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Abstract

Tuberculoid leprosy (TT) is characterized by cutaneous lesions called plaques. Although

microvascular ultrastructure of TT patients’ skin is well-documented, little is known about

functional aspects of their microcirculation. We aimed, for the first time, to evaluate, in vivo,

the microcirculation of TT cutaneous lesions. Seven TT patients, males, under treatment

were included in the study. The spectral analysis of frequency components of flowmotion

(endothelial, sympathetic, myogenic, cardiac and respiratory) was performed using laser

Doppler flowmetry (LDF). Endothelial dependent and independent vasodilatations were

assessed by LDF associated to acetylcholine (ACh) and sodium nitroprusside (SNP) ionto-

phoresis, respectively. Vessel density (VD), perfused vessel density (PVD), proportion of

perfused vessels (PPV%), microvascular flow index (MFI) and flow heterogeneity index

(FHI), reflecting tissue perfusion and oxygenation, were evaluated through sidestream dark

field (SDF) imaging. All microvascular analysis were performed in TT lesions and in healthy

skin in the contralateral limb of the same patient, used as control skin. VD, PVD and PPV%

and MFI were significantly lower in the cutaneous lesion compared to contralateral healthy

skin. The contribution of different frequency components of flowmotion, endothelial depen-

dent and independent vasodilatations and FHI were not statistically different between con-

trol skin and cutaneous lesion. Our results suggest that TT cutaneous lesions have a

significant impairment of tissue perfusion, which may aggravate peripheral nerve degenera-

tion caused by Mycobacterium leprae infection.

Introduction

Leprosy is a chronic granulomatous infection of skin and peripheral nerves caused by Myco-
bacterium leprae (M. leprae) [1]. This obligatory intracellular pathogen causes nerve damage,

affecting sensory, motor and autonomic fibers which results in disabilities and deformities

[2,3]. Leprosy is characterized by a clinical pathological spectrum, based on host immune

response [4]. The immunopathologic spectrum of leprosy encompasses five forms:
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tuberculoid-tuberculoid (TT), borderline tuberculoid, borderline borderline, borderline lepro-

matous and lepromatous leprosy (LL) [5].

The hallmark of TT is the presence of one to three cutaneous lesions in a patient, called pla-

ques. These lesions are uniformly circular or oval, erythematous/hypopigmented, hairless,

scaly, dry and anesthetic [3].

Ultrastructural observations of skin biopsies from TT patients have demonstrated that cuta-

neous and endoneural vessels present hypertrophied endothelial cells [6,7]. Endothelial cell

hypertrophy was of such intensity that it blocked the capillary lumen [7] and it is due to an

extensive rough endoplasmic reticulum [6], which is characteristic of increased protein synthe-

sis and metabolic activity typical of chronic inflammatory states and immune reactions [8].

Additionally, the basement membrane of endothelial cells presented lamellary thickening asso-

ciated with increased number of leukocytes around blood vessels [6]. To our knowledge, the

functional aspects of TT cutaneous lesion microcirculation have not been investigated yet.

The microcirculation encompasses vessels with diameters up to 100 μm (arterioles, capillar-

ies, venules and microlymphatics) and is responsible for oxygen and nutrients delivery to tis-

sues, cell waste withdrawal and peripheral vascular resistance regulation [9,10].

Arterioles display spontaneous rhythmic variations of diameter, called vasomotion that elic-

its blood flow oscillations, termed flowmotion, and ensures an intermittent, but adequate,

blood flow distribution to tissues [11–13].

Assessment of human vasomotion and its consequent flowmotion is possible by means of

spectral analysis of laser Doppler flowmetry (LDF) signal [12]. LDF can also be used to investi-

gate endothelial microvascular function when associated to iontophoresis of endothelial

-dependent and -independent vasodilators: acetylcholine (ACh), and sodium nitroprusside

(SNP), respectively. Iontophoresis allows transdermal delivery of these vasodilators using a

weak current and the subsequent elevation of blood flow is, then, recorded by the LDF appara-

tus [14,15].

Sidestream dark field (SDF) consists in a simple and non-invasive imaging device that pro-

vides well-defined images of the microcirculation [16]. With this system it is possible to

observe the number of capillaries with flowing red blood cells and therefore estimate tissue

blood perfusion as well as the heterogeneity of blood flow.

Thus, we have aimed, for the first time, to evaluate, in vivo, microvascular alterations of

skin lesions from TT patients using laser Doppler flowmetry (associated or not to iontophore-

sis) and sidestream dark field (SDF) imaging.

