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Abstract

In Fennoscandia, mountain hare (Lepus timidus) and brown hare (Lepus europaeus) hybrid-

ize and produce fertile offspring, resulting in gene flow across the species barrier. Analyses

of maternally inherited mitochondrial DNA (mtDNA) show that introgression occur fre-

quently, but unavailability of appropriate nuclear DNA markers has made it difficult to evalu-

ate the scale- and significance for the species. The extent of introgression has become

important as the brown hare is continuously expanding its range northward, at the apparent

expense of the mountain hare, raising concerns about possible competition. We report here,

based on analysis of 6833 SNP markers, that the introgression is highly asymmetrical in the

direction of gene flow from mountain hare to brown hare, and that the levels of nuclear gene

introgression are independent of mtDNA introgression. While it is possible that brown hares

obtain locally adapted alleles from the resident mountain hares, the low levels of mountain

hare alleles among allopatric brown hares suggest that hybridization is driven by stochastic

processes. Interspecific geneflow with the brown hare is unlikely to have major impacts on

mountain hare in Fennoscandia, but direct competition may.

Introduction

Species boundaries are frequently challenged by lineage divergence and hybridization [1].

Diverged lineages (i.e. species) are maintained by barriers to gene flow that vary in strength

over time, space, or the genome [2]. For closely related species, the barrier may be permeable

[3–5]. Changes in ecology, behavior, population dynamics and distribution may all result in

increased levels of spatial and temporal sympatry between closely related species, leading to an

increased frequency of hybridization events. These often have profound effects on a wide

range of individual- and population level processes. At the individual level, hybridization may

affect fitness by creating novel combinations of traits adapted to different environments [6–8].
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At the population and species level, hybridization may lead to the introgression of new genetic

variation, affecting the diversity within and between species [9].

As the genetic variation provided by hybridization is exposed to selection, hybrids experi-

ence an increased, decreased or neutral selection effect, and the effect of this selection may

vary in direction and strength across the genome and context [1,2,10]. The signs of introgres-

sion are therefore unevenly distributed throughout the genome, with some regions showing

selection for, and other against, the introduced genetic material [11,12]. At the population

level, introgression typically occurs in hybridization zones at species boundaries, resulting in

genetic gradients across the population. At the species level, patterns of introgression are also

often highly variable and asymmetric, and may have a strong directional bias towards one of

the species in the pair [13]. The outcomes and signatures of hybridization are thus highly con-

tingent on temporal and spatial scales, phylogenetic and demographic relationships and the

particulars of the hybridization events. For example, introgression could in theory erase a spe-

cies boundary, thereby redistributing genetic variation, but without affecting the total amount

of standing genetic variation. However, introgression might also accelerate speciation or colo-

nization processes by providing adaptive alleles [14].

From a conservation perspective, introgression create challenges for management efforts,

typically by blurring the species barrier [15], affecting the distribution and amount genetic var-

iation, and obfuscating the delineation of appropriate management units [16,17]. Moreover,

hybridization can lead to genetic swamping, where hybrids overwhelm or outcompete the

rarer species, or to demographic swamping where inferior hybrids lead to a lower population

growth rate [18]. In both cases, the loss of species or locally adapted populations is at risk. A

contrasting view is that hybridization offers genetic rescue to genetically impoverished popula-

tions in risk of genetic meltdown or as a means for species to more rapidly adapt to ecological

change [12,14]. Whether viewed as a threat or opportunity, hybridization clearly present chal-

lenges for conservation. For example how prevalent it is, which genetic and demographic

effects it has, and whether can it be considered independent of or caused by anthropogenic fac-

tors. Improved genetic methods allow for more comprehensive understanding of the genomics

of introgression and its effect on all levels of biological diversity.

In Europe, northern Fennoscandia represents the northernmost contact zone between

brown hare (Lepus europaeus Pallas) and mountain hare (Lepus timidus L.). Benefitted by

translocations and, potentially, climate change, the brown hare has been extending its distribu-

tion northwards since the 19th century. In contrast, mountain hare populations have been in

decline in Finland and southern Sweden [19,20]. Currently, brown hares are abundant in

southern and central Sweden and Finland where they mainly exist in sympatry with the moun-

tain hare. Previous research have shown transmission of mitochondrial DNA (mtDNA)

from mountain hares into brown hare populations [21,22], where the genetic material is main-

tained for generations even in geographical areas where mountain hares have become extinct

