
Three Repeat Isoforms of Tau Inhibit Assembly of Four
Repeat Tau Filaments
Stephanie J. Adams., Michael A. DeTure*., Melinda McBride, Dennis W. Dickson, Leonard Petrucelli*

Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, United States of America

Abstract

Tauopathies are defined by assembly of the microtubule associated protein tau into filamentous tangles and classified by the
predominant tau isoform within these aggregates. The major isoforms are determined by alternative mRNA splicing of exon 10
generating tau with three (3R) or four (4R) ,32 amino acid imperfect repeats in the microtubule binding domain. In normal
adult brains there is an approximately equimolar ratio of 3R and 4R tau which is altered by several disease-causing mutations in
the tau gene. We hypothesized that when 4R and 3R tau isoforms are not at equimolar ratios aggregation is favored. Here we
provide evidence for the first time that the combination of 3R and 4R tau isoforms results in less in vitro heparin induced
polymerization than with 4R preparations alone. This effect was independent of reducing conditions and the presence of
alternatively spliced exons 2 and 3 N-terminal inserts. The addition of even small amounts of 3R to 4R tau assembly reactions
significantly decreased 4R assembly. Together these findings suggest that co-expression of 3R and 4R tau isoforms reduce tau
filament assembly and that 3R tau isoforms inhibit 4R tau assembly. Expression of equimolar amounts of 3R and 4R tau in adult
humans may be necessary to maintain proper neuronal microtubule dynamics and to prevent abnormal tau filament assembly.
Importantly, these findings indicate that disruption of the normal equimolar 3R to 4R ratio may be sufficient to drive tau
aggregation and that restoration of the tau isoform balance may have important therapeutic implications in tauopathies.
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Introduction

Tau filament assembly and deposition in the form of neuronal and

glial fibrillary inclusions are the defining pathological features of a

family of neurodegenerative diseases termed tauopathies [1]. Six

predominant tau protein isoforms are generated in adult human brain

by alternative splicing of the tau (MAPT) gene [2,3], and each of the

tau isoforms is likely to have a particular physiological role since they

are differentially expressed during development [4,5]. These isoforms

differ by the presence or absence of two N-terminal inserts (exon 2

and/or 3 inclusion) and the presence of either three or four imperfect

repeats (3R or 4R) in the microtubule binding domain at the C-

terminus (exon 10 inclusion) [2,6–8]. Some mutations in MAPT cause

frontotemporal dementia and parkinsonism linked to chromosome 17

(FTDP-17) by disrupting the normal equimolar ratio of 3R and 4R

tau isoforms [9–12]. Changes in the ratio of 3R and 4R tau do not

appear to affect total tau expression significantly, suggesting that

factors that alter exon 10 splicing may also contribute to other human

neurodegenerative disorders, such as Pick’s disease (3R inclusions) and

progressive supranuclear palsy or corticobasal degeneration (4R

inclusions). These findings suggest that neurodegeneration can be

driven in humans regardless of direction of the shift in the normal

equimolar 3R to 4R ratio [13], however, the mechanism by which

these imbalances cause or contribute to the development of tau

pathology and neurodegeneration remains unclear.

Alterations in the normal tau isoform ratio may not only

affect tau function, given differences in 3R and 4R tau

isoforms’ ability to bind to and promote microtubule assembly

[4,14], but may also affect tau aggregation. Increased

expression of exon 10 can alter the assembly properties of

tau, as these amino acids reside in the core region of tau

isolated from AD filaments [15]. Although some studies

suggest that increased 4R tau expression may promote filament

assembly under reducing conditions that may prevail in

stressed neurons [16] [17], the effects of different tau isoforms

ratios on tau assembly behavior has never before been

reported. We hypothesize that the normal equimolar ratio of

3R and 4R tau isoforms, as observed in the adult human brain,

does not favor aggregation; however, alterations in this

equimolar ratio promote tau aggregation. Results presented

here provide compelling evidence that altering the equimolar

ratio of 3R and 4R tau such that 4R tau predominates

accelerates tau filament assembly and that even small amounts

of 3R tau can significantly inhibit the 4R tau assembly.

Together these findings provide a framework for understand-

ing how decreasing the normal 3R:4R tau ratio, present in

many tauopathies, may drive tau aggregation and pathology.

These results further suggest that therapeutic interventions

aimed at returning the tau isoform ratios to their normal

balance may benefit tauopathy patients.
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Materials and Methods

Recombinant tau protein
All tau cDNAs in pET30a were expressed in competent BL21

(DE3) cells after growing to an OD (600) of 0.5 with 0.5 mM

IPTG induction for 2.5 hours. Cell pellets were collected, washed

and stored at 280uC before lysis with three freeze and thaw cycles.

Tau proteins were then purified from inclusion bodies using high

heat and ion exchange chromatography. These samples were

further purified by semi-preparative HPLC C8 reverse phase

chromatography if degraded fragments were detected in the

original preparation [18]. Purity of the tau preparations was

analyzed by SDS-polyacrylamide gel electrophoresis and Coo-

massie blue staining, and protein concentrations were determined

using the BCA protein assay kit (Pierce, Rockford, IL).

