant
in free-floating populations. At the host species level, differ-
ential abundance patterns lined up remarkably well to those in
the bulk viromes, reflecting how both phage populations mirror
each other (Fig. 3¢).

The findings that Bacteroidaceae phages were more abundant
in MetS led us to analyze abundance of the widespread
Crassvirales gut phage order, members of which infect in this
family3>30. Notably, while Crassvirales phage relative abundance
did not significantly differ between MetS and controls in either
free-floating or bulk phage populations, they were significantly
more prevalent in control bulk viromes (prevalence controls: 78/
99 participants, MetS: 58/97, Fisher’s exact test, p = 0.005). This
apparent depletion of Crassvirales phages in MetS bulk viromes
may indicate a decrease in their infectiousness, and is to our
knowledge the first link observed between this prominent human
gut phage order and a disease state. Alterations to Crassvirales
phage composition may thus occur at an individual level.
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Fig. 4 Among significantly differentially abundant VCs some are related. a \VCs identified by ANCOM-BC as significantly abundant (g < 0.05 after
implementing the Benjamini-Hochberg procedure for multiple testing). Points show the log fold change as given by ANCOM-BC, error bars denote the
standard error adjusted by the Benjamini-Hochberg procedure for multiple testing. The analysis was adjusted for smoking, age, sex, alcohol use, and
metformin use. Red arrows mark related VCs further depicted in b. Taxonomic names to the right of the plot denote host predictions, which are colored as

follows: Firmicutes, gray, Bacteroidetes; red, Actinobacteria; green, Proteobacteria; pink. The full taxonomies are listed in Supplementary Data 1and 3. n=97/
n =99 biologically independent samples for MetS and controls, respectively. b Whole-genome analysis of four contigs that belong to the VCs marked by

red arrows in a. The top and bottom contigs are zoomed in on the prophage region. The read coverage depth of these contigs in samples where they are
present/absent is depicted in the graphs at the top and bottom. The nine genes shared by all Candidatus Heliusviridae are colored red, and numbered as
follows: 1: DUF2800-containing, 2: DUF2815-containing, 3: DNA polymerase |, 4: nuclease (VRR-NUC-containing), 5: SNF2-like helicase, 6: terminase large
subunit, 7: portal protein, 8: Clp-protease, 9: major capsid protein. Source data are provided as a Source Data file.

Bacteroidaceae VCs are markers of the MetS virome. The abundant in MetS participants, and sixteen more in controls
above results all indicate that MetS gut bulk viromes are distinct (g < 0.05, Fig. 4a).

from those in healthy individuals. In light of this, we surveyed In line with the above findings that Bacteroidaceae VCs are
our cohort with ANCOM-BC for individual VCs that hallmarks of the MetS bulk virome, six of the seventeen MetS-
were correlated with bulk viromes in either MetS or healthy associated VCs with a positive host prediction infected this
This uncovered thirty-six VCs that were more family. One of these (VC_1838_0) contained a non-prophage

controls.
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contig (i.e., no detected bacterial contamination) of 34,170 bp
with a checkV?? completion score of 100%. It further co-clustered
with a contig that checkV identified as a complete prophage
flanked by bacterial genes. Analysis with the contig annotation
tool (CAT3’) identified this contig as Bacteroides fragilis.
Additionally, the most complete VC_1838_0 contig shared 6/69
(8.7%) ORFs with Bacteroides uniformis Siphoviridae phage
Bacuni_F138 (BLASTp bit score > 50). Besides this, none of the
contigs shared marked homology with any isolated phages found
in the NCBI nucleotide databases (nr/nt). Some of them did,
however, show significant similarity (BLASTn bit score > 50) to
phage genomes from an earlier publication by Tisza et al.3
studying a large phage database in relation to various diseases.
Most notably, the largest contig from VC_977_13 (checkv
completeness 90.32%) was identical over 99.98% of its genome
to a phage that Tisza et al. determined to be significantly
associated with fatty liver and atherosclerosis, both diseases
related to MetS. We found similar results (with 78% aligned
nucleotides from a complete genome) for Bacteroidaceae
VC_1838_0, of which the most similar Tisza et al. genome was
related to atherosclerosis and cirrhosis, as well as for VC_1221_0
(with 62% aligned nucleotides from an 83% complete genome),
where relations to atherosclerosis and obesity were found. These
disease correlations from independent cohorts support our
findings linking these Bacteroidaceae VCs to MetS.

A widespread phage family contains markers for healthy and
MetS viromes. Besides the above-mentioned Bacteroidaceae VCs,
all other differentially abundant VCs with host links, twenty-six
MetS- and nine control-associated, infected Firmicutes, particu-
larly in the Clostridiales order. The sole exceptions to this
remarkably had CRISPR protospacer matches to multiple phyla:
either Firmicutes and Proteobacteria, Fimicutes and Bacteroidetes,
or Firmicutes, Bacteroidetes and Actinobacteria (Fig. 4a). Though
this might result from taxonomically closely related phages that
infect taxonomically distant hosts, we also observed one genome
fragment in VC_1766_1 that had CRISPR spacer hits from hosts
in multiple phyla. This indicated that this may be a phage with an
extraordinarily broad host range.

Besides this broad host range VC, our attention was drawn to
MetS-associated Clostridiales VC_818_0 and VC_1639_0. Both
were predicted to infect hosts from Clostridium clusters IV and
XIVa#0, which are usually associated with healthy gut micro-
biomes. Further examination of their largest genomes revealed
that they were remarkably similar to each other and to two VCs
that were significantly associated with healthy controls: Faecali-
bacterium/Clostridium methylopentosum VC_1801_0 and Oscilli-
bacter/Ruminococcaceae VC_803_0 (Fig. 4b).