Materials and methods

This is a cross-sectional study approved by the local Ethics Committee (Ethics Committee of

Universidade do Estado do Rio de Janeiro, COEP 0077/2011 registration no. 060.3.2011, per-

formed according to principles outlined in the Declaration of Helsinki. This study was regis-

tered at Brazilian Register of Clinical Trials (Registro Brasileiro de Ensaios Clı́nicos, ReBEC)

number RBR-2vz89f, Trial URL: http://www.ensaiosclinicos.gov.br/rg/RBR-2vz89f/.

Subjects

Seven TT patients at the beginning of treatment (just after the diagnostic of the disease) were

included in the study. Microvascular variables of skin lesions of these patients were compared

to symmetrical healthy skin in the contralateral limb, used as control. All participants of the

study have met the following inclusion criteria and have signed the written informed consent.

Inclusion criteria. Men with recent diagnostic of TT, at the beginning of treatment, with

ages between 20 and 60 years old, body mass index (BMI) between 18 and 29.9 kg/m2,
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Fitzpatrick’s phototypes I to IV. The Fitzpatrick skin phototype is a classification commonly

used to describe the individual’s skin type in terms of response to ultraviolet radiation expo-

sure [17]. Fitzpatrick’s phototype I refers to white unexposed skin that sunburns, but never

tans), II refers to white unexposed skin that sunburns and tans minimally, III refers to white

unexposed skin that sunburns and tans and IV refers to white unexposed skin that rarely sun-

burns and tans with ease) [17], able to follow given directions and to attend microvascular

assessments were included in the study.

Exclusion criteria. Women or men with previously confirmed diagnostic of hyperten-

sion, diabetes mellitus, BMI�30 kg/m2. Individuals with darker phototypes (since skin pig-

mentation makes the evaluation of cutaneous microcirculation very difficult or even

impossible): Fitzpatrick’s phototypes V (which refers to brown unexposed skin that rarely sun-

burns and always tans) and VI (which refers to black unexposed skin that never sunburns and

always tans, totally pigmented) [17]. Past or present history of smoking and ages under 20 and

over 60 years old were excluded.

Study recruitment. Initially 22 patients, who met the inclusion criteria, were recruited for

the study in the ambulatory Souza Araújo from Fundação Oswaldo Cruz (Fiocruz). From

these total, 13 patients did not attend the examinations and two were excluded because of their

cutaneous phototype (Fitzpatrick’s phototype V). Thus, only seven patients underwent the

examinations proposed in the study protocol.

Microvascular assessment

All participants were asked to arrive in the laboratory after 12 h overnight fast and to abstain

from caffeine and alcohol during the last 24 hours. They were accommodated in an acclima-

tized room (23±1 ˚C) during 20 minutes before microvascular evaluations. All subjects had

their anthropometric variables assessed and blood pressure evaluated before the examination

to ensure that they met the inclusion criteria.

Spectral analysis of flowmotion

Skin blood perfusion and flowmotion were evaluated by LDF apparatus (PeriFlux System

PF5000, Perimed AB, Stockholm, Sweden) consisting of a transmission of low-power laser

light (780 nm) to the tissue though a fiber optic probe that penetrates 0.4–1.0 nm. The light

penetration allows the assessment of net red blood cell flow in arbitrary perfusion units (PU)

that corresponds to the concentration of moving blood cells and their velocity, in arterioles,

capillaries and venules and in anastomosis of deeper blood vessels in dermal layers, within an

area of 1mm2 [18]. The LDF signal was recorded continuously during 20 min by an interfaced

computer equipped with Perisoft software (PSW 2.50, Perimed AB, Stockholm, Sweden) in

order to assess skin blood flow and vasomotion. For these measurements, the LDF probe was

placed in the central area of the cutaneous lesion as well as the central of the skin area symmet-

rical to the lesion in the contralateral limb (healthy control area) of TT patients.

For analysis of LDF signal we used fast Fourier transform (Perisoft software, PSW version

2.50, Perimed AB, Stockholm, Sweden). This analysis determines the contribution of different

frequency components of flowmotion through the variability of LDF signal. The frequency

spectrum between 0.01 and 1.6 Hz was divided into five frequency intervals: endothelial (0.01–

0.02 Hz), sympathetic (0.02–0.06 Hz), myogenic, related to vascular smooth muscle cell

(VSMC) activity (0.06–0.15 Hz), respiratory (0.15–0.4 Hz) and cardiac, associated to heart

beat frequency (0.4–1.6 Hz) [19,20]. Mean total amplitude value of the total spectrum as well

as the mean amplitude values of each frequency interval were recorded and normalized (abso-

lute amplitude at a particular frequency interval divided by the mean amplitude of the entire
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spectrum) [21]. The normalized results of skin lesions were then compared to those observed

in the control skin of TT patients.

