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Abstract

T-cell receptor (TCR) sequencing has enabled the development of innovative diagnostic tests for cancers, autoimmune diseases and
other applications. However, the rarity of many T-cell clonotypes presents a detection challenge, which may lead to misdiagnosis
if diagnostically relevant TCRs remain undetected. To address this issue, we developed TCRpower, a novel computational pipeline
for quantifying the statistical detection power of TCR sequencing methods. TCRpower calculates the probability of detecting a TCR
sequence as a function of several key parameters: in-vivo TCR frequency, T-cell sample count, read sequencing depth and read cutoff.
To calibrate TCRpower, we selected unique TCRs of 45 T-cell clones (TCCs) as spike-in TCRs. We sequenced the spike-in TCRs from
TCCs, together with TCRs from peripheral blood, using a 5" RACE protocol. The 45 spike-in TCRs covered a wide range of sample
frequencies, ranging from 5 per 100 to 1 per 1 million. The resulting spike-in TCR read counts and ground truth frequencies allowed
us to calibrate TCRpower. In our TCR sequencing data, we observed a consistent linear relationship between sample and sequencing
read frequencies. We were also able to reliably detect spike-in TCRs with frequencies as low as one per million. By implementing
an optimized read cutoff, we eliminated most of the falsely detected sequences in our data (TCR «-chain 99.0% and TCR B-chain
92.4%), thereby improving diagnostic specificity. TCRpower is publicly available and can be used to optimize future TCR sequencing
experiments, and thereby enable reliable detection of disease-relevant TCRs for diagnostic applications.

Keywords: T-cell receptor, bulk T-cell receptor sequencing, spike-in standards, computational model, TCRpower and adaptive immune
receptor repertoire sequencing

Introduction person has a unique repertoire of T-cell receptors (TCRs),
The adaptive immune system records all past and ongo- ~ with a high genetic sequence diversity. The number of
ing immune responses in the form of immune mem- TCR beta (TRB) clonotypes in an individual has been esti-

ory (e.g. principle of vaccination), stored in the immune  mated to be 10°-108 [1, 2], whereas the potential diversity
receptors of adaptive immune cells, such as T-cells. Each ~ of the paired TCR alpha (TRA) and TRB repertoire, was
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found to be even higher, 2 x 10 [3], only a few orders
of magnitude less than the estimated number of stars
in the universe [4]. Each TCR is specific to one or more
antigens. This has allowed for the development of novel
diagnostic and therapeutic applications: for autoimmune
diseases [5], celiac disease [6], cancer [/] and infectious
diseases [8], which are based on high-throughput, bulk
TCR sequencing methods.

Several TCR sequencing methods have been developed
for the analysis of T-cell populations (bulk sequencing)
or of individual T cells (single-cell sequencing) by aca-
demics and industrial investigators [9]. These approaches
can be broadly classified into DNA-based or RNA-based
approaches, as well as multiplex PCR [using panels of
V and ] primers (RNA and DNA)] or rapid amplifica-
tion of 5 complementary DNA ends (RACE) followed
by nested PCR based sequencing (RNA only) [9]. These
different sequencing approaches have their own merits
and limitations [9, 10] affecting the choice of sequenc-
ing approach for different applications. Single-cell TCR
sequencing provides paired TRA and TRB sequencing,
however the number of cells that can be sequenced (10%-
10%) is much less than bulk TCR sequencing (10?108, 9).
Recently developed commercial single-cell sequencing
solutions (10x genomics) have revolutionized the field
by providing full-length paired TRA and TRB sequenc-
ing of a large number of T cells. However, bulk TCR
sequencing approaches are still typically employed for
high-throughput analysis of immune cells in health and
disease [9]. These bulk TCR sequencing approaches have
different accuracies and intra- and inter-method repro-
ducibility for detecting TRA and TRB chains [11].

Quantifying the detection power of TCR sequencing
methods is crucial for TCR based diagnostics (e.g. for
method selection, optimization and reproducibility). This
is because the distribution of in-vivo TCR frequencies
is long-tailed (akin to a power law; [12-14]) with many
potentially disease-relevant TCRs appearing at frequen-
cies as low as one per million [15, 16]. Thus, undetected
low-frequency TCRs could potentially compromise the
quality of TCR diagnostics, leading to misdiagnosis.

A pool of spike-in sequences at different frequencies
allows for controlled experimentation and for the quan-
tification of detection power. Such spike-in sequences
have been previously considered in Ig sequencing [17, 18]
to conduct error and bias correction. In both Ig studies,
the spike-in pool contained different CDR3 sequences
at different relative concentrations, thereby enabling the
systematic study of sequence detection limits. Spike-in
standards have also been used in TCR sequencing [11,
19]. By using synthetic DNA templates, Carlson et al.
were able to account for amplification bias and compu-
tationally correct their sequencing library [19]. Similarly,
Barennes et al. benchmarked different TCR sequencing
methods with a single spike-in TCR clonotype, present
at three different frequencies (1/10, 1/100 and 1/1000)
[11]. However, unlike the Ig studies, the TCR studies [11,
19] did not consider the effects of spike-in sequence

frequencies on sequence detection. Consequently, the
effect of variable TCR clonal frequency on TCR sequence
detection is an open question. Furthermore, previous
TCR sequencing studies have not considered the crucial
issue of detection reliability. Thatis, how can we estimate
the probability of a disease-relevant TCR sequence being
reliably detected by a given experimental design? By
quantifying the effects of important sequencing param-
eters, computational models can thus provide precise
detection power calculations, and thereby enable reliable
TCR sequence detection for diagnostic applications.

In this study, we developed a combined experimental
and computational framework to investigate the power
of TCR sequencing methods to detect 45 unique spike-
in TCRs across a wide range of frequencies (5 x 1072 to
107%). We also investigated the effect of replicates (RNA
and cDNA) and PCR amplification (combined TRA/TRB
versus separate TRA/TRB) using a 5'RACE based proto-
col. We used the sequencing read counts to calibrate
our computational model, which allowed us to calcu-
late the detection power of our TCR sequencing meth-
ods. Based on our read count models, we developed a
detection power calculator, TCRpower, which allows for
the inference of TCR detection power as a function of
TCR frequency, TCR sample count, sequencing depth and
read cutoff. TCRpower can be recalibrated with pilot
data from alternative sequencing methods, beyond those
considered in this study, and thereby provide laboratory
protocol-specific predictions of TCR detection power for
future applications.