Intrigued by this apparent relatedness of VCs that included
markers of MetS and healthy controls among our cohort, we
sought to identify additional related sequences among our cohort.
For this, we first determined the exact length of a full VC_818_0
genome by analyzing read coverage plots of a prophage flanked
by bacterial genes (Fig. 4b). By analyzing coverage of the contig in
subjects where bacterial genes were highly abundant but viral
genes were absent, we extracted a genome of 68,665bp long.
Homology searches of all 74 ORFs encoded by this prophage
against all ORFs from all phage contigs in the cohort identified
261 contigs of over 30,000 bp that all shared nine genes (BLASTp
bit score > 50, Fig. 4b), including thirteen assembled from VLP
datasets. Additionally, we identified 61 Siphoviridae phage
genomes in the National Center for Biotechnology Information
(NCBI) nucleotide database that also shared these nine
genes. With one exception, these were Streptococcus phages, the
exception being Erysipelothrix phage phil605.

The genes shared by all these phage genomes formed three
categories. First are genes encoding structural functions: a major
capsid protein, portal protein, CLP-like prohead maturation
protease, and terminase. The second group are transcription-
related genes encoding a DNA polymerase I, probable helicase,
and nuclease. Finally, there are two genes that encode domains of
unknown function, but which given their adjacency to the second
group are likely transcription-related.

Earlier studies have used a cutoff of 10% gene similarity for
phages that are in the same families, 20% for subfamilies, and
40% for genera*!*2, while the international committee for the
taxonomy of viruses (ICTV) proposes that phages that form a
monophyletic group and share a significant number of genes
constitute a family*3. The nine shared genes form 10-25%
of ORFs found on both the characterized phages and non-
provirus contigs with checkV ‘high-quality’ designations. We thus
tentatively classify these phages as a family, which we dubbed the
Candidatus Heliusviridae. Next, we further studied the inter-
relatedness of Ca. Heliusviridae phages by performing pairwise
blastp searches for all genes. The resulting bit-score table was
then used to form protein clusters?’, from which we calculated
the pairwise percentages of shared protein clusters. Hierarchical
clustering of the results showed that Ca. Heliusviridae phages
form three groups (Fig. 5a). As the complete genomes in these
groups shared less than 70% average nucleotide identity across
their genome (median: 28.9%, 48.7%, and 21.8%, Fig. 5a), and
following proposed guidelines*3, these clusters form subfamilies.
We thus designated them the alphaheliusvirinae, betaheliusvir-
inae, and gammaheliusvirinae. We confirmed these findings by
building a concatenated approximate maximum-likelihood phy-
logenetic tree from alignments of nine conserved Ca. Heliusvir-
idae genes. This also showed three main clades that almost
completely aligned with the three groups based on shared protein
cluster content (Fig. 5b, Supplementary Data 6 and 7).

Members of the Ca. Heliusviridae were present in the bulk
phage populations of 190/196 participants (96.9%), 97 controls
and 93 MetS participants (Fig. 5¢). Among datasets of VLP phage
populations, Ca. Heliusviridae phages were found in 25/48
participants (52.1%), 16 controls and 9 MetS, thus precluding
the notion that they are defective prophages. It furthermore
revealed that this phage family is a part of the core human gut
microbiome. To validate our findings, we used three independent
cohorts: the phage database constructed by Tisza et al. mentioned
above®® and one cohort each studying gut virome relations to
hypertension** and type 2 diabetes!!. To allow for incomplete
assemblies, we searched for contigs in these three cohorts that
contain the four conserved Ca. Heliusviridae structural genes. A
phylogenetic tree containing concatenated alignments of the
structural genes revealed two things. First, it clearly showed that
contigs from all validation cohorts were interspersed among both
Ca. beta- and gammaheliusvirinae. Second, the presence of
divergent clades which did not contain any of the genomes in
which earlier we identified all nine characteristic Ca. Heliusvir-
idae genes hinted at further extensive diversity of the phage
family (Supplementary Fig. 6). Among the gut viromes from an
earlier cohort composed of school-aged children, of which 10
were controls, 10 were obese, and 8 had MetS, we further found
Ca. Heliusviridae in 7/10 controls, while among obese and MetS
they were present in 4/10 and 4/8, respectively.

Among the two cohorts studying hypertension and type 2
diabetes, Ca. Heliusviridae phages were present in 137/196
(69.9%, hypertension) and 98/145 (67.6%, T2D) participants
(Supplementary Fig. 8). Meanwhile, for the 775 contigs with the
four Ca. Heliusviridae structural genes, Tisza et al. previously
determined the prevalence in the human microbiome project4°.
The data pertaining to this provided by Tisza et al. indicated that
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phage database were present in over 50% of human microbiome
project participants, of which two had a prevalence of over 80%.
Thus, not only are Ca. Heliusviridae phages as a family
widespread in the human microbiome, several individual phage
strains within it may be highly prevalent. In addition to
prevalence, Tisza et al. also tested links between phages and
various disease states. Among the Ca. Heliusviridae phages
derived from this database, we found 74 that were previously
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significantly linked to obesity, and a further 82 related to various
other cardiovascular diseases (non-alcoholic fatty liver/steatohe-
patitis, atherosclerosis, and type 2 diabetes). Our findings relating
Ca. Heliusviridae phages to MetS are thus in line with findings
relating to the Tisza et al. phage database.

