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Abnormal grain growth mediated 
by fractal boundary migration at 
the nanoscale
Christian Braun   1, Jules M. Dake2, Carl E. Krill III2 & Rainer Birringer1

Modern engineered materials are composed of space-filling grains or domains separated by a network 
of interfaces or boundaries. Such polycrystalline microstructures have the capacity to coarsen through 
boundary migration. Grain growth theories account for the topology of grains and the connectivity 
of the boundary network in terms of the familiar Euclidian dimension and Euler’s polyhedral formula, 
both of which are based on integer numbers. However, we recently discovered an unusual growth 
mode in a nanocrystalline Pd-Au alloy, in which grains develop complex, highly convoluted surface 
morphologies that are best described by a fractional dimension of ∼1.2 (extracted from the perimeters 
of grain cross sections). This fractal value is characteristic of a variety of domain growth scenarios—
including explosive percolation, watersheds of random landscapes, and the migration of domain walls 
in a random field of pinning centers—which suggests that fractal grain boundary migration could be a 
manifestation of the same universal behavior.

The coarsening of typical polycrystalline materials results in compact, faceted grain shapes that resemble soap 
bubbles. The geometric form of these grains—characterized topologically by the number of faces, edges and ver-
tices—imparts complexity to the network of boundaries: usually, three 2D grain faces meet along each 1D edge 
(triple line), and four edges begin or end at each zero-dimensional vertex (quadruple point)1. When provided 
with sufficient kinetics, the network evolves in such a manner that the overall area of boundaries decreases, as 
this reduces the excess energy stored therein2. This process entails larger grains growing at the expense of their 
smaller neighbors, which results in the successive elimination of shrinking grains and a concomitant increase in 
average grain size.

Tuning the latter quantity to optimize specific properties is the task of materials processing, which exploits the 
response of polycrystalline microstructures to applied stresses and temperatures (thermomechanical treatment)3. 
The key challenge hereby is to promote or suppress coarsening via control of the migration of grain boundaries. 
Understanding boundary migration is, in turn, the basis for developing predictive models for microstructure 
evolution—one of the paramount goals of materials science and statistical physics4. In this regard much attention 
has been devoted to the idealized case of isotropic grain growth in two and three dimensions. Quite generally, 
models for the coarsening of polycrystalline microstructures presume that the excess energy of grain boundaries 
manifests itself in the form of a surface tension2, which imparts a driving force for boundary migration through 
the boundary’s mean curvature. When the surface tension is equal or similar in magnitude for all grain bounda-
ries in a specimen, then the average grain size 〈 〉R  grows parabolically with time (i.e., 〈 〉 ∝R t2 ), and the grain size 
distribution evolves self-similarly, as verified by both theory2,5 and computer simulation3,6,7.

In real materials, however, the power-law nature of growth and its self-similarity can be disturbed by the pres-
ence of anisotropy (texture), inhomogeneities, the segregation of impurities at boundaries, or by second-phase 
particles—just to name the most prominent impediments to so-called “normal” grain growth. In such cases, 
coarsening can be markedly nonuniform, with a small subpopulation of grains growing rapidly to sizes more 
than an order of magnitude larger than those of the remaining population. Grains that grow quickly are assumed 
to profit from some kind of energetic and/or mobility advantage that allows their boundaries to migrate quickly 
through a matrix of quasi-pinned neighboring grains. This mode of growth fits the standard definition for abnor-
mal grain growth (AGG)3—which is not itself a new phenomenon, having been investigated for more than 70 
years8—and several approaches have been developed to induce or suppress its occurrence. Despite these efforts, 
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our understanding of the mechanisms underlying AGG remains fragmented at best9, prompting Rollett et al.10 to 
call it “one of the perennially fascinating problems in materials science.”

