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Abstract

Identifying biomarkers that are associated with different types of cancer is an important goal

in the field of bioinformatics. Different researcher groups have analyzed the expression pro-

files of many genes and found some certain genetic patterns that can promote the improve-

ment of targeted therapies, but the significance of some genes is still ambiguous. More

reliable and effective biomarkers identification methods are then needed to detect candidate

cancer-related genes. In this paper, we proposed a novel method that combines the infinite

latent feature selection (ILFS) method with the functional interaction (FIs) network to rank

the biomarkers. We applied the proposed method to the expression data of five cancer

types. The experiments indicated that our network-constrained ILFS (NCILFS) provides an

improved prediction of the diagnosis of the samples and locates many more known onco-

genes than the original ILFS and some other existing methods. We also performed func-

tional enrichment analysis by inspecting the over-represented gene ontology (GO)

biological process (BP) terms and applying the gene set enrichment analysis (GSEA)

method on selected biomarkers for each feature selection method. The enrichments analy-

sis reports show that our network-constraint ILFS can produce more biologically significant

gene sets than other methods. The results suggest that network-constrained ILFS can iden-

tify cancer-related genes with a higher discriminative power and biological significance.

Introduction

The recent development of high-throughput gene expression profiling provided an opportu-

nity for researchers to better understand the molecular characteristics of the cancer disease,

leading to advances in its diagnosis and treatment. Accurate identification of the cancer diag-

nostic biomarkers is very critical for the provision of appropriate therapies and drug develop-

ment. Some gene mutations, such as BRCA1, BRCA2, VHL, PBMR1 and others were

identified to be correlated with an increased tumor aggressiveness in cancer [1–4]. A few tar-

geted therapies have been designed providing more options for treating patients [5]. However,
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the global incidence and mortality of cancer is still high, 1,806,590 new cancer cases and

606,520 cancer deaths are projected to occur in the United States in 2020 [6]. It is then hoped

that ongoing and planned research will develop more reliable and effective feature selection

methods to identify more predictors of the tumors’ sensitivity to therapy.

In the field of genomics, disease signatures identification has long been a research topic in

which they might revolutionize the way diseases are treated clinically. However, identifying

disease associated genes in gene expression data is challenging due to the high dimensional

features with low sample size. A lot of studies were published that handled this issue and were

employed in the biological analysis [7–12]. From a statistical perspective, it is hard to filter the

true factors in high dimensional data [13]. Published material showed that selected features are

susceptible to the perturbation of the high dimensional training data. One limitation of these

popular methods is that they are merely designed based on statistical or arithmetic points; they

don’t utilize any biological information. Over the past few years, more biological knowledge

and pathway information became available on the Internet, especially that related to cancer.

Some of the biological pathways information can be downloaded from online databases, such

as the Kyoto Encyclopedia of Genes and Genomes (KEGG) [14], Reactome [15, 16] and others.

These pathways are often presented as graphs where the vertices represent genes or gene prod-

ucts and the edges indicate some regulatory relationship between the genes. Such prior biologi-

cal information is a very useful supplement to those graph-based feature selection methods.

Some popular graph-based methods usually combine l_1 penalty with graph regularization

procedure to simultaneously obtain sparsity and smoothness for the linear model analysis [9,

17], while other typical methods are designed based on neural networks and deep learning

frameworks [18]. However, linear correlation does not often appear in genomic data, thus

graph regularization-based models for linear analyses are barely suitable for this task. On the

other hand, deep learning frameworks and neural network methods have the limitation that a

great number of samples is needed in order to obtain a reliable model while small sample size

is a general feature in the field of genomics. In recent years, some achievements have been

made on biomarkers identification by integrating biological network into graph algorithms

[19–22]. Such methods can produce more robust gene sets across datasets from different can-

cer types. But it was found that they may find too many hub genes. Furthermore, the signifi-

cance of genes in such network-based methods is usually evaluated by their neighbors or genes

in the same sub-network. Which means that only a limited number of gene subsets with lim-

ited cardinality would be tested.

In this article, we propose a novel method by introducing a graph filter procedure on ILFS.