Ca. Heliusviridae subfamilies have distinct relations to MetS.
The Ca. alphaheliusvirinae solely contained previously isolated
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Fig. 5 Three VCs that are hallmarks for either MetS or healthy control viromes are part of the widespread Candidatus Heliusviridae family of gut
phages. a heatmap and hierarchical clustering of pairwise shared protein cluster values for 261 contigs from the current study and 61 previously isolated
phages that all shared the same nine core Ca. Heliusviridae genes (blastp > 50). The dendrogram is cut to form three clusters, which are color coded above
the heatmap as Ca. alpha- (green), beta- (yellow), and gammaheliusvirinae (purple). The top row of colors beneath the dendrogram denote the differentially
abundant VCs, from left to right: VC_1639_0 (blue), VC_803_0 (green), VC_1801_0 (red), and VC_818_0 (purple). The legend denotes percent of total
protein clusters that are shared. As some core genes formed several protein clusters, values can be below 10%. b An unrooted approximate maximum-
likelihood tree built from a concatenated alignment of nine genes shared by all genomes in a, with colors defining subfamily membership according to
a, and with the VCs significantly differentially abundant in either MetS or controls denoted. Dots on tree branches signify bootstrap values >95. ¢ the
prevalence of the Candidatus Heliusviridae groups among bulk and VLP phage populations. d The relative abundances of the Candidatus Heliusviridae and the
groups in bulk phage populations. n =97/n = 99 biologically independent samples for MetS and controls, respectively. Q values are denoted as follows * <
0.05, ** £ 0.01, *** < 0.001, **** < 0.0001. Box plots show the median (middle line), 25th, and 75th percentile (box), with the 25th percentile minus and
the 75th percentile plus 1.5 times the interquartile range (whiskers), and outliers (single points). Source data are provided as a Source Data file.

Streptococcus phages, which both in the hierarchical clustering
and the phylogenetic tree were distinct from the other genomes.
Meanwhile, three of the four VCs that were significantly asso-
ciated with either MetS (1) or controls (2) where part of the Ca.
gammaheliusvirinae, by far the largest and most diverse group.
Two of these, VC_818_0 and VC_1801_0, formed monophyletic
clades in both hierarchical clustering and phylogenetic tree.
Meanwhile, VC_803_0 was conversely spread out over multiple
clades, indicating it was more heterogenous than the other two.

Of the subfamilies, phages in the Ca. gammaheliusvirinae were
the most prevalent, being present in the bulk phage populations
of 95 controls and 88 MetS participants. These phages were also
significantly more abundant in the controls (Wilcoxon signed-
rank test, p=0.011, Fig. 5d) as a whole, despite the fact that in
contains the MetS-associated VC_818_0. Among VLP popula-
tions, we also identified them in 15/24 controls and 9/24 MetS
participants, though there was no significant difference in
abundance. The bacterial hosts of these phages were predicted
to be within various families in the Clostridiales, as well as the
Veillonellales, Coriobacteriales, and Acidaminacoccales.

While less prevalent than Ca. gammaheliusvirinae phages, Ca.
betaheliusvirinae phages were still identified in the bulk phage
populations of 44 controls and 57 MetS participants (Fisher’s exact
test p=0.047, Fig. 5c), though they were not significantly more
abundant in the latter (Wilcoxon signed rank test, p = 0.063).
Remarkably, Ca. betaheliusvirinae phages were completely absent
from MetS VLP phage populations whereas they were present in 6/
24 controls, making the difference in prevalence significant
(Fisher’s exact test p=0.022). These results show that Ca.
Heliusviridae phages are part of both the core human gut bulk
and VLP viromes. Counter to Ca. gammaheliusvirinae, all host
predictions of Ca. betaheliusvirinae phages were within the
Clostridiales. In summary, Ca. gammaheliusvirinae is the largest
and most prevalent subfamily of Ca. Heliusviridae phages, which as
a whole is more related to the healthy human virome, while Ca.
betaheliusvirinae phages are more prevalent in MetS bulk viromes
but depleted among VLP populations.

MetS-associated Ca. gammaheliusvirinae prophages encode
possible metabolic genes. Members of the Ca. Heliusviridae are
generally linked to bacteria that are associated with healthy
human gut microbiomes. It is thus an apparent contradiction that
Ca. Heliusviridae VC_818_0 (Ca. gammabheliusvirinae), which is
associated with MetS viromes, contains phages that infect Rose-
buria, which is a short chain fatty acid producer and is often
abundant in healthy microbiomes*®. Due to this contradiction, we
explored the phages in this VC further. These included two
additional prophages, which where both incomplete (Fig. 6a,
Supplementary Data 4). Whole-genome alignment showed that
all three prophages shared their phage genes, and that the two
incomplete ones also shared host-derived genes. Homology

searches of the bacterial host ORFs found on these two contigs
against the NCBI nr database (BLASTp, bit score 250) showed
that the most common top hits were Blautia, and for the plurality
Blautia wexlerae (Fig. 6a). Thus, VC_818_0 likely contains tem-
perate phages with narrow host ranges that infect bacteria spread
out across at least two genera within the Lachnospiraceae.

To examine if the hosts infected by VC_818_0 phages were
more abundant in MetS participants, we determined mean
coverage of bacterial genes found adjacent to the prophages. We
thus assured that we analyzed the particular host strains infected
by these phages, rather than unrelated strains in the same genera.
This showed that both the Blautia and the Roseburia host genes
were more abundant among MetS participants (Wilcoxon signed-
rank test, Blautia p = 5.1 x 10~4, Roseburia p = 0.042, Fig. 6b, c).
The specific Lachnospiraceae strains infected by VC_818_0
phages thus seem to thrive in MetS microbiomes. This could in
part be due to functions conferred upon these bacteria by these
prophages, as particularly the Roseburia prophage which carried
several virulence- and metabolism-related genes, including
ones encoding a chloramphenicol acetyltransferase 3 (2.3.1.28),
Glyoxalase/Bleomycin resistance protein (IPR004360), multi
antimicrobial extrusion protein (IPR002528), 2-succinyl-6-
hydroxy-2,4-cyclohexadiene-1-carboxylate synthase (4.2.99.20),
and NADPH-dependent FMN reductase (PF03358). The latter
two in particular are both associated with vitamin K (menaqui-
none) metabolism, which is part of (an)aerobic respiration in
bacteria?’. We speculate that this opens up the possibility that
this Roseburia prophage aids its host bacterium, which in turn
may contribute to MetS phenotypes.