Material and methods
Human subjects

To generate RNA from effector memory CD4+ T cells for
the study, we obtained blood samples from two randomly
selected donors. One donor was an anonymous blood
donor at the blood bank of Oslo University Hospital
(OUS), from whom we obtained a buffy coat made from
full blood. We obtained a blood sample from another
donor via the Gastroenterology unit at Oslo University
Hospital-Rikshospitalet after receiving informed written
consent.

Generation of TCR dataset with spike-in TCRs

Effector memory CD4+ T cells were isolated from periph-
eral blood samples by using the CD4+ Effector Memory
T Cell Isolation Kit (Miltenyi, Germany) followed by total
RNA extraction using the RNeasy Mini Kit (Qiagen, Ger-
many) and cleanup using the RNeasy MinElute Cleanup
Kit (Qiagen, Germany). In order to generate a panel of
diverse spike-in TCRs, we selected 45 T-cell clones (TCCs)
with unique known TCRs (Supplementary Table S1) and
isolated total RNA using the RNeasy Mini Kit (Qiagen,
Germany). The RNA from these 45 TCCs were mixed
in titrated amounts, with nine different concentrations
(0.001,0.003,0.01,0.05,0.3,1, 3,10 and 50 ng) containing 5
TCCeach. This spike-in RNA mix (~320 ng) was combined
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with RNA from CD4 Effector memory T cells (~680 ng), to
generate a final RNA mix (~1000 ng) designed to mimic
the broad range of biological TCR frequencies found in
in-vivo TCR repertoires (Supplementary Table S1). Con-
sequently, this final RNA mix contained RNA from 45
TCC with known TRA and TRB sequences present in
nine different frequencies (1, 3, 10, 50, 300, 1000, 3000,
10 000 and 50 000 RNA per one million RNA molecules)
where RNA from five TCC were present in each of these
frequencies.

We prepared sequencing libraries from the final RNA
mix under different conditions (Figure 1). In Set 1, the
final RNA mix was split into three replicas prior to cDNA
synthesis, whereas in Sets 2 and 3 the cDNA sample was
split into six/three replicas prior to PCR amplification. In
Set 2, the PCR amplification for TRA and TRB sequences
were performed as separate reactions, whereas in Set
3 it was performed as one reaction. As controls, we
also performed TCR sequencing on the RNA from spike-
in RNA mix only (Control spike-in TCC mix) and RNA
of the effector memory CD4 T cells only (Control CD4
TEM). All of these sets were generated in duplicates (a,
b) with the only difference being the use of two slightly
different Template-switch oligo in set a (TSO_a) and set
b (TSO_b). The sequences of the oligos and primers used
in cDNA synthesis and the PCR reactions are provided in
Supplementary Table S2.

The RNA was reverse transcribed to generate cDNA
in two steps using a protocol based on 5 RACE [16, 20].
In the first step, RNA was mixed with 10 mM Tris—HCl
PH 8 (Sigma Aldrich, USA), 0.2% Tween-20 (Sigma Aldrich,
USA), 1mM of deoxynucleotide (dNTP) (ThermoFisher
Scientific, USA), 1 uM of oligo dT (Biomers.net, Germany),
1 U/ul RNase Inhibitor (New England Biolabs, USA) in a
total reaction of 24.75 ul and subjected to 72°C for 3min
followed by 1 min on ice. In the second step, 1X FS buffer
(Invitrogen, USA), 0.8 M Betaine (Sigma Aldrich, USA),
6 mM MgCl2 (Sigma Aldrich, USA), 2.5 mM DTT (Invit-
rogen, USA), 2 uM TSO_a (IBA Lifesciences, Germany)
or 2 uM TSO_b (Biomers.net, Germany), 1.5 U/ul RNase
Inhibitor (New England Biolabs, USA), 5 U/ul SuperScript
II (Invitrogen, USA) were added in a total volume of
25.25 pland the cDNA was synthesized at 42°C for 90 min
followed by 72°C for 15 min.

Following cDNA synthesis, three rounds of PCR
were carried out. In the first PCR, cDNA from each
sample was divided into replicates for amplification
of TRA and TRB genes (Figure 1). The first PCR was
performed with 200/40 nM forward primer mix (STRT-
fwd S/L; Biomers.net, Germany), 200 nM reverse primer
(TRAC_revl or TRBC_revl; Biomers.net, Germany),
200uM of dNTP (ThermoFisher Scientific, USA) and
Phusion High-Fidelity DNA Polymerase (ThermoFisher
Scientific, USA), in total volume of 20 ul. The cycling con-
ditions were: 1 min at 98°C followed by 5 cycles
(105 x 98°C,60s x 72°C),5 cycles (10s x 98°C,30s x 70°C,
40s x 72°C), 8 cycles (10s x 98°C,30's x 65°C,40s x 72°C)
and a final elongation at 72°C for 4 min. The second PCR
was performed with 200 nM indexed forward primers
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(R2_In; Biomers.net, Germany), 200 nM barcoded reverse
primers (TRA_In or TRB_In; Biomers.net, Germany),
200 uM of dNTP (ThermoFisher Scientific, USA) and
Phusion High-Fidelity DNA Polymerase (ThermoFisher
Scientific, USA) in total volume of 10 ul. The primers used
for barcoding different sets and replicates are provided
in Supplementary Table S3. The cycling conditions were:
2 min at 98°C followed by 10 cycles (20 s x 98°C,
30s x 60°C, 40 s x 72°C) with final elongation at 72°C for
5 min. A final PCR reaction was carried out with 200 nM
forward primer (Illumina Seq Primer R2; Biomers.net,
Germany), 200 nM reverse primer (Illumina Seq Primer
R1; Biomers.net, Germany) and KAPA HiFi HotStart
ReadyMix (Roche, South Africa) in a total reaction of 10 ul
to prepare the sequencing library for the Illumina MiSeq
platform. The cycling conditions were: 2 min at 95°C
followed by 20 cycles (20 s x 98°C,30s x 60°C,40s x 72°C)
with final elongation at 72°C for 5 min. The PCR products
were pooled and cleaned using the Monarch PCR & DNA
Cleanup Kit (New England Biolabs, USA) followed by gel
extraction. The PCR product excised from the gel was
cleaned with the Monarch DNA Gel Extraction Kit (New
England Biolabs, USA) and the Monarch PCR & DNA
Cleanup Kit (New England Biolabs, USA). The resulting
amplicon library was sequenced using the HiSeq 3000
platform at the Norwegian Sequencing Centre, a core
facility at the University of Oslo and Oslo University
Hospital. The raw sequencing data have been deposited
in the Sequence Read Archive (https://www.ncbinlm.
nih.gov/sra) under the accession number PRINA760684.