ILFS is a graph model-based filter method that was proposed by Giorgio [23]. The motivation

behind applying the ILFS method in our work lies in its logic in ranking features, in which the

significance of a feature is evaluated by considering all possible subsets of features of any cardi-

nality. Integrating the FIs network with ILFS can utilize the interaction information between

genes. In our study, we applied this method to analyze gene expression data for five cancer

types: breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), kidney renal clear

cell carcinoma (KIRC), liver hepatocellular carcinoma (LIHC), and prostate adenocarcinoma

(PRAD). The proposed method showed improved prediction performance and a much higher

selection ratio for known oncogenes than some popular existing methods, including LASSO

[7], mRMR [24], VIP score using PLS-DA [25], ReliefF [26] and the original ILFS. We per-

formed functional enrichment analysis on selected markers and found that the number of

over-represented GO BP terms obtained from the network-constrained ILFS is much higher

than those obtained from other methods. We also performed GSEA on selected biomarkers,

the analysis showed that the network-constrained ILFS generates a more biologically signifi-

cant gene set that is related to the cancer disease than other methods.
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Materials and methods

Data preprocessing

The data for our research is from The Cancer Genome Atlas (TCGA) platform. The data cate-

gory we chose is "transcriptome profiling" and the data type is "Gene Expression Quantifica-

tion". The RNA-Seq expression data of different cancer types is publicly available from

(TCGA, https://portal.gdc.cancer.gov/). First, we downloaded the HT-SEQ FPKM (Fragments

per Kilobase of transcript per Million mapped reads) values of the type primary solid tumor

and solid tissue normal of the BRCA, COAD, KIRC, LIHC, and PRAD cancer types. Accord-

ing to TCGA documentation, the FPKM calculation (1) normalizes read count by dividing it

by the gene length and the total number of reads mapped to protein-coding genes. Then we

converted the FPKM values to TPM (Transcripts Per Kilobase Million) values as it was shown

that TPM values may be more comparable across samples [27]. The conversion follows for-

mula (2). For each sample in our data, 19,754 genes are measured for later analysis.

FPKMi ¼
Ni

M � Li
� 109 ð1Þ

Ni: Number of reads mapped to the gene i
M: Number of reads mapped to all protein-coding genes

Li: Length of the gene in base pairs; calculated as the sum of all exons in a gene i
Note: The read count is multiplied by a scalar (109) during normalization to account for the

kilobase and ’million mapped reads’ units.

TPMi ¼
FPKMiX

j
FPKMj

� 106 ð2Þ

The datasets include paired and non-paired samples and we divided each dataset into two

parts: part one and part two. Part one includes approximately 70% of the paired samples which

are used for feature selection. Part two consists of the remaining paired samples (nearly 30% of

the paired samples) and all of the non-paired samples, which are used for classifier training

and model validation by using a k-fold cross validation process. The "paired" samples mean

that the case and control are from different tissues of the same patient. For such patients, the

gene expression data of primary solid tumor and normal tissue are available. For other

patients, only gene expression data of primary solid tumor are provided, we call them "non-

paired" samples. All of "non-paired" samples belong to one group (Tumor). To avoid the

effects of genetic differences, we do feature selection only on "paired" samples. More detailed

information of the samples and parts is listed in Table 1.

Table 1. The number of samples for feature selection and model estimation.

Cancer Type Part one (Feature Selection) Part two (Validation)

Tumor Normal Total Tumor Normal Total

BRCA 80 80 160 1011 33 1044

COAD 28 28 56 428 13 441

KIRC 50 50 100 481 22 503

LIHC 35 35 70 336 15 351

PRAD 36 36 72 458 16 474

Breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), kidney renal clear cell carcinoma (KIRC), liver hepatocellular carcinoma (LIHC), prostate

adenocarcinoma (PRAD).

https://doi.org/10.1371/journal.pone.0246668.t001
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Method

We implemented our approach through the following steps: (1) select a subset of differential

genes by applying a paired t-test process on the expression data in Part one, (2) select another

set of candidates gene according to the number of their connections in the FIs network, (3)

combine the above-mentioned two sets and reconstruct the FIs network with candidate genes

in the collection, (4) integrate the reconstructed FIs network with ILFS to score the genes. The

flow diagram of our method is plotted in S1 Fig.