[21,23,24]. Because of the preservation of mtDNA linages the question has been raised whether

this introgression has adaptive value or maintained simply due to stochastic demographic pro-

cesses [13,21,25,26]. Increased frequency of introgressed mtDNA could happen through

genetic drift in the extremity of the species distribution, where population density is low and

population growth is rapid [27]. Once the population increases and expands its range, for

example due to climate change, the introgressed mtDNA could also propagate and imprint

into the local resident population, in particular if certain mtDNA lineages generate adaptive

advantages. This is suggested to have happened in the Iberian peninsula, where mountain hare

mtDNA has been introduced to brown hare population through repeated introgression along

the expansion front of the brown hare after last glacial maximum [28]. Recent work done on

Iberian hares, involving nuclear DNA markers, suggests that mtDNA introgression among
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Lepus is driven by demographic processes [29], facilitated by continuous changes of species

distribution in the wake of quaternary climate oscillations [30], which could be generalized to

explain the common nature of the phenomenon.

The overlap in distribution of mountain hares and brown hares in Fennoscandia and their

concurrent population expansion and contraction, presents an outstanding opportunity to

study ongoing genetic interactions between two closely related species adapted to different

ecological conditions that are now changing rapidly.

Here we analyze 6833 SNP markers across the genome to quantify introgression among

Finnish- and Swedish mountain hares and brown hares. We show introgression of mountain

hare markers into brown hare, but not vice versa, to be frequent in areas of sympatry. The

introgression was independent on levels of mtDNA introgression, confirming the highly

asymmetric nature of the genetic interaction between the two species. Genotyping also

revealed differences in the genetic diversity of brown hares from the two countries, as expected

from their different colonization histories. Besides identifying new genetic markers for Lepus,
our study provides evidence of genetic swamping by an invasive species (brown hare) at the

expense of a resident species (mountain hare). As ecological change forces species to adapt by

changes in distribution or behavior, the demographic and genetic consequences of increased

levels of sympatry and hybridization are important to consider for management.

Materials and methods

Tissue samples and DNA isolation

For the genome-wide SNP analysis, DNA was isolated from 22 mountain hares and 27 brown

hares (muscle from the base of the ear), including specimens with introgressed mtDNA and

representing allopatric as well as sympatric populations almost throughout the full range of the

species’ distribution in Sweden and Finland (Table 1, Fig 1). Hunters collected the specimens

during normal hunting season, following the regional hunting seasons and legislation, using

12 to 20 gauge shotguns with 3–4 mm shot size. No animal was killed for research purposes

only. All specimens were initially identified using morphological characters. The samples

included in this study belong to a larger DNA collection of 904 Finnish and 1270 Swedish

hares, sorted according to the species, country of origin, mtDNA haplotype as well as allopat-

ric/sympatric occurrence. Populations at the extreme ends of the range, with high certainty of

no contemporary contact with the other species, were assigned as allopatric populations

Table 1. DNA samples used in the study by country, population and mtDNA genotype.

Species Country Population mtDNA N
L. timidus FIN Allopatric Conspecific 3

L. timidus FIN Sympatric Conspecific 11

L. timidus FIN Sympatric L. europaeus 3

L. timidus SWE Allopatric Conspecific 2

L. timidus SWE Sympatric Conspecific 2

L. timidus (Hybrid) SWE Sympatric L. europaeus 1

L. europaeus FIN Sympatric Conspecific 18

L. europaeus FIN Sympatric L. timidus 2

L. europaeus SWE Allopatric Conspecific 4

L. europaeus SWE Sympatric Conspecific 2

L. europaeus SWE Sympatric L. timidus 1

Note that the L. timidus with L. europaeus mtDNA from Sweden was revealed to be a first generation hybrid by SNP genotyping. FIN: Finland, SWE: Sweden.

https://doi.org/10.1371/journal.pone.0191790.t001
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(Fig 1). While specimens with conspecific mtDNA haplotype were selected randomly, speci-

mens with introgressed mtDNA were intentionally included in to the study to test the degree

of nuclear DNA admixture as well as to monitor for the accuracy of morphological species

determination. As pointed out earlier, mtDNA introgression in hares is highly asymmetric,

from mountain hare to brown hare and the transfer of mtDNA from brown hares to mountain

hares have been considered as rare events and generally of less ecological or genetic signifi-

cance [31]. DNA was isolated using Chelex1 100 (Bio-Rad) method [32], following manufac-

turers’ recommendations.

mtDNA genotyping

Mitochondrial DNA was genotyped from all samples by amplifying a 669 bp cytochrome b

(Cytb) fragment using polymerase chain reaction (PCR) and LCYTBF and LCYTBR primers

[33]. The identity of PCR for the species-specific reference products was confirmed by Sanger

sequencing (GATC Biotech AG, Germany). The PCR products were digested with AluI restric-

tion enzyme and run over a 3% high resolution agarose gel electrophoresis to reveal restriction

fragment lengths and the subsequent genotype [23,33].