Although the name implies a certain degree of rarity, abnormal grain growth is hardly an unusual occurrence 
at the micrometer grain sizes of conventional materials, and in nanoscale polycrystals AGG may be even more 
common than its “normal” counterpart11,12. Based on the latter observation, it is conceivable that nanocrystallin-
ity could be conducive to the appearance of new modes of AGG.

Results
We have investigated this possibility in Pd-based specimens having a nanocrystalline (NC) microstructure pre-
pared by inert gas condensation13. In these samples, we discovered that the morphological signature of AGG 
can differ drastically from that encountered in conventional polycrystals: instead of maintaining approximately 
equiaxed shapes with smooth growth fronts (interfaces between abnormal and matrix grains), domains growing 
rapidly in NC Pd-10 at% Au take on rough and highly irregular morphologies (Fig. 1(a)). These abnormal grains 
appear to have grown by sending out offshoots in many directions, first surrounding nearby matrix grains and 
then consuming them, perhaps similar to the manner in which a tumor spreads into nearby tissue. During later 
stages of growth, the abnormally growing grains impinge upon one another, but the tortuous nature of their 
perimeters is preserved (Fig. 1(b)).

Closer examination of the resulting domain shapes reveals them to bear a qualitative resemblance to fractal 
objects14. Complex geometric objects, or sets, can be assigned a fractional dimension that typically exceeds the 
related topological dimension by a noninteger amount15. When a set has a fractal index, that set fills its embed-
ding space qualitatively differently than does an ordinary geometric shape: for example, a curve with a fractal 
dimension significantly greater than unity has lost the usual character of a line, winding in a highly convoluted 
manner through two or three-dimensional space.

To assess whether an abnormal grain’s ostensible fractality withstands quantitative scrutiny, we must choose 
an appropriate definition for the fractal dimension of a 3D grain’s intersection with a sectioning plane. Formal 
definitions of fractal dimension have been derived from deterministic fractals, which are constructed by mathe-
matical codes that permit scaling to arbitrarily small length scales16. A prominent example of such a definition is 
the box-counting fractal dimension, ε ε= ε→D Nlim [log ( )/log(1/ )]0 0 , where ε denotes the box size and N the 
number of boxes crossed by the perimeter of the object in question17,18.

The box-counting dimension is particularly suited to the analysis of 2D sections of fractal objects. In order to 
determine D0 from such an image, the latter is overlaid with a regular square lattice of spacing ε, and the boxes 
that are intersected by the object’s perimeter are counted to give N(ε). The limit ε→0 is impossible to achieve in 
practice, being bounded from below by the underlying pixel size of the image. Consequently, the fractal dimen-
sion is estimated from the slope of a log-log plot of N(ε) versus 1/ε.

Application of this method to grains #1 and #2 in Fig. 1(b) yields the plots of Fig. 2(a) and (b). From least-squares 
fits of straight lines to these data points, we estimate D0 values of 1.26 ± 0.01 and 1.20 ± 0.01 for #1 and #2, respec-
tively. We also applied the box-counting method to the microstructure of a conventional, coarse-grained Pd-10 at% 
Au specimen (Fig. 1(c)), extracting D0 = 1.04 ± 0.01 for grain #3 (Fig. 2(c)). At first glance, it may seem surprising 
that D0 exceeds unity for grain #3, but the box-counting method tends to overestimate integer-valued Euclidian 
dimensions by a few percent, as reflected in the values obtained for regular geometries like squares (D0 = 1.01 ± 0.01) 
and circles (D0 = 1.02 ± 0.01) (see Fig. S1(a) and (b) in the Supplementary Information). On the other hand, for a 
mathematical fractal like the Koch snowflake (fractal dimension 1.26), the same algorithm returns the true value 
within the error bars of the analysis (D0 = 1.26 ± 0.01, Fig. S1(c)). Fig. 3 shows the box-counting fractal dimensions 
of grain perimeters visible in Fig. 1(b) and (c) after excluding partially mapped grains. Red histogram bars 