Discussion

This is the first study of adult gut viromes in the context of MetS,
a widespread global health concern to which the gut bacteria
targeted by phages are believed to be a main contributor!8. We
have shown that MetS is associated with decreases in gut bulk
virome total relative abundance and richness, but not in evenness.
Due to their compositional nature, these virome alterations could
be bacterially driven, as phage total relative abundance decreases
could be caused by bacterial counts increasing rather than phage
counts decreasing. But since we measured decreased bacterial
richness and evenness, MetS gut metagenomes would need to
have larger numbers of bacterial cells that are distributed among
fewer strains that are more unevenly divided than in healthy
individuals. Conversely, total phage relative abundances could be
lower in MetS due to lower viral loads, which would be in line
with decreased phage richness and is in agreement with recently
reported direct correlations between gut viral and bacterial
populations in healthy individuals#. Future confirmation of this
would necessitate counts of viable bacterial cells and VLP. In
either case, we surmise that the main driver of these effects is diet,
which affects bacterial#®->! as well as viral®2 populations. It is also
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possible that phage populations as described here may further
exacerbate bacterial diversity losses, as low phage abundance may
decrease their positive effects on bacterial diversity>>*4. Our
findings of increased richness and diversity in the bulk viromes
were in line with a recent study of MetS among 28 school-aged
children?3. Interestingly, their results pertained to VLP datasets,
which in our study showed no significant differences in richness
and diversity. This could reflect the difference in cohort size, as
we analyzed double the number of participants, or the previously
reported changes in the gut virome with increasing age!.

We further found strong negative correlations between the risk
factors that constitute MetS and bulk phage richness, but not
evenness. This likely stems from the nature of bulk viromes,
which reflect phages that are actively engaging with their hosts.
As phages that target depleted bacteria are more likely to be low
in abundance and extracellular, they are not observed among bulk
viromes. Thus, the apparent species richness drops because low
abundant extracellular phages are below the detection limit of our
sequencing approach. This removal of rare phages in turn pro-
hibits significant drops in species evenness in MetS. It could also
be that bacteria depleted in MetS reside in phage-inaccessible
locales within the gut®, which perhaps results in removal of the
corresponding phages from the gut to below detectable levels.
This would explain the stronger correlation between bacterial
evenness than richness to MetS risk factors.

As most (gut) phages remain unstudied!4>9, it is often difficult
to link phages to host bacteria®’. Here, we linked roughly one
third of all VCs to a bacterial host. The remaining majority of
VCs likely represent phages that infect bacterial lineages lacking
CRISPR systems?8, or that integrate into hosts which we could
not taxonomically classify. Whichever is the case, our study
underscores the great need for methods that link phages to hosts
with high accuracy®®%0. From the phage-host linkages that we
obtained, we found that VCs containing phages infecting specific
bacterial families tend to be either depleted (Bifidobacteriaceae) or
enriched (Streptococcaceae and Bacteroidaceae) in tandem to their
hosts. We notably found that several other bacterial families
(Enterobacteriaceae, Lachnospiraceae, Ruminococcaceae, Rike-
nellaceae, and Clostridiaceae) were either significantly depleted or
elevated in MetS microbiomes, but the accompanying phages
were not. Though this could reflect an unevenness in predation
by phages among the various bacterial families in the gut, it more
likely results from the inability to link the majority of VCs to
bacterial hosts, as mentioned above.

The identification of Bifidobacteriaceae bacteria and their
phages as more abundant among healthy controls is in line with
established studies that show depletion of these families in MetS%2
and MetS-associated disease states’?. Phages infecting both the
Bifidobacteriaceae as a whole and specific Bifidobacteria species
were strikingly only elevated in abundance among bulk viromes.
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Their absence among VLP populations may imply a preference of
Bifidobacteriaceae gut phages toward intracellular lifestyles. This
in turn could explain the dearth in isolated virulent Bifido-
bacterium phages when compared to other Actinobacteria
lineages®!. For the MetS-associated host families, Streptococcaceae
are known to be more abundant in obesity-related ilnesses®*.
Within the Bacteroidaceae, the Bacteroides are often positively
associated with high-fat and high-protein diets®263. Simulta-
neously, however, reports disagree on individual Bacteroides
species and their associations with MetS-related diseases like
obesity, type 2 diabetes, and non-alcoholic fatty liver disease®*.
Such conflicting reports likely reflect the large diversity in
metabolic effects at strain level among these bacteria®. Based on
our results, we drew two conclusions. First, that Bacteroidaceae-
linked VCs mirror their hosts in MetS-associated relative abun-
dance increase, and second that Bacteroidaceae-linked VCs are of
significant interest to studies of the MetS microbiome. The latter
conclusion is strengthened by findings that Bacteroides prophages
can alter bacterial metabolism in the gut®.

While Bacteroidaceae VCs at large were thus seemingly asso-
ciated with MetS phenotypes, we did not find higher abundance
of Crassvirales phages in MetS. However, we did find higher
prevalence of these phages in the bulk viromes of healthy con-
trols. This widespread and often abundant human gut phage
family infects Bacteroidetes, including members of the
Bacteroidaceae®>%. As these phages are commonly linked to
healthy gut microbiomes#2:66:67, it is conceivable that they would
be negatively correlated with MetS viromes. But due to the great
variety within this family®, and perhaps also the hypothesized
aptitude of Crassvirales phages for host switching through
genomic recombination®®, more detailed study is needed to elu-
cidate the exact links of this family to MetS gut viromes despite
the apparent elevated abundance of their hosts.

Finally, our study revealed the Candidatus Heliusviridae, a
highly widespread family of gut phages that largely infect Clos-
tridiales hosts. This prospective family is also expansive, and
includes at least three distinct groupings. Our uncovering of this
human gut phage family underscores the usefulness of database-
independent de novo sequence analyses2”-30:68, as well as the need
for a wider view on viral taxonomy than has presently been
exhibited in the field of gut viromics.