Fig 1. Sample distribution across Sweden and Finland.

https://doi.org/10.1371/journal.pone.0191790.g001

Hare hybridization in Fennoscandia

PLOS ONE | https://doi.org/10.1371/journal.pone.0191790 January 25, 2018 4 / 12

https://doi.org/10.1371/journal.pone.0191790.g001
https://doi.org/10.1371/journal.pone.0191790


SNP genotyping and analysis

199,693 SNPs were analyzed using the commercially available GeneChip™ Rabbit Gene 1.0 ST

Array genotyping DNA-chip (Thermo Fischer Scientific #902238). Analyses of population

structure and -admixture were performed using 6833 polymorphic loci informative for both

hare species (S1 File). The genotype data together with the detailed specimen information can

be accessed at the Dryad Data repository (doi:10.5061/dryad.n70q6). Basic population genetic

analyses, such as computing allele frequencies and testing for Hardy-Weinberg equilibrium,

were performed using Arlequin 3.5. [34]. The PCA analyses to cluster specimens based on

the SNP genotypes, was performed in R using the package SNPRelate found at https://

bioconductor.org/biocLite.R. Genetic diversity in the hare species was assessed using STRUC-

TURE 2.3.4 [35,36], using the admixture model, 2–10 populations (K), three iterations with 1

million MCMC repetitions for burnin period of 500,000 [29]. Sampling locations were used as

prior information (LOC prior) to expose any shallow population structures. Iterations were

matched using CLUMPP v1.1.2 [37]. K or the best number of populations was obtained using

STRUCTURE HARVESTER [38]. The detected 192 species-specific SNPs (see Results and

Discussion) were used to estimate the degree and direction of hybridization using NEWHY-

BRIDS software [39], implementing a Gibbs sampler to estimate the posterior probability for

individuals falling into defined hybrid categories. The default Prior and Theta settings were

used with 100,000 sweeps before and after burnin. Mitochondrial DNA haplotype was also

included in the NEWHYBRID analysis as a haploid (“dominant”) marker.

Results and discussion

The genotyping data enabled us to detect highly asymmetrical introgression of nuclear genes

from L. timidus to L. europaeus at average level of 2% in regions of sympatry but being almost

absent in allopatric populations. In total, 62,730 SNP genotypes had 100% call rate for the 49

samples and 6833 of these were polymorphic (Table 2, S1 and S2 Files). Although no phyloge-

netic dating of Lepus and Oryctolagus divergence has been made, comparative evidence from

Ig gene sequences suggests that the two genera could be as distant as mice and rats [40], which

split almost 12 Ma ago [41]. Although SNPs that have remained variable between the species

during long evolutionary histories, could be enriched in loci under balancing selection, only

277 loci in brown hare and 109 in mountain hare were not in Hardy-Weinberg equilibrium

(S3 File). It may be that the number of analyzed loci has been effective in picking up rare neu-

tral loci that have retained variation across genera. It should be noted that the shared polymor-

phisms are rare, resulting in low minor allele frequencies in the two species (Table 2).

Interestingly, none of the alleles was monomorphic in one species, but typically present at low

frequency also in the other one. This might not be surprising, as drift alone would require

9–12 Ne (= size of the effective population) generations to make the diverging species mono-

phyletic at more than 95% of the loci during allopatric speciation [42]. We identified only 192

Table 2. SNP heterozygosity levels and minor allele frequencies for the 6833 polymorphic SNPs by hare species and country of origin.

Species Country N Hz loci MAF Mean Hz
L. timidus FIN 16 0.39 0.05 0.08

L. timidus SWE 5 0.26 0.05 0.09

L. europaeus FIN 20 0.45 0.07 0.11

L. europaeus SWE 7 0.55 0.09 0.16

FIN: Finland, SWE: Sweden, Hz loci: frequency of heterozygous loci, MAF: Minor Allele Frequency, Hz: Heterozygosity.

https://doi.org/10.1371/journal.pone.0191790.t002
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SNPs having allele frequencies of over 80% in one species but not in the other, which could be

useful in species identification (S2 File).