Data processing and software

MiXCR [21] was used to process the raw TCR sequences
obtained from Illumina sequencing to obtain quanti-
tated clonotypes. The nucleotide CDR3s of the MiXCR
output (i.e. the clones list) were searched for the
nucleotide CDR3s of the spike-in sequences. To convert
the MiXCR-formatted CDR3s to IMGT format (used by
the spike-in TCR sequences), three nucleotides were
trimmed off the 5 and 3’ ends of the CDR3s. Identical
converted nucleotide CDR3s were assumed to signify
identical TCRs; other information such as V-gene usage
was not utilized. For each set, the two duplicates (a,
b) were merged for downstream analysis. Python 3
with Jupyter [22], and the packages numpy [23], scipy
[24] and statsmodels [25] were used for calculations,
along with TCRpower, our custom built TCR detection
power calculator. Data visualizations were created
with the packages seaborn [26] and matplotlib [27].
Biorender was used to create Figure 1. TCRpower is
publicly available via GitHub repository (https://github.
com/GabrielBalabanResearch/TCRpower) and Zenodo
(https://doi.org/10.5281/zenodo.5638319).

Results

We developed a computational and experimental frame-
work for quantifying the statistical power of nucleic acid


https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab566#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab566#supplementary-data
https://www.Biomers.net
https://www.Biomers.net
https://www.Biomers.net
https://www.Biomers.net
https://www.Biomers.net
https://www.Biomers.net
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab566#supplementary-data
https://www.Biomers.net
https://www.Biomers.net
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://github.com/GabrielBalabanResearch/TCRpower
https://github.com/GabrielBalabanResearch/TCRpower
https://doi.org/10.5281/zenodo.5638319

4 | Koirala et al.

Computational model of the TCR detection limit

Total blood:
~ 5 liters
TCRs:10%-10°

Sampling
10-120 ml

T cells at different
clonal frequencies
derived from blood

T2 SIS
e
88 SN
HCSICe
?NA/ [;NA derlived
rom the T cells

v\V\S TCR sequencing

TCR sequences

T

1. Modelling the number of target

2. Modelling the number of sequencing reads based
on the number of sampled TCR

]

T TCR in a peripheral blood sample T

T Detection probability inference |

Experimental pipeline

AR
& {z‘t)é?t';?\lnAOf nox Combined RNA mix
r ( ‘ ‘ 1000
Isolation of ngRNA .
esfcf)e?:tlgrnn?emory — Fcz?\lr;;(‘ammg splke-n
CD4 T cells ‘ ‘ present at
P N < s = | frequency of
GICICICIT) 371000000
N Ny NV v\ '
1. Isolation of 0.001 [0.003 [0.01ng [0.05ng [0.3ng = 15% 8gggg'
total RNA from ng ng 3 g
® each TCC 3/10000,
———— 7
- s . Mixing in \ ¢
- titrated amount | ?"g m ol e Spike-in RNA mix ;ﬂgg
45 TCCs with known (Boz ) (GE0) (30 320 ng RNA RNA molecules
unique TCRs N\
| Sequencing Library preparation |
Set RNA cDNA PCR Motivation
—» _R1
y R1 = il aRY b < B Tolassess the effeclt of
- N ] splitting RNA sample on
1(ab) " Divide RNK R2 \& i aR2 | BR2 detection of spike-in TCRs
into three parts  R3 Divide cDNA a_R3 ' B_R3
into two parts
aR17 7 BRI To assess the effect of
=l A splitting cDNA sample and
2(ab) > e 4R2 | B_R2 performing TRA and TRB PCR
Divide cDNA =V amplification separatelé/ on
into six parts a_R3 | B_R3 detection of spike-in TCRs
ap_R1 To assess the effect of
x| splitting cDNA sample and
3(ab) — ap_R2| | performing TRA and TRB PCR
Divide cDNA 1 amplification together on
into three parts ap_R3 detection of spike-in TCRs
R1 B_R1
go.Trql ] B 5 To ﬁen&iratﬁ the ﬁontr(_|>_ICsRet
IKe-IN > . with only the spike-in
T’C))C mix ¥ " ' Divide CDN(A q_RZ' ' BR2 sequences without TCR
b : : sequences from CD4 TEM
(ab) into six parts q_R3' ' B_R3
m
Control < aR1 §_rR To generate the control set
> » ith only TCR sequences from
CD4 TEM > BRZ o . Al
v Divide cDNA a_R2 v - CD4 TEM without the spike-in
(ab) TCR sequences

into six parts

CLRSV v B_R3

Figure 1. Study design. Our study presents a detection power calculator based on a computational model of TCR RNA read count in bulk sequencing
data to enable efficient TCR sampling and RNA sequencing. Our model has two components [1] modeling the number of target TCR in a peripheral
blood sample and [2] modeling the number of target TCR RNA sequencing reads based on the number of sampled target TCR. To calibrate our model, we
mixed RNA from T cells with known (spike-in) concentration, together with RNA from CD4 effector memory T cells with unknown TCRs, and sequenced

TCR from these mixtures using a 5" RACE protocol. To investigate how library

preparation choices affect detection power, we created three sequencing

sets with different library preparation approaches. As controls, we performed TCR sequencing on the spike-in RNA mix only (Control spike-in TCC mix)

and RNA of the effector memory CD4 T cells only (Control CD4 TEM). Created

sequencing methods to detect a target TCR in a periph-
eral blood sample. This framework is summarized in
Figure 1, and includes a TCR detection power calculator
and an experimental procedure to generate spike-in TCR
calibration data.

with Biorender.com.