Figure 1.  Microstructural maps of abnormal grain growth in nanocrystalline Pd-10 at% Au, recorded by 
electron backscatter diffraction (EBSD) following heat treatments of (a) 155 °C for 202 h and (b) 400 °C for 4 h. 
The speckled contrast visible between single-color micrometer-sized regions in (a) is caused by the presence of 
grains smaller than the point resolution of the EBSD technique at this magnification (0.15 μm). The perimeters 
of abnormal grains in (a) and (b) are much rougher and more convoluted than the smooth boundaries seen 
in (c), which represents the microstructure of a Pd-10 at% Au sample prepared by arc melting and subsequent 
solidification.
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correspond to the fractal grains of Fig. 1(b) (arithmetic mean = . ± .D 1 20 0 010 ), and blue bars arise from the regu-
lar (i.e. non-fractal) conventional polycrystalline microstructure of Fig. 1(c).

Discussion
While researching models for the development of fractal domain morphologies, we discovered a striking sim-
ilarity between the grain shapes visible in Fig. 1(b) and microstructures generated by so-called “explosive per-
colation”19, the domains of which take on fractal shapes with D0 values ranging from 1.23 to 1.26, depending on 
the detailed nature of the site occupation rules implemented by the percolation model19,20. This close match to 
the fractal dimension of abnormal grains in NC Pd-10 at% Au suggests that percolation is a potentially fruitful 
framework for understanding the phenomenon of fractal AGG.

We conjecture that, in our samples, the fractal migration of grain boundaries is a manifestation of a perco-
lation process taking place on a grid defined by the nanometer-sized matrix grains, whereby the percolation 
pathway is governed by details of the microstructure. In the language of percolation theory, these details can be 
formulated as “selection rules” that determine whether or not a neighboring site is connected to a given domain. 
In the case of grain boundary migration, any physically plausible selection rule will have to derive from relevant 
aspects of the sample microstructure, such as the misorientation relationship at grain boundaries, the distribution 
of segregants or impurities, the growth or dissolution of interfacial states (grain boundary complexions21), or the 
presence of obstacles—such as precipitates or pores—tending to hold boundaries in place (pinning). Although 
such microstructural features are common to polycrystalline materials at all characteristic grain sizes, we are 
aware of no previous observations of fractal grain boundary migration during grain growth, nor have we encoun-
tered a postulated connection between fractality and AGG. What, then, could be responsible for the findings 
reported here for NC Pd-10 at% Au?

To answer this question, we focus on the salient features of these specimens: (i) their extremely low intracrys-
talline defect density22,23, (ii) their statistically isotropic and homogeneous microstructure23,24, and (iii) their unu-
sually small average grain size of ∼10 nm25. The first property argues against boundary migration driven by excess 
energy stored within grain volumes, as occurs during recrystallization. The second property implies that NC 
Pd-10 at% Au is devoid of macroscopic texture or deviations from a Mackenzie distribution26 of lattice misorien-
tations at grain boundaries; however, such attributes have never been found to promote the appearance of fractal 
grain shapes in conventional polycrystalline materials. But, in conjunction with a very small grain size, statistical 
isotropy and homogeneity of the microstructure may establish conditions favorable to the migration of grain 
boundaries according to an unconventional mechanism: namely, grain rotation and coalescence27–30. Scaling 
arguments predict that, when acted upon by a torque, a grain of size R will rotate at a rate proportional to R−n, 
with ≤ ≤n2 530. Since the speed of curvature-driven boundary migration goes as R−1, there ought to be a grain 
size below which grain growth mediated by grain rotation is actually faster than growth by the standard 
curvature-based mechanism.