Reconstructing the FIs network

Since having a few genes with a very low expression level is statistically meaningless, and per-

forming computations on the whole gene level may be unnecessary, we performed a paired t-

test process on the expression data of Part one samples. The cut-off values in the paired t-test

process were set as FDR<0.05 and |log2 FC|>1, so that the top N genes that showed great dis-

criminative power were filtered for further feature selection.

We also downloaded the FIs network from the Reactome database, which includes the

known pathways in human biology. These pathways are expressed as pairs of genes (ai, bi) and

the regulatory relation between them which can be regarded as directed edges in a graph.

Since our method is graph-based, we also chose the M genes with more than 100 edge connec-

tions in the FIs network. We have tested several edge thresholds and found that 100 is applica-

ble in our study. In the genetic network, the more edges a gene has, the more central role it has

within the network. We united the sets of N genes and M genes into a set T such that T = {N
genes}[{M genes}. We reconstructed the FIs network GF as follows: for each edge (ai, bi) in the

FIs network, if ai2T and bi2T, then the edge and its direction are included in GF. We expressed

this directed graph GF as an adjacent matrix AF, according to the direction of the edge (ai, bi)
that could be forward, backward or bidirectional, the values of the matrix AF were assigned

using formula (3),

Aij ¼ 1 if gene i regulate gene j

Aij ¼ 0 otherwise

(

ð3Þ

Network-constrained infinite latent feature selection

ILFS is one kind of filter methods which rank the features depending on the intrinsic proper-

ties of the data and are not sensitive to the predictive model type. ILFS ranks the features

through three steps: data preprocessing, graph weighting and ranking. In the steps of data pre-

processing and ranking, our network-constrained ILFS does the same thing as the original

ILFS. The second step of graph weighting includes the introduction of the reconstructed FIs.

Initially, the raw feature space X is represented as a set of feature distributions

X ¼ fx1
⃑; . . . ; xn⃑g, where each m×1 vector xi⃑ is the ith feature (gene) with regard to m samples.

In the data preprocessing step, a discriminative quantization process is applied on the raw fea-

ture distributions xi⃑ through which the raw feature vector xi⃑ is mapped to a countable nominal

smaller set of intervals and represented as a descriptor fi, where fi is a t×1 vector (t�m); thus,

each feature will be represented by a new low-dimensional pattern. Following this formulation,

a strong new representation of the training data X in the form of F = {f1,. . .,fn} where each fea-

ture fi is described using a vocabulary of few tokens is obtained.

In the graph-weighting process, an undirected fully connected graph G is built whose nodes

correspond to each feature fi and whose edges are weighted by fi⇝fj, which represents the prob-

ability that the features xi and xj are relevant. Using a learning framework that is based on a

variation of the probabilistic latent semantic analysis (PLSA) technique, the weights were
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computed by modeling the probability of each co-occurrence in fi, fj. After this process, we

obtained the weighted graph G, which can be expressed as an adjacent matrix Ap. We have

intuitively found that ILFS constructs a fully connected graph in this step that assumes all fea-

tures to be connected with each other, while in fact the true correlation structure of the gene

expression data is much sparer than this. This enlightened us that incorporating a prior knowl-

edge of genetic pathways may produce more biologically reasonable results, and we proposed

to add an extra process after the graph weighting step. We employed the reconstructed graph

matrix AF as a filter to achieve a sparser connection graph. We implemented this process by

calculating the following formula:

A ¼ Ap � AF ð4Þ

where the symbol � denotes a Hadamard (element-wise) product. The Hadamard product is a

binary operation that takes two matrices of the same dimensions, and produces another matrix

where each element Aij is the product of (Ap)ij and (AF)ij. The value of Aij will be zero after this

operation if there is no regulatory relationship between the genes i and j. As a result, only

actual pathways are retained after this process.