A computational framework for quantifying the
sequencing read count of a target TCR in a
peripheral blood sample

As part of our statistical power calculator, we developed
a TCR sequencing read count model. This model contains
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two components: [1] modeling the number of T-cells
with the target TCR that are sampled from the body [2]
modeling the number of TCR sequencing reads obtained
from the blood sample.

Model Component 1: The number of T-cells with the target
receptor present in a peripheral blood sample. In our first
model component, we account for the effects of blood
sampling. In practical diagnostic scenarios, only a small
portion of a patient’s blood will be sampled. Thus, the
TCR in this blood sample represents a subsampling of
a patient’s total circulating TCR population. We assume
that this subsampling process is random, and model the
number of target TCR sampled from the patient, Cgamp,
with a Poisson distribution

Csamp ~ Poisson (fbodyTsamp) : (1)

Here fpogy 1s the frequency of the target TCR in the
patient’s body, and Tsamp the total number of sampled
TCR. The expected number of target TCR in the blood
sample is therefore fpogyTsamp, Which is also the rate
parameter of the Poisson distribution.

Model Component 2: The number of target TCR sequencing
reads obtained from the peripheral blood sample. In our sec-
ond model component, we consider Cyeaq, the sequenc-
ing read count of the target TCR in the blood sample.
In particular, we model Crag With a negative binomial
distribution

Cread ~ negbin (i1, 0%) . 2)

Here p is the mean read count, and ¢? the read vari-
ance. The negative binomial distribution allows for the
variance of Creaq to be greater than that expected by ran-
dom subsampling, thereby taking into account technical
factors associated with library preparation and sequenc-
ing, which can influence the read count (e.g. differences
in primer binding and PCR amplification rates). We fur-
ther parameterize the negative binomial mean and vari-
ance parameters to allow for flexible models that can
account for the effects of various laboratory protocols
and TCR sample frequencies

W =fsampTeTread, o’ = w4+t (3)

Here feamp is the frequency of the target TCR sequence
within the sample, and Treaq the total number of sequenc-
ing reads. The expected value p of Creaq is related to
Tread, fsamp, and a sequencing method dependent read
efficiency 1, € [0, 1]. The variance o? of Cyreaq is controlled
by the scaling parameters n, . If n = 0 then ¢°> = pu
and the variance of Creaq corresponds to a perfectly even
subsampling (i.e. Poisson distribution). If n > 0, then the
variance of Creaq is increased beyond random subsam-
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pling, with the parameters n, » controlling the shape of
the mean-variance relationship.

Combined two-step model: We combine Components 1
and 2 to model the probability of observing Creaq sequenc-
ing reads of a target TCR in a blood sample, whose
frequency in the body is fyeqy. The joint probability of
Cread and Csamp can then be written as

P (Cready CSamp) =P (Cread|csamp) Py (csamp) ) (4)

where the probability P; is calculated by the Poisson
distribution [1], and the probability P, is calculated from
the negative binomial distribution [2]. Further details
regarding the calculation of the probabilities P;,P, are
given in Appendix 1. In general, we do not know the value
of Csamp, and we therefore marginalize over this variable
to get the probability of obtaining a particular read count
Cread, Without knowledge of Csamp

Tsamp
P (Cread) = z P, (Cread|csamp = Csamp)
csamp=1
x Pq (Csamp = Csarnp) . (5)

To fully specify the model, we need to provide the
values fyody, Tsamp fOT the probability Py, given by Equation
(1), and the values Tread, Te, M, M, fsamp fOr probability P,
given by Equation (2). However, once the value Cgamp is

specified, we can deduce the value of fsamp by fsamp =

c . L .
=B which means that we can eliminate fsamp in the
samp

combined model. This gives us the fully parameterized
formula for the probability of obtaining Ceqq target TCR
sequencing reads in a blood sample,

Tsamp
P (Cread) = Z P3(Cread|Csamp = Csamp, Tread,
csamp=1
Te, M, N, Tsamp)Pl(Csamp = Csamp Ucbloody Tsamp)- (6)

We assume that the parameters r,, 1, are specific to the
library preparation and sequencing method, and there-
fore estimate them via maximum-likelihood using pilot
read count data of spike-in sequences with known sam-
ple frequencies fsamp. We note that P; does not involve
any sequencing method specific parameters, so that the
maximum likelihood estimation of r,, 1, need only con-
sider P,. Further details regarding this maximum likeli-
hood problem are given in Appendix 1. Once the param-
eters e, 1, are estimated, we can use the combined Equa-
tion (6) as the basis for a TCR detection power calculator.

TCR detection power calculator

Our TCR detection power calculator is based on the read
count model [6], while also accounting for read thresh-
olds. Read thresholds are often used in TCR sequenc-
ing scenarios to reduce the chance of falsely detected
sequences (i.e. false positives), which may be caused by
sequencing errors [9]. Setting the read threshold at ciyresh,
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the probability of detecting a TCC by receptor sequencing
a blood sample is then

Cthresh
P (Cread > Cthresh) = 1 — Z P (Cread = 1)
i=0

Cthresh [samp

=1- Z z Py(Cread = 1.|CSEm’IP = Csamp,

i=0 csamp=1

Tready Te, M, N, Tsamp)Pl (Csamp = Csamp U[bodyy Tsamp) (7)

where the second equation comes from the com-
bined model [6]. The detection power calculation [7]
is implemented in our Python-based power calculator,
TCRpower, which is publicly available at https://github.
com/GabrielBalabanResearch/TCRpower . We note that,
in practice, a term of the double sum [7] only needs
to be computed when P; is above machine precision.
This means that for efficiency, we can precompute Py,
and discard the terms below machine precision before
computing [7].