The driving force for grain rotation can be traced to the dependence of grain boundary energy γ on misorien-
tation angle θ, whereby the latter quantity is a measure for the difference in crystallographic orientation of two 
grains meeting at a grain boundary. In the small-angle grain boundary regime ( θ 15 ), steep gradients in the 
γ(θ) energy landscape give rise to torques that act on the adjacent grains31. At random high-angle grain bounda-
ries, on the other hand, the energy landscape is largely flat, implying that no significant torques are generated. In 
the small-angle region, the energy minimum at θ = 0° corresponds to the point at which a rotating grain would 
coalescence with its neighbor. Now, consider a larger grain growing into a nanocrystalline matrix: whenever the 
former comes into contact with a matrix grain at a small-angle grain boundary, the nanocrystallite will experience 
a torque driving its misorientation to zero; upon coalescence, the boundary of the larger grain advances by the 
spatial extent of the smaller neighbor grain, thus generating a spatial fluctuation at the length scale of the 
nanometer-sized matrix. As rotation-mediated growth extends further and further into the matrix—likely in the 
form of slender offshoots that, in turn, send out their own branches (as in Fig. 1(a))—fluctuations in the boundary 

Figure 2.  Evaluation of the box-counting fractal dimension D0, extracted from log-log plots of the number of 
boxes N(ε) versus the inverse box side length 1/ε. The red lines represent least-squares fits of straight lines to the 
data points (black squares), the slopes of which yield D0 values for (a) grain #1 and (b) grain #2 in Fig. 1(b) and 
(c) grain #3 in Fig. 1(c).
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morphology will be generated at all length scales greater than the size of the matrix grains. Curvature-driven 
migration would operate simultaneously, acting to eliminate highly misoriented grains trapped between dendritic 
offshoots. The resulting microstructure would be characterized by fairly compact grain shapes like those seen in 
Fig. 1(b), with impinged boundaries retaining the fractality induced by the underlying rotation mechanism.

Finally, it should be noted that fractal dimensions close to 1.2 have been noted for pathways and boundaries 
associated with a wide range of phenomena, including domain walls in strongly disordered systems (D0 = 1.2)32, 
bridge percolation (D0 = 1.22)33, optimal path cracks (D0 = 1.22)34, and watersheds of random landscapes 
(D0 = 1.21)35. These seemingly unrelated physical problems can be linked to the concept of fracturing a ranked 
surface33. In particular, watersheds have been shown to exhibit the geometrical properties of Schramm-Loewner 
evolution theory36,37, in which random curves of fractal dimension are generated from one-dimensional 
Brownian motion. Just as a watershed boundary is defined relative to a given surface topography, we can view 
rotation-mediated growth as establishing domain boundaries in reference to an energy landscape, whereby the 
latter has been mapped from misorientation space onto real space through the arrangement of lattice orientations 
that are present in the initial grain configuration. In this interpretation, the fractal dimension of grain perime-
ters reflects the degree of randomness of the energy landscape that underlies the mechanism for grain growth, 
with complete randomness corresponding to D0 ≈ 1.2. Moreover, just as for watersheds of landscapes having 
long-range spatial correlations38, lower values of D0 would be expected when the polycrystalline microstructure 
manifests a non-random misorientation distribution function, since this would introduce spatial correlations into 
the energy landscape driving rotation-mediated growth. It appears that growth by grain rotation and coalescence 
could account for the emergence of fractal grain morphologies in NC Pd90Au10, but validation of this scenario will 
require a tight integration of experiment, theory and simulation.