Iontophoresis of acetylcholine and sodium nitroprusside

Endothelium-dependent and -independent vasodilatations were evaluated by LDF combined

to iontophoresis of ACh and SNP, respectively. This protocol was adapted from [18,22], since

we needed to perform iontophoresis of ACh and SNP exactly at the same sites (surface of the

skin lesion or the surface of control skin in the contralateral limb). In general, different sites

were used for ACh and SNP iontophoresis. As ACh has a short half-life, it was used first. The

SNP iontophoresis was started 15 min after the end of ACh iontophoresis in order to avoid

any possible interference of ACh on SNP iontophoresis.

ACh (Acetylcholine, Sigma-Aldrich, Saint Louis, MO, USA) solution at 1% was delivered

by nine iontophoretic pulses of 0.1 mA during 20 s with a 60 s interval between two successive

pulses on cutaneous lesion and on symmetrical healthy skin in the contralateral limb, using an

anodal current. Similarly, SNP (sodium nitroprusside, Niprid1 10mg/ml–Biolab, São Paulo,

Brazil) was delivered by seven iontophoretic pulses of 0.2 mA during 20 s with a 180 s interval

between two successive pulses on cutaneous lesion and on symmetrical healthy skin in the

contralateral limb, using a cathodal current.

During ACh and SNP iontophoresis, it was possible to evaluate cutaneous blood perfusion

(in perfusion units–PUs) at baseline and plateau and vasodilatation expressed in absolute val-

ues (difference between plateau and baseline in PUs) and in percentage (% of increase from

baseline to plateau). These values were compared between lesions and control skin of TT

patients.

Sidestream dark field (SDF) imaging assessment

After acclimatization, the microcirculation of skin lesion and contralateral healthy skin of each

TT patient were assessed by SDF imaging (Microvision Medical B.V., Amsterdam, the Nether-

lands) at five different points, according to criteria recommended by De Backer [16].

Images were recorded for 10 s at each point and evaluated thereafter using the Automated

Vascular Analysis (AVA 3.0; Microvision Medical B.V., Amsterdam, the Netherlands).

The score proposed by De Backer and coworkers [16] takes into account the principle that

density of vessels is proportional to the number of vessels crossing arbitrary lines. In this score,

three equidistant horizontal and three vertical lines are drawn in the screen monitor. The ves-

sel density (VD), also known as De Backer score [23], was calculated as the number of vessels

crossing the lines divided by total length of the lines. Additionally, the perfusion of vessels was

classified into continuous (continuous flow for at least 20 s), absent (no flow for at least 20 s)

and intermittent (at least 50% of the time with no flow) flow. The proportion of perfused ves-

sels (PPV%) was calculated as 100 x (total number of vessels—vessels of intermittent or

absence of flow) divided by total number of vessels. The perfused vessel density (PVD) is the

product of VD and PPV and estimates the functional capillary density [16,23].

Due to its physiological relevance to oxygen exchange, small vessels (mostly capillaries)

were separated from the large ones (predominantly venules) using a 20 μm cut-off [16].

For microvascular flow index (MFI) quantification, each image was divided into four quad-

rants and the circulation in each one was expressed in ordinal scale according to the predomi-

nant kind of flow: 0-no flow; 1 intermittent flow; 2-sluggish flow and 3-brisk flow of the skin

lesions and control skin [24]. MFI represents the average score of all quadrants [23].

The flow heterogeneity index (FHI), which is the difference between the highest MFI and

the lowest MFI divided by the mean MFI, was also calculated [24].

Microcirculation in tuberculoid leprosy
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All these variables were evaluated in TT cutaneous lesion and in the skin area symmetrical

to the lesion in the contralateral limb (healthy control skin) of TT patients.

Statistical analysis

For all statistical analysis, GraphPad Prism1 5 (GraphPad Software, Inc., San Diego, CA,

USA) was used. Normal Gaussian distribution was checked using Shapiro-Wilk normality test.