In ranking step, the importance score of a feature is defined as a function of the importance

of its neighbors. Let γ = {υ0 = i, v1, v2,. . .,vl−1, vl = j} denote a path of length l between node i
and j, namely, feature x⃑ i and x⃑ j, through other nodes v1, v2,. . .,vl−1. Suppose that the length l is

lower than the total number of nodes in the graph. Therefore, a path is a subset of available fea-

tures(nodes). The join probability that γ is a good subset of features can be estimated as

Pg ¼
Yl� 1

k¼0

Avk;vkþ1
ð5Þ

Let a set Pli;j as considering all the paths of length l between i and j. The energy of all the

paths of length l can be summed as follows,

Clði; jÞ ¼
X

g2Pli;j

Pg ð6Þ

Following the standard matrix algebra, it can be written as:

Clði; jÞ ¼ Alði; jÞ ð7Þ

Considering all the possible subsets of features of any cardinality means considering all the

possible paths of any length in the graph. As a result, extending the path length to infinite

implies calculating the geometric series of matrix A.

Ĉ ¼
X1

l¼1

Al ð8Þ

Tending the path length to infinite brings divergence. So that a consistence r for regulariza-

tion is assigned for the computation.

C
�

¼
X1

l¼1

rlAl ð9Þ

From an algebraic point of view, Č can be efficiently computed by using the convergence

property of the geometric power series of a matrix. Therefore, the value of Č can be calculated
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as follows:

C
�

¼ ðI � gAÞ� 1
� I ð10Þ

Matrix Č encodes all the information about the goodness of the set of features. The final

scores for each node can then be obtained by marginalizing the quantity š(i) = [Če]i, where e
denotes a 1D array of ones. Ranking the š(i) scores in a descending order, we can get the most

discriminative features at the top of the sorted list.

Accuracy of predictors

In order to measure the prediction performance of our proposed method, the training data

reduced to selected genes was used to train the classifiers which were subsequently employed

to be tested on the rest of samples. We performed the model training and validation process

on the samples in part two. As can be seen in Table 1, the amount of the available normal sam-

ples is much less than the tumor samples. As most standard classifiers assume a relatively bal-

anced class distribution, training with imbalanced data will lead to illusive classification

performance. Therefore, we adopted a technique called ADASYN sampling approach for

imbalanced training [28]. The basic idea of ADASYN is to adaptively generate more synthetic

data for the minority class samples according to their distributions. The characteristic of this

method is that it can shift the decision boundary to focus on those samples that are hard to be

learned. By applying ADASYN, the ratio of normal to tumor samples was adjusted to be close

to 1. To avoid over-fitting, the generation of training and testing data was separately executed

in the classification and validation process. We tested support vector machine (SVM) classifier

on the expression data restricted to the top 100 genes. We implemented a 5-fold CV process

on the generative datasets for 100 times. To explore the prediction performance, we employed

the mean AUC value over 100 times CV as the measurement for the selected features. To better

understand the data processing flow, we plotted it in Fig 1.

Results

Prediction of selected biomarkers

To evaluate the prediction performance, several popular feature selection methods, including

mRMR, LASSO, PLS-DA and ReliefF and the original ILFS were compared with the proposed

method. We provided the top 100 biomarkers obtained by the above-mentioned feature selec-

tion methods for five cancer types in the S2 Table. Appropriate selection of the tuning parame-

ter in penalized likelihood methods is very essential for high dimensional data analysis; thus,

we executed an additional procedure for LASSO to select the optimal tuning parameter [29].

We tested the accuracy of the top 100 genes obtained by each feature selection method, com-

bined with an SVM classifier to train the prediction models. We repeated a 5-fold cross-valida-

tion process 100 times and computed the average AUC value. We used the following

parameters for SVM (linear kernel, C = 1); we have also tested a few parameters and found

that no significant better results were reached. The mean AUCs over 100 times classifications

limited to top 100 genes for five cancer types were plotted in Fig 2. Generally, we observed that

the network-constrained ILFS shows better prediction performance, except in the case of

KIRC. For KIRC, mRMR and ReliefF had the greatest predictive power. Moreover, network-

constrained ILFS showed much better performance for LIHC than other cancers. To explore

the distribution of AUCs, we also plotted the accuracies obtained by each feature selection

method on the PRAD data set as shown in Fig 3. Another measurement to assess these feature

selection methods is the F1 score. The F1 score is a weighted average of precision and recall,
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which can be calculated by formula (11). The results are listed in S1 Table.