Methods
Sample synthesis and preparation.  The nanocrystalline Pd-Au samples of Fig. 1(a) and (b)—having a 
gold concentration of 10 at% and an initial grain size of ∼10 nm—were synthesized by inert gas condensation 
and compaction13. Applying a compaction pressure of 1.8 GPa, we prepared discs with a diameter of 8 mm and a 
thickness of about 500 μm. To initiate grain growth, the annealing treatments described in the caption of Fig. 1 
were carried out in a differential scanning calorimeter (TA Instruments DSC Q2000) following a heating ramp of 
1 °C/min. In contrast, a reference sample of identical composition (Fig. 1(c)) was produced by fusing high-purity 
palladium (99.95%) and gold (99.95%) wires in an arc melter that had been evacuated 10 times to a base pressure 
of ∼1 mbar and purged subsequently with helium (5.0). After the arc was switched off, the melt solidified to a 
coarse-grained specimen having the shape of a prolate sphere. For investigations of the resulting microstructure, 
a section was cut from the middle of the specimen with orientation parallel to the prolate plane of the sample. For 
this step we used a precision saw (Buehler Isomet 1000) equipped with a diamond blade. In order to carry out 
a detailed analysis of grain perimeters, samples B and C were ground and polished mechanically with diamond 
suspensions of decreasing particle size down to 1 μm. To generate a defect-free sample surface, ion beam polish-
ing was performed until the deformation layer of the mechanical polishing was removed completely. To that end, 
sample B was placed in a Baltec RES 010 ion mill at 2.5 kV acceleration voltage, 2.5 mA ion current and 10° incli-
nation angle relative to the sample surface, whereas in the case of sample C a Hitachi IM 4000 ion milling system 
was applied (2.5 kV accelerating voltage, 40 μA ion current and 10° inclination angle). This resulted in optimally 

Figure 3.  Frequency histogram of the box-counting fractal dimension D0 of the grains displayed in Fig. 1(b) 
and (c). The red histogram bars correspond to the fractal grain morphologies of the nanocrystalline sample 
following heat treatment (Fig. 1(b)), whereas the blue bars derive from the conventional polycrystalline 
microstructure prepared by solidification from the melt (Fig. 1(c)).
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resolved Kikuchi patterns during characterization by electron backscattering diffraction (EBSD), which allowed 
grain shapes to be visualized based on the orientation of the underlying crystal lattice.

Orientation imaging microscopy and determination of fractal dimension.  All microscopy studies 
were carried out in a JEOL JSM-7000F scanning electron microscope (SEM) operated at 15 kV acceleration volt-
age and 5 nA beam current. The SEM was equipped with an EDAX/TSL Digiview 3 camera and EDAX/TSL OIM 
data collection software (version 5.2), which was used to generate the microstructural maps displayed in Fig. 1. In 
order to determine fractal dimensions by the box-counting method, we defined an image area of 600 μm × 600 μm 
for all micrographs, which were scanned with a hexagonal grid, a consistent step size of 0.6 μm and a magnifica-
tion of 160×. After setting the misorientation threshold for individual grain recognition to an angle of 5°, each 
fully captured grain was extracted individually from the dataset, colored in black and saved as a bitmap image 
(4000 × 4000 pixels) using the EDAX/TSL OIM analysis software (version 8). Finally, the grain perimeters were 
identified using the program ImageJ39, from which their fractal dimensions were determined by means of the 
ImageJ plugin FracLac (version 2015Sept090313a9330)40. Here we chose the following parameters: minimum box 
size 5 pixels, maximum box size 45% of the image, scaling method “Default Sampling Sizes”, and 50 grid positions. 
The latter parameter instructs the box-counting algorithm to count the number of boxes N(ε) intersected by the 
grain perimeter for 50 different selections of grid origin (for additional details, please consult the FracLac docu-
mentation). In the diagrams of Figs 2 and S1 (Supplementary Information), we plot the average value 

ε ε= ∑N Nlog ( ) (1/50) log ( )i i  against the inverse box size 1/ε, such that the slope of the linear regression yields 
the fractal dimension averaged over all grid positions. This procedure was validated against square and circular 
perimeters as well as against the Koch snowflake, resulting in the fractal dimension values quoted in the main 
text; the corresponding box-counting plots are shown in Fig. S1 of the Supplementary Information.

Data availability.  The datasets analyzed during the current study are available from C. Braun (c.braun@
nano.uni-saarland.de) or R. Birringer (r.birringer@nano.uni-saarland.de) upon request.
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