For parametric and non- parametric variables, data were expressed as mean±SD or mean

±SEM and median [interquatile range], respectively. Inter group comparisons for parametric

and non- parametric variables were performed by unpaired t-test and Mann Whitney U test,

respectively. A P value of less than 0.05 was considered significant.

Results

Characteristics of TT patients

Table 1 presents anthropometric and clinical characteristics of TT patients. As expected, TT

patients did not present obesity or hypertension.

Spectral analysis of flowmotion

Spectral analysis of vasomotion frequency components (endothelial, sympathetic, myogenic,

respiratory and cardiac) did not show any statistical difference between skin lesions and con-

tralateral control skin. These results are shown on Fig 1.

Iontophoresis of acetylcholine and sodium nitroprusside

During ACh and SNP iontophoresis, no statistical differences concerning blood flow at base-

line and plateau were observed between skin lesions and healthy skin. The absolute and per-

centage values of blood flow, in these two skin areas, after ACh and SNP were not significantly

different between cutaneous lesions and control skin. These results are depicted on Table 2.

Sidestream dark field (SDF) imaging assessment

Differences in capillary blood perfusion between normal and plaque skin are depicted on Fig

2.

VD, PVD and PPV% and MFI were significantly lower in the cutaneous lesion compared to

healthy contralateral skin. On the other hand, FHI was not significantly different between skin

lesion and control skin. These results are shown on Table 3.

Table 1. Clinical and anthropometrical characteristics of tuberculoid leprosy patients.

Variable Mean ±SD

Age (years) 50.3±8.6

Weight (kg) 76.1±4.7

Height (m) 1.74±0.05

BMI (kg/m2) 25.2±1.8

SBP (mmHg) 123±10.55

DBP (mmHg) 77.6±7.58

BMI—body mass index, SBP—systolic blood pressure; DBP—diastolic blood pressure.

https://doi.org/10.1371/journal.pone.0227654.t001
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Discussion

We have evaluated, for the first time, functional aspects of cutaneous microcirculation of TT

lesions. We have shown that TT skin lesions have a significant decrease of VD, PVD, PPV %

and MFI in comparison to control skin, which reflects a significant impairment of capillary

perfusion and deficient oxygenation in this region. An ultrastructural study demonstrated that

cutaneous small vessels (capillaries) often possess an occluded lumen [6], due to endothelial

cells hypertrophy, which can explain the poor cutaneous blood perfusion seen in TT lesion

area. We believe that this microangiopathy may aggravate peripheral nerve degeneration

caused by M. leprae infection. Decreased blood perfusion was also reported by our group in

the other polar form of leprosy. In this recent study Treu and coworkers [22], using orthogonal

polarization spectral imaging (OPS), showed that LL patients have a significant lower func-

tional capillary density (number of perfused capillaries/mm2) in their skin compared to

healthy controls.

Fig 1. Spectral analysis of flowmotion. Comparison between different components of spectral analysis of flowmotion in Tuberculoid Leprosy (TT)

cutaneous lesion and in the contralateral healthy limb (control) skin of the same patient: A) Endothelial; B) Sympathetic; C) Myogenic; D) Respiratory

and; E) Cardiac components of flowmotion. Data were expressed as mean±SEM.

https://doi.org/10.1371/journal.pone.0227654.g001
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In addition to functional capillary density, estimated by PVD, SDF allows the evaluation of

FHI, which is the difference between the highest MFI and the lowest MFI divided by the mean

MFI. The FHI reflects the perfusion heterogeneity and is a key determinant of oxygen extrac-

tion by tissues [16,25–27]. As we know, under normal circumstances, the microcirculation is

able to regulate blood supply to tissues in order to meet their metabolic demand (i.e. autoregu-

lation) and presents minimal flow heterogeneity. Normally, tissues better adapt to homoge-

neous (even slow) than heterogeneous blood flow. Decreasing functional capillary density and

creating heterogeneous flow, oxygen diffusion distance increases, resulting in reduction of tis-

sue oxygen extraction. Cells near perfused capillaries consume normal levels of oxygen. In

contrast, cells distant from perfused capillaries do not receive enough oxygen to meet their

needs and become hypoxic. As consequence, we can find hypoxic areas even in the presence of

an elevated venous oxygen saturation [16,28,29] This phenomenon is characteristic of certain

pathological states, such as sepsis. In sepsis occurs an impairment of tissue oxygen extraction

despite normal or elevated oxygen delivery. Two hypotheses have been proposed to explain