Tau assembly reactions
Tau protein in 10 mM HEPES (pH 7.4), 100 mM NaCl,

0.25 mM Phenyl-methane-sulfonyl fluoride (Sigma, St. Louis,

MO) was incubated at 37uC in the presence of heparin (Sigma:

MW 6 kDa) to induce assembly, and these reactions were carried

out with 0–1 mM dithiothreitol (Acros Organics, Belgium) to

examine the role of disulfide bond formation in the reactions.

Sample reactions of 240–400 ml were incubated for 0–6 days. For

the mixing experiments, molar ratios of 3R:4R were used in

polymerization reactions to adjust for differences in the molecular

weights of the tau isoforms. The reactions were performed with

8 mM total tau and 0.04 mg/ml heparin with the amounts of the

two tau isoforms varying in 2 mM increments so that ratios of 1:3,

2:2 and 3:1 were achieved in addition to the single isoform

reactions at 8 mM tau that were used as positive controls. In all of

the mixing reactions the molar ratio of tau and heparin was held

constant. For the spiking reactions, the concentration of one

isoform was fixed at 8 mM and the reaction was spiked with 0 mM,

1 mM, 2 mM, or 3 mM aliquots of a second isoform or buffer while

the heparin amount was fixed at 0.4 mg/ml. Thus, in these

reactions the molar ratio of tau and heparin was allowed to vary as

the reactions were spiked with additional tau. Controls were also

run at constant total tau and heparin ratios. Again these samples

were incubated at 37uC for 0–6 days before assaying for tau

filament assembly.

Thioflavin S binding to tau
Tau intermediate and filament assembly were monitored by

fluorescence of thioflavin S binding using a Cary Varian Eclipse

Spectrofluorometer (Walnut Creek, CA) with an excitation

wavelength of 440 nm with a slit width 10 nm, and emission

spectrum collected from 460–600 nm again with a 10 nm slit

width. Measurements were performed at room temperature after

incubating 45 ml of assembly reaction with 45 ml of 0.006 mg/ml

thioflavin S for 30 minutes. Negative controls included buffer

alone, heparin and buffer, and reactions containing tau only with

no heparin, but each with thioflavin S as above. Thioflavin S

binding intensity was measured by integrating the curve between

the ranges of 470–600 nm using the Cary Eclipse Scan software.

Ultracentrifugation of aggregated tau
Samples from assembly reactions were centrifuged at 100 0006

g for 75 minutes at 4uC to separate free and aggregated tau.

Supernatants containing soluble tau were split in half for protein

analysis by BCA and for SDS-PAGE by combining with 26
sample buffer. The pellets containing aggregated and polymerized

tau were resuspended in 25 ml 16sample buffer. Supernatants and

pellets were visualized by SDS-PAGE on 10% Tris-glycine gels

(Novagen) after Coomassie blue staining. For quantitation the gels

of the pellets were scanned, and the bands quantified using Image

J freeware [19]. Samples were normalized to the 4R tau values.

Electron microscopy of filamentous tau
Reaction samples were diluted 46 in 10 mM HEPES, and

10 ml was adsorbed onto carbon/formvar-coated 400 mesh copper

grids (EM Sciences) for 30 seconds. These were then stained with

2% uranyl acetate for 30 seconds, and the grids were examined

with a Philips 208S electron microscope (Philips, Hillsboro, OR).

For quantification, 6–8 images were collected randomly at

10,0006 magnification, and the average filament number and

total filament length per field was measured using Image J

freeware [19].

Statistics
Statistical analysis was performed using SigmaPlot 11.0 (San

Jose, CA). Data are expressed as mean 6 standard error of the

mean (SEM). Statistical analysis was performed by ANOVA and

all pairwise multiple comparisons procedures by the Student-

Newman-Keuls Method, Spearman Rank Order Correlation, or t

tests where appropriate, with p values of ,0.05 considered

significant. Graphing was performed using Graphpad Prism

software (Graphpad, San Diego, CA). For gel quantification and

spiking reactions, each sample was normalized to 4R tau, and the

data is presented as mean relative fluorescence or mean relative

tau aggregation 6 SEM.

Results

Purification of Recombinant Tau Isoforms
Tau isoforms can be distinguished by the presence of 3 or 4

repeats in the microtubule binding domain in the C-terminus and

by the presence or absence of 1 or 2 N-terminal inserts. Inclusion

of alternatively spliced exon 10 leads to the generation of 4R tau

isoforms, whereas exclusion of exon 10 leads to generation of 3R

tau isoforms. Tau isoforms with 0, 1, or 2 N-terminal inserts are

generated by alternative splicing of exons 2 and 3. A schematic

representation of tau isoforms, 3R2N and 4R2N, including the

microtubule binding repeat domains encoded by exons 9–12, the

N-terminal inserts encoded by exons 2 and 3, and the location of

potential heparin binding sites, are shown in Figure 1A. All studies

were performed using highly purified recombinant tau prepara-

tions as shown in Figure 1B, and polymeric tau assembly, using

heparin as an inducer, was measured using thioflavin S binding

fluorescence.