Genetic diversity in Fennoscandian hare species

Although the small number of polymorphic loci, ambiguity of chromosomal locations and rel-

atively low levels of minor alleles as well as mean heterozygosity, resulting from using across

species SNP array, disallowe more detailed population genetic analyses, the 6833 loci do pick

up differences between the two hare species and work as a proxy to compare genetic diversity

in Sweden and Finland. Interestingly, the Swedish brown hares show higher heterozygosity

levels and minor allele frequencies than their Finnish counterparts, whereas the mountain

hares from the two countries do not differ (Table 2). The high heterozygosity in Swedish

brown hares correlate also with the genetic diversity as revealed by grouping the specimens by

genetic similarity using PCA, where the Swedish brown hare genotypes are more scattered

compared to the Finnish specimens or mountain hares (Fig 2A).

Fig 2. Genetic similarities and population structures among Fennoscandian hares. (A) Clustering of the 48 genotyped specimens using principal component

analysis (PCA) of the SNP data. While the Swedish and Finnish brown hare populations are genetically distinct, the mountain hares from the two countries clearly

belong to the same Fennoscandian population. Orange fill: Brown hare, Light blue fill: Finnish mountain hare specimens, Dark blue fill: Swedish mountain hares.

Color of the outer ring marks mtDNA genotype whereas allopatric brown hares are marked with black outer ring. Note how the individual hybrid specimen is with

brown hare mtDNA is located midway of the two species. Specimens with introgressed mtDNA are otherwise embedded among conspecific samples. (B)

Population structure among all 48 samples. A high degree of differentiation between the two species apart for the one hybrid (�). The yellow color, representing

typical mountain hare allele combinations, trails into the brown hare clusters. Two ancestral populations (K = 2) was chosen to illustrate hybridization between the

two species.

https://doi.org/10.1371/journal.pone.0191790.g002
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It is likely that the overall higher heterozygosity in the brown hares compared to mountain

hares does not only result from the biased gene flow from mountain hares to brown hares. For

example, the country-specific differences in the genetic diversity among brown hares can be

explained by the differential colonization histories in the two countries. Brown hares were first

introduced to Sweden in 1858 to the island of Ven in the Öresund straight between Sweden

and Denmark [43]. After translocations to the Swedish mainland, the species was well estab-

lished in the south in the late 19th century and subsequently expanded to southern and central

Sweden [19]. The brown hare is still expanding northwards in Sweden [44].

Swedish brown hares show high mtDNA haplotype diversity, likely due to admixture due

to repeated introductions of brown hares from several geographical areas of the native (conti-

nental) range of brown hares [45]. This high mtDNA diversity has likely been accompanied by

a diversity of nuclear DNA, explaining the differences in heterozygosity (Table 2), as well as in

genetic distance (Fig 2A) between Swedish and Finnish brown hares. In addition, the continu-

ous introgression of mountain hare mtDNA to brown hares in Sweden [21] has led to transfer

of nuclear DNA over the species barrier [46], further adding to the genetic composition of

brown hares in Sweden. In contrast, the brown hare has established in Finland through spon-

taneous immigration, mainly during the 20th century in association with a general, northeast-

ward expansion of brown hares noted by Thenius [47]. In Finland, and elsewhere, this

expansion has likely been assisted by translocation and supplementary releases, although this

has not been properly documented.

Thus, the genotypic differences in SNPs observed between Swedish and Finnish brown

hares in the current study, may reflect the differences in the population history of the recurrent

populations. The composition of the Swedish brown hare gene pool is a result of admixture of

hares from different areas in continental Europe [39] along with introgression from mountain

hares [21,51], while Finnish brown hares likely reflect the stepwise and/or gradual expansion

pattern observed at the edge of a species distribution [31,48], in association with introgression

from mountain hares [49].

Admixture between mountain hare and brown hare

Population structure analysis enabled us to identify species-specific genetic markers and con-

firm introgression between mountain hares and brown hares. Based on the NEWHYBRID

analysis of the species-specific markers, introgression was highly asymmetric, with brown

hares being classed as backcrosses whereas all mountain hares included in the study were

ranked as purebred (S4 File). The average degree of backcrossing to L. europaeus background

cannot be reliably estimated as retention of ancestral polymorphism because of incomplete

lineage sorting (ILS) and secondary gene flow through introgression, produce very similar pat-

terns of shared genetic diversity between two species [50,51]. For example, after five genera-

tions of backcrosses, only 1.6% of introgressed alleles would be retained, low enough number

to be sampled by chance in case of 192 markers. Interestingly, individuals with introgressed

mtDNA did not differ significantly from the other sympatric specimens. This is likely to reflect

a situation, where hybridization in the areas of sympatry is frequent, but that the most of the

mountain hare genotypes are not selectively maintained in the brown hare population but are

diluted out in the regions were mountain hares are not present [21,26,28,29,33,52].