In addition to carrying out power calculations, TCR-
power also contains functions for estimating the param-
eters 1., n, from TCR sequencing data, thereby allowing
TCRpower to be calibrated using pilot sequencing data
with known TCR frequencies (i.e. spike-in sequences).
Once calibrated in this way, TCRpower can be used to
optimize further TCR sequencing scenarios. In particular,
the effects of Tread and Tsamp are often of interest, as
these parameters are directly related to the financial
cost of the sequencing, and the patient blood sample
size, respectively. If we know fyeqy, and are interested
in obtaining a certain target TCR detection probability,
we can evaluate [7] directly. Alternatively, we can obtain
the minimal TCR frequency that can be detected with
a given confidence level a. In this case, we solve Equa-
tion (7) numerically for fyeay, with the left hand side
equal to a.

Accuracy and variability of spike-in TCR
frequency measurements for the combined
spike-in CD4-TEM experiments

We analyzed the read counts and relative read fre-
quencies of the TRA and TRB sequences of the spike-
in TCRs for the sequencing Sets 1-3, where we used
the combined RNA mix. Of the 45 spike-in TCRs, 8
contained a TRA or TRB sequence that was undetected in
all experimental sets (Supplementary Figure S1). These
undetected TRA/TRB sequences were potentially lost
during sample preparation, and their corresponding
TCR were therefore removed from downstream analysis,
leaving 37 spike-in TCRs in the analysis. For the
remaining spike-in TCRs, we noted a linear relationship
(Figure 2A) between the ground truth and measured TCR
frequencies in all three Sets 1-3, with high coefficients

of determination (R>=0.86, 0.9, 0.92 for TRA Sets 1-3;
R?=0.92, 0.93, 0.92 for TRB Sets 1-3). This indicated a
consistent linear relationship between the input TCR
spike-in amount and output read count of our 5" RACE
library preparation and sequencing methods, for the 37
consistently detected TCR. This relationship is reflected
in the TCRpower model by the linear relation between the
read count, Creaq and the TCR sample frequency, fsamp in
Equation (3).

We quantified the variability in measured spike-in
TCR frequency using the index of dispersion (std/mean).
This allowed us to make a relative comparison of mea-
sured TCR frequency variability across our entire range
of experimental TCR frequencies (Figure 2B). For both
TRA and TRB, Sets 2 and 3 tended to have lower dis-
persion for the more frequent TCR (>300 per million
RNA) as compared with Set 1. We note that the index
of dispersion tended to decrease with increasing spike-in
frequency up to around 300 per million RNA before flat-
tening out (Figure 2B). This indicated thatit was relatively
more difficult to accurately measure the frequency of the
lower frequency TCR (< 300 per million RNA). This phe-
nomenon may be partially explained by PCR chemistry
and the central limit theorem of statistics. With increas-
ing TCR RNA input, the random PCR doubling was most
likely averaged over more input molecules, leading to the
observed lower relative read count variability among the
high frequency TCR.

Model calibration results and detection limit
estimation for the combined spike-in CD4-TEM
experiments

We sought to determine the detection limit of rare TCRs
for our experimental Sets 1-3, in order to directly com-
pare the efficacy of the underlying sequencing library
preparation methods. To accomplish this, we estimated
the minimal TCR frequency that could be detected with a
standard 95% probability (fsampos) for each experimental
set and receptor type (TRA and TRB), and assuming a
normalized sequencing depth of Treaq = 10° reads. The
calculation of each feampss value was performed using
the negative binomial Model Component 2, calibrated
separately to each experiment Set and TRA/TRB com-
bination (Figure 3A). Figure 3A shows the 95% predic-
tion interval of the calibrated TCR read count mod-
els, as compared with the measured read counts. These
results show a good model to data match. In particular,
our models were able to account for the experimentally
observed, spike-in frequency dependent read count vari-
ability (Figure 2B). This variability is taken into account
by our model derived detection limits feampos.

In Figure 3B we visualized the model derived detection
limits, fsampos, for Sets 1-3. We found that fsampes for
TRB was very similar among the sets (Set 1: fsampos =
2.08 x 1073, 95% CI=[2.01-2.14] x 1073, Set 2: feampos =
1.25 x 1073,95% CI=[1.20-1.29] x 10~2 and Set 3: fsampos=
1.42 x 1073, 95% CI=[1.38-1.46] x 10~%). However, fsampos
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Figure 2. Accuracy and variability in TCR frequency measurement. (A) Ground truth versus measured TCR frequency of the spike-in TCR for
experimental Sets 1-3 for all 6 replicates, showing consistent linear relationships. (B) TCR frequency dispersion index (std divided by mean) across 6
replicates of each TCR. The lower frequency TCRs have higher dispersion (R?) than the higher frequency TCRs. Some low-frequency TCRs are undetected
(marked by X) either for a certain replicate (panel A) or across all six replicates (panel B).

for TRA varied substantially more with the experimental
setup. More specifically, fsampss Was lowest in Set 3 (fsampos
=1.23 x 1073,95% CI1=[1.19, 1.28] x 10~3) and lower in Set
2 than in Set 1 (Set 2: fsampos = 5.87 x 1072, 95% CI=[5.70,
6.05] x 1073, Set 1: fsampos = 9.85 x 1073, 95% CI [9.51,
10.02] x 107%). We note the narrow size of the fsampos
confidence intervals, which were too small to be visual-
ized in Figure 3, indicating a high model confidence in
the detection limit values. Further details regarding the
calculation of fsampss and the corresponding confidence
intervals are given in Appendix 2.

Taken together, these results indicate that our com-
putational framework was able to account for our
varying experimental conditions, and provide good
model-data fits. With the calibrated models, we were
then able to precisely estimate the detection limit of
rare TCR (TRA and TRB sequences) for a given read
count. In particular, we were able to detect many
clonotypes down to a frequency of 10~® and consistently
detect clonotypes with frequency > 10~%. Our results
also suggest that low-frequency TRB sequences have
higher detection probabilities than low-frequency TRA
sequences and combining amplification of TRA and TRB
sequences improves the detection probabilities of TRA
sequences.