Assembly of Recombinant Tau into Filaments
Assembly kinetics of 3R and 4R tau isoforms were assessed

individually in the presence and absence of the reducing agent

DTT. This data was collected as described in the methods section

where thioflavin S fluorescence as shown in Figure 2C is integrated

to measure tau progression into an assembly competent interme-

diate or polymer that is also observed in filamentous tau lesions in

tauopathies [20,21]. The 3R tau isoforms assembled similarly in

reducing and non-reducing conditions (Figure 2A) whereas the 4R

tau isoforms assembled more rapidly and reached a similar

equilibrium value in the presence of DTT compared with 4R tau

reactions in the absence of DTT (Figure 2B). Moreover, the

assembly rate and the equilibrium value were greater than for 3R

tau with or without DTT (Figure 2A and C). This accelerated 4R

tau assembly observed under reducing conditions is in agreement

with several previously published studies showing that 4R tau

preferentially forms compact monomers, probably due to

3R Inhibits 4R Tau Assembly
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intramolecular disulfide bonds formed under oxidizing conditions.

These compact monomers do not aggregate efficiently and may

actually inhibit tau aggregation. In contrast under reducing

conditions, 4R tau isoforms more rapidly assembled in the

presence of polyanions [16] [17]. These data also demonstrate

that steady state is reached by 48 hours under the reducing

conditions tested here, and direct visualization with electron

microscopy confirms the presence of tau filaments in both the 3R

(data not shown) and 4R (Figure 2D–E) assembly reactions.

Mixing 3R and 4R Tau Decreases Thioflavin S Binding
To characterize the assembly behavior of different ratios of 3R

and 4R tau isoforms, the assembly of tau isoform mixtures was

compared with that of individual isoforms in the presence or

absence of DTT. Mixtures of different molar ratios of 3R and 4R

tau isoform do not assemble to the same extent as reactions

containing single tau isoforms, and this is independent of the

reducing conditions (Figure 3). The pure 3R tau isoform reactions

assembled similarly in the presence or absence of DTT whereas

the pure 4R reactions assembled better with DTT. Although

3R0N tau isoforms appeared to assemble better than 4R0N tau in

the absence of DTT, the difference was not statistically significant

(Figure 3A). Despite these relatively similar steady state levels of

assembly for 3R0N and 4R0N tau isoforms individually under

non-reducing conditions, mixing equimolar amounts of these 3R

and 4R tau isoforms resulted in a significant decrease in tau

assembly relative to 3R or 4R tau alone (Figure 3A). This

reduction in tau assembly at the equimolar tau isoform ratio was

also observed and accentuated under reducing conditions

(Figure 3B). Here, shifting the ratio towards either pure 3R0N

tau isoforms or 4R0N tau isoforms from the equimolar ratio

increased total tau assembly significantly with the pure 4R0N

isoforms assembling more than two-fold higher than the equimolar

reactions (Figure 3B). Together, these data show that the

equimolar ratio of 3R0N and 4R0N tau isoforms found in normal

adult human brain is least favorable for aggregation, while shifting

the ratio towards either 3R or 4R increases tau assembly. In

addition, shifting the tau isoform ratio towards 4R tau, as occurs in

certain tauopathies, especially under reducing conditions found in

the cytoplasm of a cell, showed the greatest increase in tau

assembly.

The presence of the N-terminal inserts did affect the assembly

properties of the individual isoforms but the inhibition in assembly

of the equimolar 3R and 4R reactions was still observed compared

to the reduced single isoform values (Figure 3C–D). Three-repeat

tau assembly was negatively impacted by the presence of the N-

terminal inserts, independent of reducing conditions (Figure 3A–

D). In contrast, 4R tau assembly was increased by the presence of

the N-terminal inserts under non-reducing conditions (Fig. 3A vs

3C), but decreased by their presence under reducing conditions

(Fig. 3B vs 3D). Despite these observed effects on 3R and 4R tau

isoform assembly individually, the N-terminal inserts did not

significantly affect the assembly of the equimolar ratio of 3R and

4R tau isoforms. Most importantly however, mixing equimolar

amounts of 3R2N and 4R2N significantly reduced tau assembly

relative to either pure 3R2N or 4R2N assembly reactions, and this

was observed independent of reducing conditions (Figure 3C–D).

Similar results were also obtained from experiments using tau

3R1N and 4R1N isoforms with one N-terminal insert (data not

shown). Taken together, these data demonstrate that although the

N-terminal inserts do affect individual tau isoform assembly, the

primary determining factor on the extent of tau assembly is the

ratio of 3R to 4R tau isoforms. This was further confirmed in

mixing experiments with 4R0N and 4R2N that did not show

depressed assembly levels under the equimolar conditions

compared to the single isoform reactions (data not shown).

Mixing 3R and 4R Isoforms Reduces Tau Aggregation
To establish that the tau assembly observed by thioflavin S