this phenomenon: (1) mitochondrial dysfunction, in which oxygen extraction is reduced as

consequence of a decrease of oxygen utilization by mitochondria and (2) heterogeneity of cap-

illary flow, which results in maldistribution of oxygen. Certain capillaries are undersupplied

while others are oversupplied of oxygen. In other words, it means that the microvasculature

loss the autoregulation capacity and fails to correct the maldistribution of blood flow and oxy-

gen supply [27]. Evidences in the literature suggest that this incapacity is resultant of a signali-

zation failure between arterioles and capillaries [30]. According to Ellis and coworkers [27],

the decrease of oxygen extraction is rather a consequence of oxygen exchange surface loss and

microvasculature inability to redistribute oxygen to tissues than mitochondrial dysfunction. In

our study, despite the significant decrease in perfused vessel density in tuberculoid cutaneous

lesions in comparison to control skin, FHI was not significantly different in the cutaneous

lesion when compared to control skin, indicating that flow was not heterogeneous and proba-

bly oxygen extraction from tissues was not compromised.

In cutaneous lesions of TT there is a granulomatous infiltrate [31] without tissue edema for-

mation. In general, edema formation occurs acutely in the curse of reactional states of leprosy

Table 2. Microvascular measurements before and during iontophoresis using laser-Doppler flowmetry in healthy

contralateral (control) skin and skin lesions of tuberculoid leprosy patients.

Control Skin (n = 7) Skin Lesions (n = 7) P value

ACh-mediated vasodilatation

Baseline skin perfusion, PU 14.38 [4.31–18.98] 8.42 [2.45–21.03] 0.8048

Plateau, PU 28.38 [19.86–53.2] 36.2 [11.17–62.48] 0.8048

Number of doses to reach Plateau 9.00[6.00–9.00] 8.00[5.00–9.00] 0.5921

Absolute increase, PU 16.20 [12.80–53.20] 27.80 [5.70–44.20] 0.9015

Percentage increase, % 190.60 [110.00–439.70] 242.00[125.40–441.90] 0.8048

SNP-mediated vasodilatation

Baseline skin perfusion, PU 11.16 [7.99–13.11] 12.44[5.65–18.32] 0.9015

Plateau, PU 35.17 [27.57–41.38] 61.90 [27.11–80.62] 0.2593

Number of doses to reach Plateau 5.00[6.00–7.00] 7[7.00–7.00] 0.0699

Absolute increase, PU 26.20[17.50–29.30] 52.8 0[12.90–62.30] 0.6200

Percentage increase, % 258.50 [118.90–340.20] 340.10 [52.2–1042.00] 0.8048

Data are expressed as median [interquartile range]. ACh: acetylcholine. SNP: sodium nitroprusside. PU: perfusion

units.

https://doi.org/10.1371/journal.pone.0227654.t002
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(Type 1 reaction or reversal reaction and Type 2 reaction or erythema nodosum leprosum).

These reactions are resultant of changes in the host immune response against antigenic deter-

minants of M. leprae [32]. According to Wheate [33], the acute edema formation in tubercu-

loid leprosy patients occurs in and around reactional lesions, in eyelid and face. In our study,

none of our patients were affected by any reactional states of leprosy, and therefore did not

present edema that might have increased oxygen diffusion distance.

Concerning microvascular reactivity, we did not observe significant differences in endothe-

lium -dependent and -independent vasodilatations between cutaneous lesion and healthy skin

in TT patients, using LDF associated to ACh and SNP iontophoresis. In other words, micro-

vascular function in TT skin lesions was preserved. Using the same technique, our group dem-

onstrated that LL (the other polar form of Leprosy) caused a significant impairment of

endothelial dependent and independent vasodilatations, which evidence an expressive micro-

vascular dysfunction in these patients [22]. Ultrastructural studies of skin biopsies of LL

patients revealed endothelial infection by M. leprae [6,34]. Moreover, Scollard and coworkers

[35,36] demonstrated through electron microscopy that endothelial cells from epineural and

perineural blood vessels and from human umbilical vein (HUVEC) were colonized by M.

leprae. Since M. leprae has the capacity to infect endothelial cells and vasculature colonization

Fig 2. Sidestream dark field images of cutaneous microcirculation. Capillary blood perfusion in (A) normal skin (control) (B) Skin lesion (plaque) of

the same tuberculoid leprosy patient.

https://doi.org/10.1371/journal.pone.0227654.g002

Table 3. Comparison between cutaneous microcirculation of healthy contralateral (control) skin and skin lesions

of tuberculoid leprosy patients using sidestream dark field imaging.