F1 ¼ 2 �
precision � recall
ðprecisionþ recallÞ

ð11Þ

Known oncogenes including test

The efforts of many scientists resulted in revealing some genetic mutations that might be

involved in cancer development. The IntOGen-mutations platform summarizes the somatic

mutations, genes and pathways that are involved in tumor genesis [30]. We collected the

known oncogenes of BRCA, COAD, KIRC, LIHC, and PRAD from this platform and counted

the number of known oncogenes in the top 100 genes obtained by these feature selection

methods and then calculated the p-values using hyper geometric tests. The number of onco-

genes in selected 100-genes is listed in S3 Table. Fig 4 shows the significance values of the

selected oncogenes ratio for each method on five cancer types using hyper geometric tests. It is

obvious that the proposed method outperforms other methods in this task. The selected onco-

genes by the network-constrained ILFS are listed in Table 2. The results show that our net-

work-constrained ILFS has a great chance for BRCA, COAD, KIRC and PRAD to mine the

true factors in high dimensional gene expression data. For LIHC, no oncogenes in top 100

have been detected from any feature selection method.

Biological interpretability

Finding gene groups that show predictive power is no longer a very hard job. However, mining

biomarkers that provide insights into the biological mechanisms remains a challenge. To assess

Fig 1. Data division, splitting, combination, training and testing.

https://doi.org/10.1371/journal.pone.0246668.g001
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the interpretability significance of selected biomarkers, we adopted two ways: GO functional

enrichment analysis and GSEA [31]. The top 100 biomarkers gene list was analyzed using the

tool DAVID [32] to produce GO BP terms. We computed the number of GO BP terms that

are overrepresented at 5% FDR. Fig 5 shows the number of enriched GO BP terms for five can-

cer types. The detailed information of the GO functional enrichment analysis is listed in the

S4–S8 Tables. In general, the number of overrepresented GO terms indicates how easily

selected biomarkers can extract a biological insight. Apparently, the network-constrained ILFS

provides a more functionally significant gene set. We also applied a gene set enrichment analy-

sis to the top 100 biomarkers obtained from each feature selection method. The reference gene

sets that were used in the GSEA process were downloaded from the Molecular Signatures

Database [33]. We chose the C4 and C6 collections as the reference gene sets which includes

computational gene sets that were defined by mining large collections of cancer-oriented

microarray data and oncogenic signature gene sets that were directly from microarray gene

expression data from cancer gene perturbations. The normalized enrichment score (NES) is

the primary statistic for examining gene set enrichment results, which reflects the degree to

which a gene set in the C4 and C6 collections is overrepresented at the top or the bottom of the

selected biomarkers ranked list. FDR is the estimated probability of a gene set with a given

NES, and the nominal p-value estimates the statistical significance of the enrichment score for

a single gene set. In general, an FDR cutoff of 25%, |NES|>1 or a nominal p value cutoff of 5%

are appropriate. The GSEA analysis report about PRAD is shown in Table 3. Obviously, we

Fig 2. Prediction accuracy in mean AUCs obtained by LASSO, mRMR, ILFS, and Network-Constrained ILFS (NCILFS) for

breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), kidney renal clear cell carcinoma (KIRC), liver

hepatocellular carcinoma (LIHC), prostate adenocarcinoma (PRAD).

https://doi.org/10.1371/journal.pone.0246668.g002
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observed that the number of significantly enriched gene sets obtained by the network-con-

strained ILFS is much larger than the number of those obtained by other methods. Typically,

the larger the number of significantly enriched gene sets is, the more likely interesting hypoth-

esis will generate. The results indicate that the network-constrained ILFS could produce more

biological interesting gene set than other methods. The detailed GSEA analysis report for five

cancer types is provided in S9 Table.