Implementation of a read cutoff eliminated most
false positive sequences

We investigated the potential for false positives results
in our TCR sequencing, by examining the sequences in
the Control spike-in TCC mix set, where we expected to
find only the TCR sequences of the spike-in TCCs. All
sequencing reads that did not match the TCR sequences
of the spike-in TCCs were thus regarded as false positive
sequences for the Control spike-in TCC mix set. We
found that the majority of the sequences in the Control
spike-in TCC mix set matched the spike-in TCRs, with a
substantially lower false positive rate for TRB sequences
(4.2%) as compared to TRA sequences (35.2%). We found
that the relatively high error rate in TRA sequences was
driven by three outlier TRAs with very high read counts,
whose cause we were unable to identify. Upon removal of
these outliers, the false positive rate for TRA sequences
was reduced to 8.7%.

We categorized the false positive sequences into two
groups, based on if they could be found in the Sets 1-3
of the sequencing library that contained TCR sequences
from the CD4 TEM cells (Figure 4A). Based on this data,
we noticed that a read cutoff of 18 reads could remove
the majority of false positive sequences (TRA 99.0% and
TRB 92.4%), including all false positive sequences that
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Figure 3. Negative binomial modeling of the spike-in TCR read counts and detection limit estimation. (A) TRA (red) and TRB (blue) read count versus
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are the respective mean and 95% prediction interval of negative binomial models with read efficiency parameter r. and mean-variance relationship
parameters 7, A, fitted by maximum likelihood. Tyeaq =the total TRA or TRB read count for the set. (B) Estimated detection probability (read count > 0)
as a function of TCR frequency, along with the minimal fraction (dashed line) that can be detected with at least 95% probability. Note that for TRA, Set
3 stands out with the lowest n value (i.e. variance) and 95% detection probability.

were not found in the rest of the library, and the majority
of the false positives that were also found in other sets
(Figure 4A).

For the high read count sequences present in both
control spike-in TCC mix and other sets (Figure 4B),
we observed a linear trend, where the false positive
sequences were present with 1-2 logs lower read counts
than in the other sets. The only exception was a small
cluster of four TRB sequences that did not follow
the linear trend, as these false sequences had much
substantially lower read counts in the Control spike-
in TCC mix set as compared with the CD4 TEM Sets
1-3. Since we employed a single unique barcoding
strategy, the observed trend is very likely an effect
of the index-hopping phenomenon observed in the
HiSeq 3000/4000 platforms [28-30]. Taken together, our
observations indicate that implementing a read cutoff

could potentially remove all false positive sequences not
associated with index-hopping.

Example power calculations for TCR detection in
patients, to optimize the number of sequencing
reads and sampled T-cells

We used our power calculator TCRpower to perform
detection power calculations for the experimental Sets
1-3.In particular, we estimated the minimum number of
sampled TCR and sequencing reads required to achieve
a 95% probability of detecting a target TCR with clonal
frequency 107 in a patient. Based on the results of the
previous section, we used an example detection read
cutoff Cenresh = 18. For the model calibration parameters
(re, n, A), we used the previously estimated values shown
in Figure 3A.
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In Figure 5, we display the detection calculator results.
As expected, the 95% detection regions have a rectangu-
lar shape with a rounded corner, meaning that there is
a minimum number of sampled TCRs and sequencing
reads needed to achieve 95% detection power. Within the
rounded corners, sampled TCR and sequencing reads can
be traded for one another while still maintaining the
same detection power (Figure 5). For TRA, Set 3 has the
best detection efficiency, requiring the least number of
reads and sampled TCR to achieve 95% detection power.
For TRB, Set 1 is slightly more efficient than Sets 2 or 3.

We note that the required number of sequencing reads
for a 95% detection probability is several orders of mag-
nitude more than the inverse of the desired target TCR
frequency in all of our cases. This is due to the extra-
Poisson variance in the number of sequencing reads
that we attribute to library preparation and sequencing

chemistry. We note that even in a perfect subsampling
scenario (i.e. Poisson process), the number of sequencing
reads would have to be substantially greater than the
inverse of the target TCR frequency, to ensure a reason-
able detection probability.

Discussion

We developed a combined computational and experi-
mental pipeline for quantifying the detection power of
bulk TCR sequencing based on 45 unique spike-in TCRs
present at a wide range of clonal frequencies (5 per
100 to 1 per million). In particular, we demonstrated
the possibility of consistently detecting TCRs with
frequencies as low as 1 per million. We also observed
that TRB sequences were more easily detected than
TRA sequences present at the same low frequency.
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frequency 10~ and read count threshold 18, as a function of the number
of sampled TCR and sequencing reads.

Furthermore, we developed the first computational
model to estimate TCR detection power, and thereby
enable reliable detection of disease-relevant TCR for
diagnostic applications. Our model is implemented in a
power calculator, which can be recalibrated with data
from alternative TCR sequencing methods. Both the
detection model and power calculator are available to the
research community via the publicly available Python
package TCRpower.

Importance of spike-in standards with multiple
unique CDR3 sequences at variable frequencies
Spike-in standards with known sequences and frequen-
cies provide a useful ground truth [9]. This ground truth is
normally lacking in vast, diverse TCR sequencing reper-
toire data, derived from biological samples. Indeed, the
Adaptive Immune Receptor Repertoire (AIRR) Commu-
nity encourages the use of spike-in standards, to address
a wide variety of technical issues (e.g. sensitivity, speci-
ficity, accuracy of clonotype quantification, reproducibil-
ity and false read removal) [9].

Our study highlights the importance of spike-in
TCRs for understanding the impact of different library
preparation choices on the detection of TCRs present
at different frequencies. In particular, we investigated
spike-in TCR (unique TRA and TRB) at a wider range of
frequencies (5 per 100 to 1 per million) than had been
previously considered. Previous studies using spike-in
TCRs have either used synthetic DNA molecules in a
multiplex PCR [19] or used a single spike-in TCR with
a limited frequency range (1/10, 1/100, 1/1000) [11].
Furthermore, having a setup with unique spike-in TCRs
at known concentrations allowed us to demonstrate
for the first time the linearity/accuracy of clonotype
frequency quantification for multiple unique TCRs. This
is particularly important for TCR based diagnostics, as
disease-relevant TCRs can be present in the body at a
wide range of frequencies. The read counts of the spike-in
TCRs enabled us to calibrate our power calculator, which
we used to optimize the number of sampled TCR and
sequencing depth. Furthermore, our calibrated power
calculator can interpolate and extrapolate TCR detection
probabilities to arbitrary TCR frequency ranges, an issue
which has not been previously addressed. Finally, by
sequencing the control sets with spike-in TCC mix only,
we were able to examine the nature of falsely detected
sequences and set an appropriate read cutoff.