binding fluorescence was due to tau aggregation and not simply an

unstable tau intermediate without filament assembly, ultracentri-

fugation of assembly reactions was performed to separate soluble

from aggregated or polymerized tau. Coomassie stained gels of the

pellets containing polymerized tau showed that assembly reactions

of 3R0N and 4R0N tau isoform mixtures again contained less

aggregated tau than the single isoform reactions as observed under

the reducing conditions of the cell. As shown in Figure 4A–B,

4R0N assembles to a statistically greater extent than equimolar 3R

and 4R reactions whereas the 3R0N increase observed with

thioflavin S could not be demonstrated statistically. These results

for increased 4R tau were in agreement with the previous tau

folding data in Figure 3, and they confirmed that the observed

decrease in thioflavin S binding fluorescence in the mixed isoform

reactions was due to a decrease in tau aggregation. Interestingly,

some thioflavin S fluorescence was observed in the supernatants

after high speed ultracentrifugation (data not shown) suggesting

that thioflavin S fluorescence and tau folding intermediates

precede aggregation, as previously described [21]. Similar results

Figure 1. Schematic representation of human tau and Coo-
massie blue-stained gel of recombinant tau. (A) Full-length 3-
repeat tau (3R2N) and 4-repeat tau (4R2N) containing N-terminal inserts
encoded by exons 2 and 3, and microtubule (MT)-binding repeats
encoded by exons 9–12. The 6 different tau isoforms are generated by
alternative splicing of exons 2, 3, and 10 shown in white. The tau
isoforms 3R0N and 4R0N would not include exons 2 and 3. Exclusion of
alternatively spliced exon 10 generates 3-repeat tau isoforms. Inclusion
or exclusion of alternatively spliced exons 2 and 3 generates 3R1N,
4R1N, 3R2N, or 4R2N tau isoforms. Potential heparin binding sites
(HEPBS) are indicated by bars. (B) Purified recombinant tau proteins
used in the study were loaded heavy at 2 ug per well and separated on
10% SDS-PAGE gels before staining with Coomassie brilliant blue R-250
to demonstrate purity.
doi:10.1371/journal.pone.0010810.g001
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were observed in the 3R1N/4R1N and 3R2N/4R2N reactions

(data not shown).

Spiking 4R Tau Assembly Reactions with 3R Tau Inhibits
Tau Assembly

Results from the mixing experiments suggested that even small

proportions of 3R tau may inhibit the assembly of the 4R tau

isoform. To test this more directly, tau assembly reactions

containing different 8 mM 4R tau isoforms were spiked with

increasing concentrations of 3R or 4R tau isoforms, and assembly

was measured using thioflavin S fluorescence as before. Addition

of 3R0N isoforms to 4R0N tau assembly reactions led to a dose

dependent reduction in tau assembly (Figure 5A–B) again under

reducing conditions, though reactions without DTT gave similar

results (data not shown). Although these reactions contained more

total tau protein, the addition of the 3R0N isoforms to the 4R0N

assembly reactions resulted in less tau assembly than reactions of

4R tau alone containing less total tau protein. This inhibition of

tau assembly appeared to involve a specific interaction between

3R and 4R tau isoforms, as addition of more 4R0N isoforms to

4R0N tau assembly reactions did not decrease assembly and

appeared to modestly increase it (Figure 5A–B). Furthermore, as

with the mixing experiments, N-terminal inserts did not block the

inhibition of 4R assembly by 3R isoforms (Figure 5C–F). Since tau

assembly reactions are extremely sensitive to changes in the tau to

inducer ratio [21], these experiments were repeated by spiking the

different 4R tau assembly reactions with either 3R or 4R tau

isoforms plus heparin to maintain a constant tau to heparin ratio.

Under these conditions, again the 4R spiked with 3R tau reactions

displayed a dose dependent decrease in assembly while 4R tau

spiked with additional 4R tau showed a dose dependent increase

in tau assembly (data not shown). These data demonstrate that

even small amounts 3R tau isoforms inhibit 4R tau assembly

under reducing or non-reducing conditions.

Spiking 4R Tau Assembly Reactions with 3R Tau Inhibits
Tau Aggregation

As with the previous mixing experiments, confirmation that the

decrease in thioflavin S binding fluorescence represented a

decrease in tau aggregation in the assembly reactions of 4R tau

spiked with 3R tau isoforms was obtained by ultracentrifugation.

Coomassie stained gels of the pellets containing polymerized tau

showed that assembly reactions of 4R tau spiked with 3R tau

isoforms, despite containing more total tau protein, contained less

polymerized total tau than 4R tau reactions alone (Figure 6A–B).

In contrast, pellets from 4R tau assembly reactions spiked with

Figure 2. Tau Isoform Assembly Kinetics. The kinetics of 3R (A) and 4R (B) tau isoform assembly was measured using thioflavin S binding
fluorescence in the presence of 0.04 mg/ml heparin with or without DTT. Each time point represents 2–5 experiments performed on separate days
with background fluorescence (no tau present in reaction) subtracted from each experiment. (C) The thioflavin S data presented in A and B is the
integrated value from thioflavin S binding curves as shown for 4R, 3R, and no tau reactions in the presence of DTT at day 1. (D–E) Electron
micrographs of 4R0N tau assembly reactions containing 0.04 mg/ml heparin with DTT can be used to confirm the presence of tau filaments.
doi:10.1371/journal.pone.0010810.g002
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more 4R tau isoforms contained more polymerized tau than 4R

tau assembly reactions alone (Figure 6C–D). This is as expected,

given that these reactions contain more total tau protein. In

agreement with the thioflavin S binding fluorescence data, the N-

terminal inserts had little effect on the inhibition of 4R tau

aggregation by 3R tau isoforms. Polymerized tau in the pellets

from 4R1N or 4R2N tau assembly reactions spiked with 3R1N or

3R2N, respectively, was either decreased or unchanged, despite

the presence of more total tau protein in these reactions, relative to

4R1N or 4R2N tau reactions alone (data not shown).