The Ca. Heliusviridae are of particular interest to studies of
MetS and related illnesses because its member phages include
some associated with MetS and others with healthy controls.
Most striking is the fact that most of the bacteria infected by
MetS-associated Ca. Heliusviridae phages are generally producers
of short chain fatty acids (SCFA) such as butyrate and commonly
depleted in MetS3%. Such SCFA-producing bacteria are com-
monly positively associated with healthy microbiomes, as SCFAs
that result from microbial digestion of dietary fibers have a role in
the regulation of satiation®70, The exception to this is the Veil-
lonellaceae that is infected by a phage the Ca. gammaheliusvir-
inae, which displays elevated abundance in non-alcoholic fatty
liver disease®*. While higher abundance of some of the other
butyrate-producers infected by Ca. Heliusviridae phages is asso-
ciated with metformin use”!, this is used to treat type 2 diabetes
rather than MetS.

Particularly interesting are the Roseburia/Blautia phages in
VC_818_0, which was the most strongly correlated with MetS out
of all VCs. The positive correlation between the relative abun-
dance of these phages and that of their hosts indicates that they
have a stable relation with their hosts in the MetS microbiome.
This is to be expected, as large-scale prophage induction is gen-
erally associated with sudden alterations to the microbiome, such
as the addition of a specific food supplement that acts as an
inducer of prophages®. Such sudden alterations in phage behavior

are unlikely to be captured in large cohorts with single mea-
surements. In fact, as phages are strongly dependent on their host,
one might expect the abundance of many gut phages to be
positively correlated to that of their particular hosts under the
relatively temporally stable conditions of MetS. The strong cor-
relation of VC_818_0 to MetS phenotypes, coupled to the com-
monly found correlation to healthy microbiomes of VC_818_0
host bacteria, and the presence of potential auxiliary metabolic
genes in VC_818_0 phage sequences combined introduce the
possibility that prophage formation of these Ca. Heliusviridae
phages alters the metabolic behavior of their host bacteria, as is
known to happen in marine environments’?73. This could make
these bacteria detrimental to health. Proving this hypothesis
necessitates future isolation of VC_818_0 phages.

Despite efforts to catalog the human gut virome!432, tax-
onomically higher structures are still largely absent. This study
shows the worth of analyzing phages at higher taxonomic levels
than genomes or VCs, similarly to what has been shown in recent
years regarding the Crassvirales phage order!>16, Unlike the
Crassvirales, however, Ca. Heliusviridae phages seem to be strongly
correlated with human health. We hope that further research will
provide a deeper understanding of the effect that these phages have
on their bacterial hosts and the role that this plays in MetS, as well
as a refinement of their taxonomy.

Methods

Whole-genome shotgun sequencing. The Healthy Life in an Urban Setting
(HELIUS) cohort includes some 25,000 ethnically diverse participants from
Amsterdam, the Netherlands. The cohort details were published previously?¢. The
HELIUS cohort conformed to all relevant ethical considerations. It complied with
the Declaration of Helsinki (6th, 7th revisions), and was approved by the
Amsterdam University Medical Centers Medical Ethics Committee. All partici-
pants provided written informed consent. For details on stool sample collection
from among the participants, their storage, and DNA extraction, see Deschasaux
et al.’4, In summary, participants were asked to deliver stool samples to the
research location within 6 h after collection with pre-provided kit consisting of a
stool collection tube and safety bag. If not possible, they were instructed to store
their sample in a freezer overnight. Samples were stored at the study visit location
at —20 °C until daily transportation to a central —80 °C freezer. Total genomic
DNA was extracted using a repeated bead beating method described
previously’47>. Libraries for shotgun metagenomic sequencing were prepared
using a PCR-free method at Novogene (Nanjing, China) on a HiSeq instrument
(Ilumina Inc. San Diego, CA, USA) with 150 bp paired-end reads and 6 Gb data/
sample. All bioinformatics software was run using standard settings, unless
otherwise stated.

Following previously set definitions’®, participants were classified in the MetS
group if three of the following five health issues occurred: abdominal obesity
measured by waist circumference, insulin resistance measured by elevated fasting
blood glucose, hypertriglyceridemia, low serum high-density lipoprotein (HDL),
and high blood pressure’®. All participants of the HELIUS cohort reside in
Amsterdam, the Netherlands. Participants were roughly evenly divided by
ethnicity, with European Dutch comprising 49 controls and 49 MetS participants,
and African Surinamese 50 controls and 49 MetS participants. The MetS group
contained 55 women and had a median age of 58 (mean 56.8 + 8.09), and the
controls 71 and had a median age of 50 (mean 49.1 + 12). Of the 196 participants,
26 used metformin, of whom 2 were controls who did not concur to the MetS
criteria.

VLP isolation and DNA extraction. To gain a full understanding of the dsDNA
virome in the current cohort, we performed viral-like particle (VLP) sequencing on
fecal matter from a subset of 48 participants. These included 24 controls and 24
MetS participants, with each group being composed of 12 European Dutch and 12
African Surinamese persons. This sub-selection was balanced for age (controls
55.9 + 8.47, MetS 58.7 + 7.05, Wilcoxon signed-rank test, p=10.27) and sex (con-
trols 14 women, MetS 14 women).

Studies of the VLP fractions were modelled after Garmaeva et al.”” and
Shkoporov et al.”8. First, 0.5 g of feces were resuspended in 5 ml of sterile SM buffer
(100 mM NaCl, 8 mM MgSO,4 x 7H,0, pH 7.5), chilled on ice for 10 min and
centrifuged at 27,000 x g for 10 min at 4 °C. Supernatant was collected and filtered
through a 0.45 um pore polyethersulfone membrane filter, whereafter the volume
of the filtrate was adjusted to 5 ml. Next, free DNA was digested by incubating the
VLPs with 5 pl 2.5 U/pl of DNase I (ThermoFisher Cat#R0561) and 555 pl of 10x
DNase buffer at 37 °C for 1 h. VLPs were lysed by the addition of 100 pl of 100 mg/

| (2022)13:3594 | https://doi.org/10.1038/s41467-022-31390-5 | www.nature.com/naturecommunications 1


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

ml SDS (Invitrogen Cat#1.5525.017) and 2.5 pl of 20 mg/ml proteinase K (Promega
Cat#MC5005) to the samples, which were incubated at 56 °C for 1h.