As a curiosity, the mountain hare like hybrid (Table 1 and S4 File) having L. europaeus
mtDNA represented 0.56 timidus and 0.44 europaeus share of ancestral populations in

STRUCTURE analysis (Fig 2). Although it had only 12% total marker heterozygosity, repre-

senting a midway between the mean heterozygosities among the species (Table 2). 86% of the

192 species-specific loci (S2 File) were heterozygous (S5 File). When also the NEWHYBRID

Hare hybridization in Fennoscandia

PLOS ONE | https://doi.org/10.1371/journal.pone.0191790 January 25, 2018 7 / 12

https://doi.org/10.1371/journal.pone.0191790


analysis gave posterior probability value of 1.00 for F1 hybrid assignment in (S4 File)., we sug-

gest that this individual is a genuine first generation hybrid between a female brown hare

(mtDNA donor) and male mountain hare. We were also able to confirm that the few other

examples of brown hare mtDNA being introgressed into mountain hare were genuine obser-

vations and not misidentifications by hunters (Fig 2, S4 File). Interestingly, these specimens

had only traces of brown hare specific nuclear markers in contrast to the patterns of genetic

imprint among brown hares with mountain hare mtDNA (S4 File).

Concluding remarks

Our study represents the first attempt to assess nuclear gene introgression in hares using a

SNP-chip designed for a related species (the rabbit) and, more specifically, it is the first such

study focused on mountain hares and brown hares in Fennoscandia. While it is clear that the

next generation methods, such as Double Digest Restriction Associated DNA (ddRAD)

sequencing [53], provide more powerful alternatives for genotyping species without prior

knowledge of their genomes, exploitation of existing and standardized genome-wide genotyp-

ing methods can sometimes be cost-efficient and fast, providing useful data for population

genetic analysis. The low levels of minor allele frequencies and heterozygosity among the 6833

polymorphic markers indicate that the detected SNPs are not optimal for detailed population

analysis. For example, a commercial dog SNP panels typically give 0.30–0.40 heterozygosity

rates within breed [54]. However, SNPs that show relatively little variation could constitute

highly species-specific markers. Such conservative polymorphisms could be more useful in

comparative studies than common polymorphisms used to differentiate individuals. There-

fore, we believe that the discovered SNPs in this study prove to be useful as a future resource

for hare population genetics.

Our results provide support for the preferential introgression of nuclear genes from L. timi-
dus to L. europaeus in Fennoscandia, as previously reported for mtDNA [21,22,49]. Based on

the mtDNA evidence, introgression is most frequent at the leading edge of brown hare range

expansion [21,49]. Contrary to the comprehensive study using 100 SNPs obtained from RNA-

seq transcriptome data from 314 L. granatensis specimens, assessing the patterns of the histori-

cal introgression events [29], our study aimed to validate the degree of nuclear marker admix-

ture during ongoing contact between the two species in Fennoscandia. While it is likely that

mtDNA introgression and preservation can be explained by demography [29], it is plausible

that brown hare could also obtain locally adapted alleles from the resident mountain hares,

which are expected to represent only a tiny fraction of the total genome. A limitation of tran-

scriptome studies is that they provide expression data and transcript genotypes only from the

sampled tissue, such as kidney or liver, and might not be able to capture genes influencing

traits such as coat color variation [55,56], muscle metabolism [57], diet specialization [58] and

immunity [59]. At present, comprehensive surveys of this type of adaptive variation in species

with unknown genomes are generally not possible. However, already the current next genera-

tion sequencing methods enable the simultaneous genotyping of dozens of candidate gene

loci, enabling the correlation of genotypes with phenotypes and the detection of single adaptive

alleles. As the costs of whole genome sequencing are constantly dropping, it is likely that ad
hoc comparisons of genomes become the standard practice in population genetics in the near

future.

Although brown hare may outcompete mountain hare under certain conditions [19,60],

the two species has coexisted in sympatry in most of Fennoscandia for decades. While hybrid-

ization between sympatric species can be a threat to endangered species, theoretically in less

than five generations [61], genetic introgression in our hare-model system has significance
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mainly to the receiving brown hare population. Shortened snow-covered season, resulting in a

dramatic mismatch with the protective white, may pose an additional threat to mountain

hares regardless of brown hare’s range expansion. Although the mountain hare populations

might be contracting at the southern edges of the species’ distribution [20], for a cold-adapted

species, mountain hare has shown a remarkable resilience in the past [62] and is likely survive

in Fennoscandia in the future.
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