3R Tau Inhibits the Nucleation and Extent of 4R Tau
Filament Assembly

The effect of 3R tau isoforms on 4R tau isoform filament

formation was also examined by electron microscopy. Electron

micrographs established that the inhibition of 4R0N tau assembly

and aggregation by 3R0N tau isoforms evident by decreased

thioflavin S binding fluorescence and decreased tau aggregation

was due to a decrease in tau filament formation in these reactions

(Figure 7A–B). The number of tau filaments per field was

significantly reduced in 4R0N tau assembly reactions spiked with

3R0N tau isoforms, again despite these reactions containing more

total tau protein (Figure 7C). These results imply that seeding

efficiency is decreased when 3R tau isoforms are added to 4R tau

assembly reactions. The total length of tau filaments per field was

also significantly decreased in the 4R0N tau assembly reactions

spiked with 3R0N tau confirming the aggregation and thioflavin S

data (Figure 7D). This decrease in the number and summed length

of tau filaments following spiking of 4R tau assembly reactions

with 3R tau isoforms occurred regardless of the presence of the N-

terminal inserts (Figure 7E–H). The centrifugation assays and

electron micrographs confirmed our thioflavin S binding fluores-

cence data by showing that even small amounts of 3R tau isoforms

inhibit tau aggregation and more specifically tau filament

formation. Since the N-terminal inserts did not interfere with this

inhibition of 4R tau aggregation and filament formation by 3R tau

isoforms, this data also confirms the decrease in tau filament

formation is due to a specific effect depending on the microtubule

binding repeats of the 3R and 4R tau isoforms.

Tau Filament Morphology is Altered by the Presence of
3R and 4R Tau

The dramatic decrease in filament number and total filament

length per field observed by electron microscopy when either

4R0N or 4R2N tau was spiked with the corresponding 3R

homologue suggests that 3R and 4R tau may not be exchangeable

subunits for filament assembly. Although the work presented here

clearly establishes that reaction mixtures containing single tau

isoforms assemble to a greater extent than those containing both

isoforms, the data does not provide any insight as to whether the

filaments that do form when both 3R and 4R isoforms are

structurally or compositionally related. Indeed the structural

analyses required to identify the composition of individual

filaments falls outside the scope of this study, however electron

microscopy of individual filaments composed of either pure

isoforms or the mixes does provide some insight as to how the

presence of both isoforms might affect tau filament assembly. As

shown previously [16] and here in Figure 8, 3R tau is able to form

a range of structures from wide loosely coiled paired helical

filaments (Figure 8A) to more tightly coiled straight filaments

(Figure 8B) when assembled with heparin. These straight filaments

Figure 3. Ratio of 3R to 4R tau isoforms determines the extent
of tau assembly. Thioflavin S binding fluorescence of different ratios
of 3R and 4R tau isoforms in the presence of 0.04 mg/ml heparin with
or without DTT was measured at 48 hours or steady state. 3R0N tau
isoforms mixed with increasing molar fractions of 4R0N tau under non-
reducing (A) and reducing (B) conditions. Ratios of 3R0N to 4R0N were
as follows: 8 mM 3R0N (0% 4R0N), 6 mM 3R0N to 2 mM 4R0N (25% 4R0N),
4 mM 3R0N to 4 mM 4R0N (50% 4R0N), 2 mM 3R0N to 6 mM 4R0N (75%
4R0N) and 8 mM 4R0N (100% 4R0N). 3R2N tau isoforms mixed with
increasing molar fractions of 4R2N tau under non-reducing (C) and
reducing (D) conditions. Ratios of 3R2N to 4R2N were the same as for
3R0N to 4R0N. Statistical analysis was performed using a one way
ANOVA (for 30/40 mixes with and without DTT and for 32/42 mixes with
DTT) or by Kruskal-Wallis One Way Analysis of Variance on Ranks (for 32/
42 without DTT) and all pairwise multiple comparisons were done by
the Student-Newman- Keuls Method, with p,0.05 considered signifi-
cant. An * denotes significance relative to 3R tau assembly, # denotes
significance relative to 4R tau assembly, and ‘ denotes significance
relative to the equimolar ratio of 4R:3R tau assembly.
doi:10.1371/journal.pone.0010810.g003

Figure 4. Tau aggregation decreased in mixed isoform
reactions. Assembly reactions of single tau isoforms and different
ratios of 3R0N/4R0N tau isoforms were centrifuged at 100,0006g to
separate free from aggregated or polymerized tau. Coomassie stained
gels of the pellets containing polymerized tau from A) 3R0N mixed with
4R0N with the following samples for each gel: 8 mM 3R0N (0% 4R0N),
6 mM 3R0N to 2 mM 4R0N (25% 4R0N), 4 mM 3R0N to 4 mM 4R0N (50%
4R0N), 2 mM 3R0N to 6 mM 4R0N (75% 4R0N) and 8 mM 4R0N (100%
4R0N). Densitometric analysis of pelleting gels B) 3R0N mixed with
4R0N was performed using Image J software [19]. Results were
normalized to 4R values and relative % tau aggregation is shown.
Statistical analysis was performed using a one way ANOVA and all
pairwise multiple comparisons were done by the Student-Newman-
Keuls Method, with p,0.05 considered significant. An * denotes
significance relative to 4R tau assembly and a ‘ denotes significance
relative to the equimolar ratio of 4R:3R tau assembly.
doi:10.1371/journal.pone.0010810.g004
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resemble the majority of filaments reported [22] and observed