Nucleic acids were purified using a two-step phenol/chloroform extraction
protocol. First, samples were extracted by mixing with an equal volume (5.7 ml) of
phenol/chloroform/isoamyl alcohol 25:24:1 (Sigma Cat#77617) followed by
centrifugation at 4000 x g for 10 min at room temperature. Subsequently, 5.2 ml of
the aqueous upper phase was mixed with an equal volume of chloroform (Merck
Cat#102445) and again centrifuged as described above. To precipitate the
nucleotides, 4.7 ml of aqueous phase was mixed with 470 pl 3 M sodium acetate
(pH 5.2), 4.7 pl glycogen (ThermoFisher Cat#R0561) and 14.2 ml ice-cold absolute
ethanol (Merck Cat#100983) and incubated at —20 °C for 1-2 h. Samples were
centrifuged at 21,000 x g for 15 min at 4 °C, after which the pellet was washed with
500 pl 70% ethanol. After air drying the pellet for ~20 min, the pellet was
resuspended in 500 pl ultrapure RNase/DNase-free water (ThermoFisher
Cat#10977-035). The resulting solution was subjected to a final round of
purification using the DNeasy Blood&Tissue kit (Qiagen Cat#69506) according to
the manufacturer’s protocol, with a final elution volume of 100 pl.

Metagenomic sequencing of VLP DNA. Next, library preparation was per-
formed using the NEBNext Ultra I FS DNA library prep kit (New England
Biolabs Cat#E7805L), complemented with the NEBNext Multiplex Oligos for
Ilumina (New England Biolabs Cat#E7600S) dual indexes according to the
manufacturer’s protocol. Fragmentation with the FS enzyme mix was performed
for 5 minutes and the NEB adapters for Illumina were diluted 10 times to
prevent dimer formation due to the low input DNA concentrations. After
adapter ligation, DNA fragments of 300-500 bp were purified and subsequently
amplified with 10 PCR cycles during the PCR enrichment step. After final clean-
up, the quality and concentration of the VLP libraries were assessed with the
Qubit dsDNA HS kit (ThermoFisher Cat#Q32854) and with the Agilent High
Sensitivity D5000 ScreenTape system (Agilent Technologies). Libraries were
sequenced using 2 x 150 bp paired-end chemistry on an Illumina NovaSeq 6000
platform with the S4 Reagent Kit v1.5 (300 cycles).

Read trimming and contig assembly. For both WGS and VLP datasets, post-
sequencing data analysis was identical. Analysis of sequencing output started with
adapter trimming and quality control of sequencing reads using fastp v0.23.17%,
using standard settings. Trimmed reads were mapped to the human genome
(GRCh37) using bowtie2 v2.4.08%, which showed that samples contained
0.13+0.26 % human reads. High-quality reads were then assembled per sample
(i.e., 196 WGS and 48 VLP assemblies) into contigs using the metaSPAdes
v3.14.1 software®!. For each sample, we selected contigs of more than 5,000 bp for
further analysis. In addition, among contigs between 1,500 and 5,000 bp we
identified circular contigs by checking for identical terminal ends using a custom R
script that employed the Biostrings R package v3.1282. Assemblies yielded a total of
9,108,147 circular contigs and contigs over 5,000 bp. Three VLP samples were
subsampled differently due to memory issues encountered in assemblies. These
were S038 and S192 (subsampled to 40 million read pairs), and S069 (subsampled
to 25 million read pairs).

Phage and bacterial sequence selection. For phage sequences we followed
Gregory et al.33. We first analyzed contigs using VirSorter v1.0.6%4, which analyses
both distant protein homologies to viral hallmark genes and genome architecture,
and selected those in category 1, 2, 4, and 5. In parallel, contigs were analyzed using
VirFinder v1.1, which predicts viral sequences with a machine-learning approach,
after which we selected those with a score above 0.9 and a p-value below 0.05. We
additionally classified contigs as phage if (I) they were both in VirSorter categories
3 or 6 and had VirFinder scores above 0.7 with p-values below 0.05, and (II)
annotation with the contig annotation tool (CAT) v5.1.2%7, which classifies contigs
using blastp against the NCBI nr protein database, was as “Viruses” or “unclassi-
fied” at the superkingdom level. After removing those with CAT classifications as
Eukaryotic viruses, this resulted in a database of 45,568 phage contigs. Bacterial
sequences were predicted by selecting all contigs that CAT annotated in the
“Bacteria” at the superkingdom level, and removing contigs that were also found in
the phage dataset. An exception was made for prophage contigs in VirSorter
category 4, 5, and 6, which were left among the bacterial dataset (see “Phage-host
linkage prediction”). This resulted in a total of 1,579,361 bacterial contigs. The
1,624,929 bacterial and phage datasets were then concatenated and deduplicated
using dedupe from BBTools v38.84 with a minimal identity cutoff of 90% (option
minidentity = 90). This identified 759,403 duplicates and resulted in 829,633 non-
redundant bacterial sequences and 25,893 non-redundant phage sequences. While
the bacterial sequences were used for host prediction (see “Phage-host linkage
prediction”), we subsequently predicted open reading frames (ORFs) in phage
contigs using Prodigal v2.6.28> (option -p meta). These ORFs were then used to
group phage sequences in viral clusters (VCs) using vContact2 v0.9.1827. For a full
accounting of phage contigs, see Supplementary Data 1 and 3. All phage contigs
were analyzed for completion with CheckV v0.7.0-12° (Supplementary Data 5).
To test the robustness of the metagenomic sequencing, we also analyzed quality
trimmed reads from the bulk sequencing samples with metaphlan v3.0.13 using
standard settings. This analysis identified a total of 632 bacterial species across all

samples (mean: 88.7 + 15.7 species/sample, median: 90). Based on the output,
richness had a significance of 0.035, Pielou evenness 0.027, and Shannon diversity
0.0015 (according to Wilcoxon signed rank test).