From GO BP enrichment analysis results, we found that the selected genes by our method

for five cancer types are significantly involved in GO:0000398~mRNA splicing, via spliceo-

some, GO:0010467~gene expression, GO:0008543~fibroblast growth factor receptor signaling

pathway, and GO:0006370~7-methylguanosine mRNA capping. The core spliceosome

machinery has been demonstrated to be overexpressed in multiple cancers and affect autop-

hagy and cell proliferation, becoming a potential therapeutic target for malignant solid tumors

treating [34, 35]. The fibroblast growth factor receptor (FGFR) pathway is increasingly proved

to play a role in the pathogenesis of different tumor types, such as urothelial, breast, endome-

trial, squamous cell lung cancer and hepatocellular carcinoma [36–38]. These facts confirm

our method in biological interpretations.

In GSEA analysis, the most significantly enriched gene sets from our method include

MORF_SOD1 (Neighborhood of superoxide dismutase 1 in the MORF expression compen-

dium), MORF_CSNK2B (Neighborhood of casein kinase 2, beta polypeptide in the MORF

expression compendium) for prostate cancer, GCM_CSNK2B (Neighborhood of casein kinase

Fig 3. AUC distribution obtained by SVM as a classifier trained on features from LASSO, mRMR, ILFS, Network-Constrained ILFS

(NCILFS), VIP score using PLS-DA and ReliefF for PRAD.

https://doi.org/10.1371/journal.pone.0246668.g003
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2, beta polypeptide in the GCM expression compendium) and MORF_EIF3S2 (Neighborhood

of eukaryotic translation initiation factor 3, subunit 2 beta, 36kDa in the MORF expression

compendium) for breast cancer. Casein kinase 2 (CK2) is a ubiquitous serine/threonine pro-

tein kinase. A previous study has demonstrated that CK2 is to be overexpressed in a number of

human cancers, including prostate and breast cancer [39, 40]. SOD1, plays an important role

in maintaining the normal life activities of cells, which has been reported associated with

tumorigenesis [41, 42]. Eukaryotic initiation factor 3 (EIF3) is involved in the initiation pro-

cess of protein translation and overexpression of its subunit eukaryotic translation initiation

factor 3 (EIF3I) has been observed in breast carcinoma [43]. The results of GSEA also prove

that the proposed method can identify genes with biological significance.

Fig 4. The–log10 (p-value) of selected oncogenes using hyper geometric tests, these genes are identified by LASSO, mRMR,

ILFS, Network-constrained ILFS (NCILFS), VIP score using PLS-DA, and ReliefF for BRCA, COAD, KIRC, LIHC, and

PRAD.

https://doi.org/10.1371/journal.pone.0246668.g004

Table 2. The selected known oncogenes for five cancer types by the network-constrained ILFS.

Cancer Type Selected oncogenes

BRCA HSPA8 AQR POLR2B CCAR1 FUS DHX15

COAD PCBP1 POLR2B

KIRC DHX15 FUS CCAR1

LIHC

PRAD FIP1L1 PRPF8 AQR HSPA8

https://doi.org/10.1371/journal.pone.0246668.t002
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Discussion

In the field of genomics, it is very common to have a high dimensional data with low sample

size; thus, feature selection plays a very critical role in scientific discoveries. Most existing fea-

ture selection methods rank the features only from the statistical perspective. Such methods

tend to filter out those genes that show the best discriminative power in model training. How-

ever, a lot of those genes are meaningless when it comes to the biological process and interpret-

ability. This can be perceived from our experiments result. It is easy to find in S3 Table that the

proposed method can produce highly overlapping signatures over all cancer types, while classi-

cal methods fail to identify common gene sets across the same cancer types. For future work, it

is more promising to explore such similar signatures than those no overlapping signatures.