with pure 4R tau reactions (Figures 8C and D). Most interestingly,

the assembly reactions of 3R and 4R tau isoform mixtures

contained both the loose paired helical filaments observed in 3R

reactions (Figure 8E) and the straight filaments found in 4R

reactions (Figure 8F). This would appear to confirm the suggestion

that the 3R tau and 4R tau do not readily copolymerize. Evidence

for this hypothesis might be deduced from the increased

proportion of filaments formed in the mixed reaction that

contained splayed filament ends with amorphous aggregation

(Figure 8E–J). This is in sharp contrast to the filaments formed

with single isoform reactions that typically have clean, well defined

ends (Figures 8A–D), suggesting that the addition of a second

isoform to the assembly reaction interferes with not only

nucleation but also elongation.

Discussion

The ability of individual tau isoforms to differentially regulate

microtubule assembly or polymerize into tau filaments in vitro has

been previously demonstrated [23–25], however, in vivo the three

repeat and four repeat isoforms are found together in nearly

equimolar amounts in normal adult humans. This is important as

filamentous tau deposits in the majority of tauopathies have

predominantly 4R or 3R tau inclusions. Furthermore, FTDP-17

mutations have been described that do not alter the primary

sequence of tau or the total tau levels expressed, but rather appear

to be pathogenic by simply altering the ratio of 3R and 4R tau

found in the brain [9–12], often by destabilizing the exon 10 stem

loop structure and increasing exon 10 expression [26]. These

findings indicate that a balanced tau isoform ratio is necessary for

maintaining normal brain functions in humans. Although

alterations in the normal tau isoform ratio could negatively

impact normal tau function leading to neurodegeneration, a tau

isoform ratio imbalance could also affect tau aggregation into

neurofibrillary tangles. In fact, in vitro studies have shown that 4R

tau polymerization is favored over 3R tau polymerization under

Figure 5. 3R Tau Inhibits 4R Tau Assembly. Increasing molar
concentrations (0, 1, 2, or 3 mM) of 3R or 4R tau were added to 8 mM 4R
tau assembly reactions containing 0.04 mg/ml heparin and DTT, and
Thioflavin S binding fluorescence was measured after 24 and 48 hours.
3R0N or 4R0N tau spiked into 4R0N tau reactions after 24 hours (A) and
48 hours (B). 3R1N and 4R1N tau spiked into 4R1N tau reactions after
24 hours (C) and 48 hours (D). 3R2N and 4R2N tau spiked into 4R2N tau
reactions after 24 hours (E) and 48 hours (F). Fluorescence was
normalized to 4R0N (A and B), 4R1N (C and D), and 4R2N (E and F)
assembly and the relative fluorescence is shown. Statistical analysis was
performed using a one way ANOVA and all pairwise multiple
comparisons were done by the Student-Newman- Keuls Method, with
p,0.05 considered significant. An * denotes significance relative to
unspiked 4R tau assembly reactions. Addition of 3R tau isoforms to 4R
tau assembly reactions showed a dose dependent inhibition of tau
assembly, in spite of an overall increase in tau protein levels, relative to
unspiked 4R tau assembly reactions (p = 0.018, p = 0.001, and p = 0.001
for 1 mM, 2 mM, and 3 mM 3R0N, respectively, for day 1 and p = 0.046
and p = 0.026 for addition of 2 mM and 3 mM 3R0N, respectively, for day
2). Additionally, 4R1N and 4R2N tau assembly reactions spiked with
3R1N and 3R2N tau isoforms, respectively, showed negative correla-
tions between 4R tau assembly and additions of increasing concentra-
tions of 3R tau isoforms (p,0.05 for both 4R1N and 4R2N) using the
Spearman Rank Order Correlation test in Sigmaplot. Assembly of 4R tau
reactions were either unchanged or showed a dose dependent increase
in tau assembly following addition of more 4R tau isoforms.
doi:10.1371/journal.pone.0010810.g005