Detection of rare TRA and TRB with 5 RACE
sequencing

We demonstrated that TCRs present at frequencies as
low as 1 per million can be detected by a 5’ RACE sequenc-
ing method, one of the most widely used AIRR sequenc-
ing methods [9]. We observed increased replicate consis-
tency with increased frequency of the TCR clonotypes,
indicating that if the antigen-specific T cells of inter-
est are found in relatively higher frequencies (above 50
per million in our study), RNA or cDNA replicates may
be unnecessary. In our experiments, low-frequency TRB
sequences were more consistently detected than low-
frequency TRA sequences. More specifically, only TRAs
present at frequency > 50 per million and TRBs present
at frequency > 10 per million were detected consistently.
This difference between TRB and TRA sequencing effi-
ciency has also been described for several other TCR
sequencing methods [11] and is most likely caused by
a difference in transcript abundance, as TRB transcripts
are two to three times more abundant than TRA tran-
scripts [14]. Taken together, our results indicate that for
abundant TCRs, both TRA and/or TRB sequencing pro-
vides reliable detection of TCR clonotypes. However, for
the detection of rare clonotypes, TRB sequencing alone
is sufficient and better suited, since including TRA will
occupy sequencing depth without increasing detection
power (Figure 3B). However, if one is also interested in
TRA sequencing of a rare TCR clonotype using a 5’RACE
based protocol, performing combined TRA and TRB PCR
amplification could enable TRA detection without com-
promising the TRB detection.



TCR detection power calculator and read count
model

We developed a model of the TCR detection limit, which
can be calibrated with pilot TCR sequencing data with
known TCR concentrations (i.e. spike-ins). This allowed
our model to account for read count variability due to
technical factors such as primer and PCR biases. For
example, in the current study, we tested three different
sample preparation setups (Figure 1), which had an effect
on the measured read count variability, and thereby on
the calculated detection probabilities via the estimated
parameters (1, 1, )). Based on our read count model, we
created our power calculator, TCRpower. To the best of
our knowledge, TCRpower is the first power calculator
specifically made for TCR sequencing.

Several power calculators have been previously devel-
oped for RNA-sequencing and RNA microarray experi-
ments [31-35], typically focusing on detecting differen-
tially expressed genes via log-fold changes in RNA read
counts. Unlike in these gene expression scenarios, TCR
sequencing has to account for a much greater diversity
of read sequences, many of which may not be present
in a particular individual. Consequently, the potential
presence or absence of a TCR is of particular importance
for TCR sequencing diagnostics, which motivates our
detection power calculator. Furthermore, biological sam-
ple size issues (e.g. volume of blood or size of biopsies)
affect TCR-sequencing applications to a much greater
degree than in typical gene expression studies. This is
because each T-cell expresses only one single receptor
sampled from an enormously large TCR sequence space,
which necessitates the inclusion of the number of sam-
pled TCR in our power calculations as an important
parameter.

Due to the complexity of TCR repertoires in the
body, sophisticated statistical and machine learning
approaches have been developed for immune status
classification based on TCR sequencing [2, 36-39]. These
approaches typically infer a ‘negative’ diagnosis from
the absence of disease related TCRs, which naturally
leads to questions about the detection power of the
underlying TCR sequencing methods [40]. In particular,
knowledge of TCR detection power could help when
transferring machine learning models to data generated
by a sequencing method that differs from that used
for the training data. In this scenario, optimizing the
number of reads and the TCR sample size with our power
calculator could help to ensure that the TCRs, which infer
a ‘positive’ diagnosis can still be detected with the new
sequencing method.

In the future, our work could be extended to consider
family-wise or false discovery error rates, as has been
done for RNA sequencing [31, 35]. Such an extension
would allow for the quantification of detection power to
entire sets of TCRs, which is especially relevant when
considering ‘public’ TCR sets that are shared across
many individuals [6, 16, 41]. Finally, our read count model
could also be used to generate synthetic TCR sequencing
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repertoires. This could be useful to assess the diagnostic
power of TCR diagnostic tests based on machine learning
models that analyze entire TCR sets or repertoires.

A limitation of our power calculator is that it requires
ground truth data for calibration. We also assume a
perfectly even subsampling of TCRs from the body,
which is reflected in the TCR sampling component of
the 2-step model. This assumption is reasonable for
globally prevalent TCR harvested from homogeneously
mixed biological samples, such as peripheral blood.
However, our model may need to be modified for T
cells derived from nonhomogenous mix (e.g. tissue
biopsies).

False positive sequences and read count
thresholds

As the field of antigen-specific TCRs used for disease
monitoring and diagnosis continues to grow, it is
crucial to understand the nature of falsely detected
sequences (i.e. sequencing reads that do not match
any RNA sequences that were present in the original
biological sample - here denoted as false positives) to
develop appropriate bioinformatic pipelines and robust
diagnostics. When we analyzed the control spike-in TCC
mix set, where we expected to find only TCR sequences
of the spike-in TCCs, we found false positive sequences.
Most importantly, we found that an appropriate read
cutoff could eliminate the majority of the false positives,
including all the false positive sequences that were not
found in the rest of the library. This demonstrates the
importance of implementing a read cut off for improving
the specificity of TCR diagnostic tests, which has also
been highlighted for Ig sequencing [42].

We note that implementing a read count threshold
can potentially remove true positive TCRs of interest, as
a side effect of removing the false positives. This effec-
tively creates a trade-off, where a higher count threshold
increases the specificity of TCR detection, at the cost of
sensitivity. In such a scenario, it could be desirable to
maintain a sufficient detection probability by optimizing
the number of sequencing reads. For this reason, the read
cutoff is accounted for in our power calculator, and is
available as a user-specified parameter.