LASSO, mRMR, ILFS, VIP score using PLS-DA and ReliefF show no significant worse perfor-

mance than the network-constrained ILFS regarding the prediction accuracy, but the signa-

tures obtained by them share little overlap not only with each other but also with known

oncogenes. This demonstrates that different gene groups can lead to same predictive accura-

cies, but methods with great power in model training are not necessarily good at selecting true

features. It implies that maybe no biological insight should be expected from the analysis of

those genes using such methods. To avoid selecting too many differential but biologically

meaningless genes, we propose that adding some biological prior information may improve

the reliability and feasibility of statistical methods. For this purpose, we employed the FIs net-

work to modify the ILFS graph-weighting process. In addition, we followed a special way in

the initial gene screening step. We picked two kinds of genes at first. One kind is differential

on expression data obtained by a paired-t test process. Another is central in the graph which is

Fig 5. The number of enriched GO BP terms overrepresented at 5% FDR.

https://doi.org/10.1371/journal.pone.0246668.g005
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measured by its connections. This setting is very important because the basic idea of ILFS is to

consider all possible subsets, which can be regarded as walking down all possible paths in a

graph, while the central genes are key nodes to connect those paths. As a result, the selected

biomarkers showed both great prediction power and remarkable biological significance.

Conclusions

In this study, we proposed a novel feature selection method which combined the biological

network with the statistical method of ILFS. We applied this method to identify biomarkers in

the gene expression data of BRCA, COAD, KIRC, LIHC, and PRAD. First, we compared it

with the methods of ILFS, mRMR, LASSO, VIP score using PLS-DA and ReliefF on estimation

precision and selection ratio of known oncogenes. Then, we performed functional enrichment

and gene set enrichment analysis on selected features and perceived that the selected features

are meaningful from a biological perspective. The results indicate that the network-con-

strained ILFS is helpful in cancer biomarkers identification.

Supporting information

S1 Fig. The flow diagram of network-constrained infinite latent feature selection.

(TIF)

S1 Table. The F1 score obtained by six feature selection methods.

(XLSX)

Table 3. Summary report about gene set enrichment analysis (GSEA) for PRAD.

Method Summary Report

NCILFS 103 / 110 gene sets are upregulated in phenotype Tumor

23 gene sets are significant at FDR < 25%

2 gene sets are significantly enriched at nominal pvalue < 1%

13 gene sets are significantly enriched at nominal pvalue < 5%

ILFS 15 / 29 gene sets are upregulated in phenotype Tumor

0 gene sets are significant at FDR < 25%

0 gene sets are significantly enriched at nominal pvalue < 1%

0 gene sets are significantly enriched at nominal pvalue < 5%

LASSO 11 / 25 gene sets are upregulated in phenotype Tumor

0 gene sets are significant at FDR < 25%

0 gene sets are significantly enriched at nominal pvalue < 1%

0 gene sets are significantly enriched at nominal pvalue < 5%

mRMR 4 / 9 gene sets are upregulated in phenotype Tumor

0 gene sets are significant at FDR < 25%

0 gene sets are significantly enriched at nominal pvalue < 1%

0 gene sets are significantly enriched at nominal pvalue < 5%

PLS-DA 11 / 34 gene sets are upregulated in phenotype Tumor

0 gene sets are significant at FDR < 25%

0 gene sets are significantly enriched at nominal pvalue < 1%

0 gene sets are significantly enriched at nominal pvalue < 5%

ReliefF 19 / 35 gene sets are upregulated in phenotype Tumor

0 gene sets are significant at FDR < 25%

0 gene sets are significantly enriched at nominal pvalue < 1%

0 gene sets are significantly enriched at nominal pvalue < 5%

https://doi.org/10.1371/journal.pone.0246668.t003
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S2 Table. Biomarkers selected for BRCA, COAD, KIRC, LIHC and PRAD.

(XLSX)

S3 Table. The number of selected oncogenes.

(XLSX)

S4 Table. GO BP enrichment analysis of biomarkers for BRCA.

(XLSX)

S5 Table. GO BP enrichment analysis of biomarkers for COAD.

(XLSX)

S6 Table. GO BP enrichment analysis of biomarkers for KIRC.

(XLSX)

S7 Table. GO BP enrichment analysis of biomarkers for LIHC.

(XLSX)

S8 Table. GO BP enrichment analysis of biomarkers for PRAD.

(XLSX)

S9 Table. Summary report of gene set enrichment analysis (GSEA).

(XLSX)
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