Figure 6. 3R tau isoforms inhibit 4R tau aggregation. Different
4R tau isoform assembly reactions alone or spiked with increasing molar
concentrations of 3R tau isoforms, with or without N-terminal inserts,
were centrifuged at 100,0006g to separate free and polymerized tau.
Coomassie stained gels of the pellets containing polymerized tau from
A) 8 mM 4R0N spiked with 3R0N, C) 8 mM 4R0N spiked with 4R0N, with
the following samples for each gel: 4R (0 mM 3R), 4R spiked with 1 mM
3R, 4R spiked with 2 mM 3R, and 4R spiked with 3 mM 3R. Densitometric
analysis of pelleting gels B) 4R0N spiked with 3R0N and D) 4R0N spiked
with 4R0N, was performed using Image J software [19]. Statistical
analysis performed using the Spearman Rank Correlation test in
Sigmaplot showed a negative correlation between 4R tau assembly
and additions of increasing concentrations of 3R tau isoforms (p,0.05),
but a positive correlation between 4R tau assembly and additions of
increasing concentrations of 4R tau isoforms (p = 0.05).
doi:10.1371/journal.pone.0010810.g006
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Figure 7. 3R tau isoforms inhibit 4R tau filament formation. A) Electron micrograph of tau assembly reaction containing 8 mM 4R0N, B)
Electron micrograph of tau assembly reaction containing 8 mM 4R0N spiked with 2 mM 3R0N, C–D) Quantification of average tau filament number
and average tau filament length per field was performed on 6–8 images, collected randomly at 10,0006magnification, using Image J freeware [19]. E)
Electron micrograph of tau assembly reaction containing 8 mM 4R2N, F) Electron micrograph of tau assembly reaction containing 8 mM 4R2N spiked
with 2 mM 3R2N, and G–H) Quantification of tau filament number per field performed as above. Statistical analysis performed by t-test in SigmaPlot
showed a significant decrease (p,0.0001) in tau filament formation and tau filament length (p,0.0001) in both 4R spiked with 3R and 4R2N spiked
with 3R2N assembly reactions compared with unspiked 4R or unspiked 4R2N tau assembly reactions, despite an overall increase in total tau protein.
doi:10.1371/journal.pone.0010810.g007

Figure 8. Changes in tau filament morphology in mixed isoform reactions. Filaments from 48 hour single isoform or mixed isoform
assembly reactions were examined by electron microscopy. Representative filaments from reactions containing only 3R0N tau were observed as A)
loosely twisted paired helical filaments or B) straight filaments while those formed in single 4R0N reactions contained predominantly C–D) straight
filaments. The filament ends in these pure reactions were mostly observed to be well defined and cleanly stained. Filaments from the mixed isoform
reactions were also able to form E) loose paired helical filament and F) straight filaments though the filament ends G–J) were often not well defined
and demonstrated splaying or amorphous aggregation. The scale bar is 100 nm.
doi:10.1371/journal.pone.0010810.g008
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reducing conditions [16,17] typically found in cell cytoplasm.

These studies suggest that significantly altering the normal tau

isoform ratio, particularly shifting the ratio towards 4R tau, as seen

in several tauopathies, could lead to enhanced tau aggregation and

the development of tau fibrillary pathology observed in these

tauopathy patients. These observations led to the hypothesis that

altering the normal equimolar tau isoform ratio promotes pro-

assembly tau folding, aggregation, and filament formation.

Together the thioflavin S binding, ultracentrifugation and

electron microscopy data reported here clearly demonstrate that

the extent of tau filament assembly is decreased in reactions

containing both 3R and 4R tau isoforms compared to those

containing solely 4R tau, and this reduced assembly is independent

of the reducing conditions or the expression of amino-terminal

inserts via exons two or three. These data also suggest that 3R and

4R tau may not preferentially co-assemble even though both

isoforms did aggregate when mixed as demonstrated by ultracen-

trifugation in Figures 4 and 6. Numerous examples of other

amyloidogenic proteins capable of aggregation individually, but

showing a reduced rate of aggregation when combined in the same

reaction, have been reported including prion proteins from

different species [27] and different Ab peptides [28]. Even when

co-incubation of two amyloidogenic proteins does lead to

increased fibrillization of both proteins, as in the case of tau and

alpha-synuclein, analysis of individual fibrils revealed that the vast

majority were homopolymers [29]. Ultracentrifugation data

measuring total tau aggregation as shown in Figure 4 substantiated

the thioflavin S findings on the tau folding that precedes

polymerization, while actual filament formation was confirmed

and quantified with electron microscopy in Figure 7. Although not

definitive, our electron microscopy data further support the idea

that 3R and 4R tau may not prefer to form heteropolymers as

suggested by the filament splaying and numerous amorphous

filament ends observed in the mixed tau reactions shown in

Figure 8. This, in conjunction with the quantitative filament

formation presented, suggest that the addition of a second isoform

to the tau assembly reaction interferes with both filament

nucleation and elongation.

The inhibition of single isoform tau assembly with another

isoform is not surprising as the subunits for filament assembly are

different. This may be especially true under oxidizing conditions

where intermolecular disulfide bonds between 3R and 4R tau may

create an additional heterodimer subunit type. However, the data

presented here suggested this is not an issue, as the inhibition

observed when spiking 4R tau reactions with 3R tau was similar in

magnitude, regardless of the reducing conditions used. The dose

dependent nature of this inhibition suggests that 3R isoforms may

not readily nucleate with 4R tau or incorporate into 4R tau

filaments in their preferred configuration. That is, 3R and 4R tau

may not be interchangeable subunits and might not co-assemble

into hetero-polymers. This could imply that 3R and 4R tau

filaments may have different structural morphologies and folding

characteristics similar to those reported for wild type and P301L

tau, where wild type tau exhibited distinct secondary structures

depending on the filament seed type used to induce assembly [30].

If 3R and 4R tau were able to form co-polymers, more compatible

tau subunits should have translated into more tau filaments at

equilibrium in the spiking reactions, and this was not observed.

This indicates 3R and 4R tau might not co-assemble extensively,

and this would be true unless these mixed subunits formed

filament copolymers that altered the equilibrium constant between

monomers and polymers such that it was decreased compared to

that observed for the 3R or 4R filaments formed from reactions

with pure isoforms. This remains a possibility; and in fact, it is not

known if pathogenic tau filaments contain multiple tau isoforms or

if it is possible to form single tau filaments containing 3R and 4R

tau isoforms.