Read mapping and community composition. For bacterial community compo-
sition, we used sequencing data targeting the V4 region of the 16s rRNA gene that
had been performed previously’48¢. Details on ASV construction from these
samples was described previously in Verhaar et al.8¢. As part of this previous
analysis, samples with fewer than 5000 read counts had been removed, and samples
had been rarified to 14932 counts per sample.

To determine phage community composition, we mapped reads from each
sample to the non-redundant contig dataset using bowtie2 v2.4.080. As previously
recommended3’, we removed spurious read mappings at less than 90% identity
using coverM filter v0.5.0 (unpublished; https://github.com/wwood/CoverM,
option -min-read-percent-identity 90). The number of reads per contig was
calculated using samtools idxstats v1.1087. As was also recommended?’, contig
coverage was calculated with bedtools genomecov v2.29.288, and read counts to
contigs with a coverage of less than 75% were set to zero. Read counts for each
sample were finally summed per VC. For analyses of alpha- and beta-diversity, we
adjusted read counts for contig length and library size by calculating reads per
kilobase per million mapped reads (RPKM). Where samples were directly
comparted, RPKM values were made compositional by dividing them by the total
RPKM per sample. On average, 2.71 + 1.3% of WGS reads mapped to viral
sequences (median 2.38%), along with 45.3 +20.4% (median 41.8%) of VLP reads.

Ecological measures. In all boxplots, we tested statistical significance using the
Wilcoxon rank-sum test as it is implemented in the ggpubr v0.4.0R package
(available from: https://cran.r-project.org/web/packages/ggpubr/index.html).
Unless stated otherwise, all plots were made using either ggpubr or the ggplot2
v3.3.2R package (available from: https://cran.r-project.org/web/packages/ggplot2/
index.html). Alpha diversity measures (observed VCs and Shannon H’ for phages
and Chaol and Shannon H’ for bacteria) were calculated using read count tables
with the plot_richness function in the phyloseq R package v1.33.0%. For B-
diversity, we converted read counts to relative abundances using the transform
function from the microbiome v1.11.2R package. We then used the phyloseq
package to calculate pairwise Bray-Curtis dissimilarities and construct a principal
coordinates analysis (PCoA). Statistical significance of separation in the PCoA
analysis was determined with a permutational multivariate analysis of variance
(permanova) using the adonis function from the vegan R package”. For this
analysis, we adjusted for smoking, sex, age, alcohol use, and metformin use. Direct
correlation coefficients between richness and diversity were calculated using the
stat_cor function in the ggpubr R package. The resulting P-values were adjusted for
multiple testing using the Benjamini-Hochberg procedure.

Phage-host linkage prediction. We predicted VC-bacterium links in three ways:
(i) CRISPR protospacers, (ii) prophage similarity, and (iii) characterized phage
similarity.

We predicted CRISPR arrays among the bacterial contigs using CRISPRdetect
v2.4%! (option array_quality_score_cutoff 3) and used these to match bacterial
contigs and phage contigs. In addition, we used a dataset of 1,473,418 CRISPR
spacers that had previously been predicted®2 in genomes contained in the
Pathosystems Resource Integration Center (PATRIC)? database. We matched
CRISPR protospacers to viral contigs using BLASTn v2.12.0-+°4 with the short
option. Spacer hits with less than 2 mismatches were considered valid. This process
resulted in 155,173 spacer hits to PATRIC genomes or to bacterial contigs from this
study with definite CAT classifications at the phylum level (Supplementary Data 2).

To identify predicted phage contigs with high sequence similarity to prophages,
we analyzed which viral clusters contained on of the 7691 bacterial contigs with
VirSorter prophage predictions in category 4 or 5. CAT was subsequently used to
determine the taxonomy of bacterial contigs with prophage regions. In total, we
linked 2,391 VCs to prophages with this approach.

Finally, VCs were linked to bacterial hosts by vContact2 clustering with
characterized phages from the viral RefSeq V85 database”> with a known host. To
achieve this, we selected all VCs from the vContact2 output that contained both
characterized genomes and phage contigs. If all characterized phages infected hosts
within the same bacterial family, we took that to mean that the whole VC infects
hosts from that family. This approach linked 4457 VCs to hosts.

Differential abundance analysis. To determine which bacteria and VCs were
differentially abundant between MetS and control subjects, we employed the
analysis of composition of microbiomes with bias correction (ANCOM-BC)33. This
method, unlike other similar methods like DeSeq2, takes into account the com-
positional nature of metagenomics sequencing data®. To implement this method,
we applied the ANCOM-BC v1.0.2 R package to raw read count tables, as
ANCOM-BC employs internal corrections for library size and sampling biases?>.
Significance cutoff was set at an adjusted p-value of 0.05, p values were adjusted
using the Benjamini-Hochberg method, and all entities (bacteria taxa/VCs) that
were present in more than 10% of the samples were included (options
p_adj_method = “BH”, zero_cut = 0.9, lib_cut = 0, struc_zero = T, neg_lb = F,
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tol = le-5, max_iter = 100, alpha = 0.05). For this analysis, we adjusted for
smoking, sex, age, alcohol use, and metformin use.

Crassvirales phages. To identify Crassvirales phages, we employed a methodology
described earlier*?, for which we first made a BLAST database containing all ORFs
from all phage contigs (predicted before viral clustering, see “Viral and bacterial
sequence selection”) using BLAST v2.9.0+°% We then performed two BLASTp
searches in this database, one with the terminase (YP_009052554.1) and one with
the polymerase (YP_009052497.1) of crAssphage (NC_024711.1), with a bit score
cutoff of 50. All phage contigs that had (i) a hit against both crAssphage terminase
and polymerase and a query alignment of 2350 bp, and (ii) a contig length of >70
kbp were considered Crassvirales phages. This resulted in 287 Crassvirales phage
contigs, which were contained in 88 VCs.