Control Skin (n = 7) Skin Lesion (n = 7) P value

VD (1/mm) 17.49[17.08–18.42] 12.55[12.14–13.27] 0.0021

PVD (1/mm) 16.36[15.53–17.18] 10.29[10.19–11.11] 0.0006

PPV (%) 93.26[90.956–93.53] 83.33[82.86–86.40] 0.0006

MFI (arbitrary units) 2.500[2.250–2.500] 1.750[1.500–1.750] 0.0021

FHI 0.2069[0.00–0.2500] 0.1667[0.1579–0.3333] 0.3706

Data are expressed as median [interquartile range]. VD: vessel density. PVD: perfused vessel density. PPV:

proportion of perfused vessels. MFI: microvascular flow index. FHI: flow heterogeneity index.

https://doi.org/10.1371/journal.pone.0227654.t003
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by these bacilli may increase the risk of ischemia [36] and therefore endothelial damage. We

believe that the significant microvascular dysfunction observed in LL patients could be conse-

quence of endothelial cells infection and exposure of microvascular beds to chronic inflamma-

tion raised against M. leprae.
In order to evaluate the ultrastructure of microcirculation in different forms of leprosy Yajima

and coworkers [6] reported that endothelial cells were hypertrophied and blood cells stagnated.

The basement membrane of endothelial cells was associated with an increased number of inflam-

matory cells around blood vessels. The endothelial cells presented an extensive rough endoplas-

mic reticulum due to an increased protein synthesis. Moreover, another ultrastructural study

involving blood vessels of nervous fibers demonstrated that endothelial cells extended to the

lumen and, probably, for this reason, the vessel lumen was often closed. In addition, basement

membrane of endothelial cells presented many folds and fingers, like protrusions [7].

The absence of intraendothelial M. leprae, shown in ultrastructural studies of TT skin and

peripheral nerves biopsies [6,7], may explain the preserved endothelial function in cutaneous

lesions of TT patients and accounts for discrepant results between the TT and LL patients, con-

cerning endothelial function.

It was previously reported in the literature that M. leprae infection not only significantly

affects somatic motor nervous fibers, but also autonomic ones [37]. Using laser Doppler velo-

cimetry of fingertip microvascular blood flow, a reliable test to evaluate the vasomotor reflex

(VMR), i.e. the vasoconstrictor response to sympathetic stimulus, such as inspiratory gasp,

and sympathetic skin response (SSR), a method extensively used in clinical and experimental

settings to assess sympathetic vasomotor function, this study [37] have demonstrated that the

prevalence of VMR abnormalities and absent SSR were significantly higher in a heterogeneous

cohort of Nepali leprosy patients than in controls. Years later, other study [38] have shown

that abnormal VMR is also more prevalent in early diagnosed Brazilian Leprosy patients than

in controls. Corroborating this observation, regarding VMR in leprosy patients, another work

[39] demonstrated, by immunocytochemistry, that autonomic fibers that innervate blood ves-

sels were compromised in TT patients. Based on these previous observations, we supposed

that TT skin lesion could have a decreased contribution of the sympathetic component of flow-

motion, but in our study, spectral analysis of flowmotion did not reveal any significant differ-

ence between TT cutaneous lesion and control skin concerning flowmotion sympathetic

component. We presume that did not observe any significant difference between cutaneous

lesion and control skin of these patients, concerning the sympathetic component of spectral

analysis of flowmotion, due to low reproducibility of the method [40], which probably requires

greater number of patients to reach statistical significance.

In order to exclude any confounding factors from our analysis we have considered ineligi-

ble for the study hypertensive, diabetic, obese, old and smoking subjects, since hypertension

[41,42], diabetes mellitus [41,43], obesity [44], age [45,46] and tobacco [47–50] are factors that

affect microvascular reactivity and vasomotion assessed by LDF. Moreover, we have decided

not to include women in the study due to differences in gender hormones that may constitute

an additional bias and lead to data misinterpretation. The rigid exclusion criteria allied to

social stigma of TT patients contributed for the small number of included patients, which we

considered the major study limitation.

Conclusions

Our results suggest that tuberculoid leprosy cutaneous lesions have significant impairment of

tissue perfusion and deficient oxygenation, which may aggravate peripheral nerve degenera-

tion caused by Mycobacterium leprae infection.
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