We found that all of our false positives with high
read count (> 18) were also present in other sets that
contained TCRs from effector memory CD4 T cells. Since
we have employed a single unique barcoding strategy,
we suspect that these false positives were a result of
the index-hopping phenomenon observed in Ilumina
sequencers employing patterned flow cells with Exclu-
sion amplification chemistry (HiSeqX, HiSeq3000/4000
and NovaSeq) [28-30]. The use of nonredundant dou-
ble indexing has been recommended to overcome the
index-hopping phenomenon [43, 44]. Although we do not
provide a remedy for index-hopping in our study, we
show that index-hopping can give rise to false positive
sequences and should be controlled for.
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Concluding remarks and recommendations

We present the first statistical power calculator for
detecting the presence of a T-cell clonotype by TCR
sequencing, as well as a novel experimental procedure
to generate spike-in receptor sequences for model
calibration. Furthermore, the results of our sequencing
experiments can be used to inform future TCR sequenc-
ing experimental designs. In particular, we confirm that
TCRs as rare as 1 per million can be detected with a
5'RACE based TCR sequencing method, and that TRB
sequences of rare TCRs are detected more consistently
than TRA sequences. This suggests that TRB sequencing
is optimal for efficiently detecting rare TCR clonotypes,
whereas both TRA and TRB sequencing are sufficient for
detecting TCR clonotypes that are relatively abundant.
For future TCR sequencing experiments, we recom-
mend conducting pilot experiments with spike-in TCRs
to identify the needed sequencing depth and number of
cells with our calculator. When this is infeasible, includ-
ing a small panel of low-frequency spike-in TCRs could
help quantify TCR detection power without taking up
significant sequencing depth space. This is especially
crucial if the TCRs of interest are present in rare cells. We
also recommend sequencing a panel of spike-in TCRs in
the same sequencing library as a control set, to enable
the identification of a read cutoff to reduce false posi-
tives. Taken together, we conclude that multiple unique
spike-in TCRs at varying frequencies can assist both
experimental and computational protocol development,
which can in turn improve the reliability of TCR sequenc-
ing methods. For future studies, it would be interesting
to further investigate read count threshold optimization,
which we have touched upon but not fully addressed.
We also encourage further use of our power calculator
with alternative sequencing methods and in prospective
studies, to further validate or extend our methodology.

Availability

TCRpower is publicly available in the GitHub repository
(https://github.com/GabrielBalabanResearch/TCRpower)
and via Zenodo (https://doi.org/10.5281/zenodo.5638319).

Accession numbers

The raw sequencing data have been deposited in
the Sequence Read Archive under accession number
PRJNA760684.

Key Points

¢ Anovel statistical method (TCRpower) for calculating the
detection power of T-cell receptor sequencing methods.

e Experimental procedure for generating spike-in TCR
sequences for model calibration.

e TCR sequencing method optimization to efficiently
detect a target T-cell clone in a patient using a blood
sample.

Supplementary data

Supplementary data are available online at http://bib.
oxfordjournals.org/.
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APPENDIX 1: Probability calculations

In this appendix we give further details underlying the
probability calculations used in the detection power cal-
culator TCRpower. The probability P;, corresponding to
Model Component 1, is given by the Poisson function

D C 1 T C samp ,— f] Tsam:
1 sam’ bo = Cd) Samp e ( Ody sa p)
( p | f dy: samp) (f )

Csamp!

8)

Probability P,, corresponding to Model Component 2, is
given by the negative binomial function

' (Cread + 1) _ \Cread 1
F (G + 0T P 0O)
where 1,p are the standard negative binomial parame-

ters, and I' is the standard Gamma function. We can
relate r, p to the parameters Tread, Te, W, X, fsamp DY

P, (Creadr T, p) =

2
- 2 _ p@=» _ (fsampTeTread)( )
02— n n
2
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p= o2 > = 1+ 0D = o1 (10)
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Calibrating TCRpower consists of solving the following
maximum likelihood problem

N

i i
I;??i( Z 10gP2 (Cread’ Te, M, )"fsamp) ) (11)
=
where c__g, f;amp are the respective sequencing read

count and ground truth frequency of the ith spike-in
TCR receptor, and N is the total number of spike-in
TCR receptor types. The maximum likelihood estimation
[11] is accomplished in TCRpower via a nested set of
three likelihood problems, each of which is solved by

Newton’s method. First, the r. parameter is estimated
for a Poisson model with data c, 4 and rate parameter

vector flampNreads, Where Nyeads = SN .c 4 Second,
the estimated r, along with n = 0.001 are used as an
initial guess to solve the negative binomial likelihood
problem [11], with the %\ parameter fixed to » = 2,
giving us an updated estimate of r,, n. Finally, the
previously estimated e, 1, along with » = 2 are used to
initialize the full negative binomial maximum likelihood
problem [11]. In practice, this procedure gave us reliable
estimates of 1, 1, » without any numerical convergence
difficulties.

APPENDIX 2: Detection limit and detection
confidence interval calculation for
experimental sets 1-3

We calculated the smallest TCR frequency (fsampos) that
could be detected with 95% probability for each exper-
imental set and TCR type (TRA or TRB), assuming 10°
reads. We calculated fsampos by numerically solving the
equation Py(Cread > Cthreshlfsampos,m, %, Te) = 0.95 for
fsampos, using the ‘brentq’ solver of the scipy package. In
this equation, the probability P, comes from the negative
binomial Model Component 2, calibrated to the experi-
mental data via Equation (11).

We calculated the 95% confidence intervals of fsampos
with a jackknife resampling method [45]. More specifi-
cally, we created leave-one out datasets corresponding
to each read count datapoint, with a different datapoint
missing in each set. We re-estimated ther,, n, parameters
and recalculated fsampos for each such dataset. This gave
us a resampling distribution of feampes values. We then
used the mean and standard deviation of the fsampos
resampling distribution to determine the confidence
interval.
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