Candidatus Heliusviridae analysis. To detect pairwise similarity, whole genome
analyses were constructed with Easyfig v2.2.5%7. The prophage borders in
NODE_38_length_205884_cov_102.806990 were determined by determining the
read depth along the entire contig from the bam files with read mapping data
(“Read mapping and community composition”) using bedtools genomecov
v2.29.288 with option -bg. Resultant output was parsed and plotted in R. Other
related phages among the cohort were detected by performing a BLASTp search
with all phage ORFs of NODE_38_length_205884_cov_102.806990 against all
phage ORFs of the cohort with Diamond v2.0.4. This identified nine genes that
were present in 249 contigs. The ORFs on these contigs were annotated using
PROKKA v1.14.6%® and InterProScan v5.48-83.0%. To identify isolated phages that
share these nine contigs, we performed a BLASTp against the NCBI nr database
using the NCBI webserver!90 on February 26 2021 and collected all genomes with
hits against all nine genes (bit score > 50).

The phages sharing all nine genes were clustered by analyzing them with
vContact2 v0.9.18%, extracting the protein clustering data and calculating the
number of shared clusters between each pair of contigs. Contigs were clustered in R
based on Euclidean distances with the average agglomeration method.

To build a taxonomic tree, the nine genes were separately aligned using Clustal
Omega v1.2.4101, positions with more than 90% gaps were removed with trimAl
vl.4.revl5192 and alignments were concatenated. From the concatenated
alignment, an unrooted phylogenetic tree was built using IQ-Tree v2.0.319 using
model finder'% and performing 1000 iterations of both SH-like approximate
likelihood ratio test and the ultrafast bootstrap approximation (UFBoot)!%>, Model
finder selected LG + F 4- R8 as the best-fit substitution model. In addition, ten
iterations of the tree were separately constructed, as has been recommended!0®
(IQ-Tree options -bb 1000, -alrt 1000, and—runs 10).

Validation of Ca. Heliusviridae in other cohorts. We used three additional studies
to analyze prevalence of the Ca. Heliusviridae; one composing of 145 participants
used to study the gut virome in type 2 diabetes!!, a second containing 196 parti-
cipants and used to study the gut virome in hypertension?, and a final one
thousands of phages from various sources>®. Reads belonging to the former two
studies were downloaded from the NCBI sequencing read archive (SRA) and
assembled as described above, while for the latter assembled contigs were down-
loaded. After assembly, ORFs were predicted using Prodigal v2.6.2%%. Ca. Helius-
viridae members were identified by blastp using Diamond v2.0.41%7 against ORFs
from each study, in which the terminase, portal protein, Clp-protease, and major
capsid protein of NODE_38_length_205884_cov_102.806990 were used as queries.
This was done instead of all nine signature Ca. Heliusviridae genes to better allow
for incomplete assemblies. Contigs containing all four genes were selected, and a
concatenated alignment was made of the four head genes found in the T2D and
hypertension cohorts, plus all Ca. Heliusviridae in the tree depicted in Supple-
mentary Fig. 7. These were then used to build a phylogenetic tree. The con-
catenated alignment and phylogenetic tree were constructed as described above
under “Candidatus Heliusviridae analysis”.

We further analyzed the data obtained by and earlier study of gut viromes in
MetS among 28 school-aged children?3. We downloaded reads from the NCBI
sequencing read archive (sra). As this this project yielded an average 1.3 +£0.9M
reads, we cross-assembled all 28 samples in one assembly with metaSPAdes with
the same settings as described above (Read trimming and contig assembly). This
yielded 45,112 contigs of more than 1,500 bp, with an average length of 3,702 bp.
No contigs carrying all nine Candidatus Heliusviridae were identified, likely
because this would require a contig of at least 20,000 bp. We thus performed a
blastp using Diamond v2.0.4106 (bit score > 50) against the terminase protein of
NODE_38_length_205884_cov_102.806990, which identified 31 potential
Candidatus Heliusviridae contigs.

Statistics and reproducibility. All statistical analyses were performed in R v4.1.1.
Details on the statistical tests that were applied are indicated in the figure captions
and the results where necessary. The scripts used to perform statistical analyses are
available in Supplementary Data 8. No statistical method was used to predetermine
sample size. No data were excluded from the analysis. The experiments were not
randomized. Participants were allocated into groups based on clinical

measurements of metabolic syndrome-related clinical parameters. Therefore, the
investigators were not blinded to allocation during experiments and outcome
assessment.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The sequencing data generated in this study have been deposited in the European
Genome-Phenome Archive database under accession code EGAS00001006260. The
sequencing data are available under restricted access for restrictions imposed by the
signed consent of participants, access can be obtained by submitting a proposal to the
HELIUS Executive Board as outlined at http://www.heliusstudy.nl/en/researchers/
collaboration, by email: heliuscoordinator@amsterdamumc.nl. The HELIUS Executive
Board will check proposals for compatibility with the general objectives, ethical approvals
and informed consent forms of the HELIUS study. There are no other restrictions to
obtaining the data and all data requests will be processed in the same manner. The data
generated in this study are provided in the Source Data file. The human genome data
used in this study is available at the National centre for biotechnology information
(NCBI) under accession GRCh37 [https://www.ncbi.nlm.nih.gov/assembly/GCF_
000001405.13/]. The CRISPR spacer dataset derived from the PATRIC database is
available from Supplementary Table 1 of ref. 92 [https://academic.oup.com/nar/article/
48/21/12074/5997439%#supplementary-data]. The reads from the validation cohorts are
available from NCBI under the NCBI BioProject accession numbers PRINA646512,
PRJEB13870, PRJNA422434, and PRJNA573942. Source data are provided with

this paper.

Code availability

All code describing the statistical analyses performed in this work can be found in
Supplementary Data 8. For direct access to the underlying data and participant metadata,
see the Data availability statement above.
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