If the isoforms are not able to co-assemble, the observations

from the spiking reactions that did not assemble to the levels

observed with 4R tau alone indicate 3R tau may not simply bind

and release the 4R tau before additional 4R tau is being

incorporated, but rather 3R may be sequestering either 4R tau

or the inducer. Binding of 3R to 4R tau monomer or polymer may

likely occur and slow 4R tau assembly, but at equilibrium the

amount of assembled 4R tau would not decrease unless the 3R

binding was irreversible. If this occurred, perhaps the amorphous

aggregation on the filament ends of the mixing reactions in

Figure 8 represents this irreversible binding. Another possibility is

that competition between 3R and 4R tau for heparin binding

could lead to sequestering of the inducer. Under this scenario,

heparin might only promote filament assembly when all of the

isoforms bound were the same. Essentially this would mean that as

heparin is concentrating tau locally so that nucleation is

accelerated, actual filament assembly would then only be

occurring when single tau isoform and heparin complexes are

available to establish the seed structure. At the beginning of the

reaction, enough single 4R isoform and heparin seeds would be

available to promote 4R tau filament assembly; however, as the

4R tau is incorporated into the filaments, the proportion of mixed

isoform seeds would increase. Eventually some heparin would not

effectively nucleate 4R tau assembly and perhaps even some 3R

filaments would form as was suggested by the ultracentrifugation

data. This could result in a decrease in heparin available for

nucleation and a decrease in total assembly as single 4R isoforms

are mixed or spiked with 3R tau. This would presumably be

different from inducers that cause conformational changes in tau

unless they also simultaneously concentrated the tau proteins.

Again, experiments designed to identify the isoform composition of

the nuclei and the assembled filaments could indicate how to best

capitalize on these findings in either slowing or accelerating tau

aggregation therapeutically.

In fact, the results from the mixing experiments with constant

tau to heparin ratios suggest that even small proportions of 3R tau

may inhibit the assembly of 4R tau. Data from the spiking

experiments with constant heparin (Figures 5, 6, 7) or constant tau

to heparin ratios (data not shown) demonstrate that small amounts

of 3R tau lower the amount of 4R filament assembly compared to

tau reactions supplemented with buffer or more 4R tau.

Significantly decreased 4R tau assembly in response to small

relative amounts of 3R tau may explain why mice and rats

typically express small amounts of 3R tau into adulthood [31] and

do not typically develop tau pathology. This is also one possible

explanation for the differences in neurofibrillary tangle pathology

observed in the 8c and htau mouse models that over-express the

same human genomic tau transgene but on different mouse tau

backgrounds. In both of these models, the genomic human tau

transgene displays significantly altered splicing ratios with greater

than 90% 3R tau [32] [33]. The presence of the 4R mouse tau

isoforms may balance the shift in the human tau gene splicing

towards 3R tau, creating more of equimolar ratio in the 8c mice,

which do not develop pathological tau lesions [32]; whereas

removal of these ratio balancing 4R mouse tau isoforms was

observed to cause to neurofibrillary pathology in the htau mice

[33]. With the findings from this study, it suggests that the

equimolar ratios of tau observed in humans and in other mammals

may not only function to ensure proper microtubule dynamics but

also to prevent pathogenic filament formation. Together these

reports provide compelling evidence that restoring the normal tau

3R Inhibits 4R Tau Assembly

PLoS ONE | www.plosone.org 8 May 2010 | Volume 5 | Issue 5 | e10810



isoform balance in 4R tauopathies, perhaps by stabilizing the exon

10 stem loop and reducing 4R tau expression [26], could provide

an effective treatment strategy for human tauopathies involving

altered isoform ratios. Certainly, it would be interesting to test this

hypothesis in some of the 4R mouse tauopathy models by

examining the effects of viral 3R tau transduction on the

accumulation of tau lesions, neuronal loss and behavioral deficits.

A clear understanding of the assembly and aggregation behavior

of reactions containing different tau isoform ratios, similar to those

that occur normally and in human diseases, would aid in the

development of strategies to intervene in the disease process. The

data presented here provides the first evidence that mixing 3R

with 4R tau isoforms results in less tau polymerization into

filaments such that altering the normal tau isoform ratio towards

4R tau increased tau assembly. Furthermore, the addition of even

small amounts of 3R tau inhibited 4R tau assembly by reducing

nucleation and perhaps elongation. Moreover, these effects were

independent of the reducing conditions of the reactions or the

expression of the N-terminal inserts, and they involved a specific

interaction between 3R and 4R tau isoforms. They also provide

the impetus for examining the effects other modifications like

phosphorylation or truncation have on these isoform assembly

effects. This is especially important as many tauopathies alter the

normal 3R and 4R tau ratios, while in Alzheimer’s disease, all six

tau isoforms have been observed in filament preparations. This

suggests that distinct mechanisms are involved in a disease specific

manner in the formation of unique tau aggregates that are defined

by their subunit composition, and perhaps, observed in changes

filament structure and morphology. Understanding these differ-

ences is ultimately useful in manipulating tau accumulation and

may be capitalized on, regardless of whether the tau tangles are

protective or harmful.
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