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Abstract

Background: Polygenic risk scores (PRS) could potentially improve breast cancer screening recommendations.
Before a PRS can be considered for implementation, it needs rigorous evaluation, using performance measures that
can inform about its future clinical value.

Objectives: To evaluate the prognostic performance of a regression model with a previously developed, prevalence-
based PRS and age as predictors for breast cancer incidence in women from the Estonian biobank (EstBB) cohort; to
compare it to the performance of a model including age only.

Methods: We analyzed data on 30,312 women from the EstBB cohort. They entered the cohort between 2002 and
2011, were between 20 and 89 years, without a history of breast cancer, and with full 5-year follow-up by 2015. We
examined PRS and other potential risk factors as possible predictors in Cox regression models for breast cancer
incidence. With 10-fold cross-validation we estimated 3- and 5-year breast cancer incidence predicted by age alone
and by PRS plus age, fitting models on 90% of the data. Calibration, discrimination, and reclassification were calculated
on the left-out folds to express prognostic performance.

Results: A total of 101 (3.33%0) and 185 (6.1%o) incident breast cancers were observed within 3 and 5 years,
respectively. For women in a defined screening age of 50-62 years, the ratio of observed vs PRS-age modelled 3-year
incidence was 0.86 for women in the 75-85% PRS-group, 1.34 for the 85-95% PRS-group, and 141 for the top 5% PRS-
group. For 5-year incidence, this was respectively 0.94, 1.15, and 1.08. Yet the number of breast cancer events was
relatively low in each PRS-subgroup. For all women, the model's AUC was 0.720 (95% Cl: 0.675-0.765) for 3-year and
0.704 (95% Cl: 0.670-0.737) for 5-year follow-up, respectively, just 0.022 and 0.023 higher than for the model with age
alone. Using a 1% risk prediction threshold, the 3-year NRI for the PRS-age model was 0.09, and 0.05 for 5 years.

Conclusion: The model including PRS had modest incremental performance over one based on age only. A larger,

independent study is needed to assess whether and how the PRS can meaningfully contribute to age, for developing
more efficient screening strategies.
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Background

Breast cancer screening programs aim to detect tumors be-
fore they develop into symptomatic, more advanced cancers,
as early detection of localized breast cancer (i.e. cancers that
has not yet metastasized) is known to have a better prognosis
[1]. Current screening recommendations and guidelines rely
on a careful weighing of benefits - primarily a reduction in
breast cancer specific mortality - against adverse events and
perceived harms, such as psychological distress due to false
positive mammography results, the potential of overdiagno-
sis, and cost [2-5].

In this context, age is still the dominant risk marker
for identifying the general target group for breast cancer
screening programs. However, notwithstanding a signifi-
cant increase in breast cancer incidence with age [6, 7],
most women do not develop breast cancer. Conse-
quently, a majority of screened women are exposed to
the associated harms without reaping the benefits [8]. A
systematic review reported a cumulative proportion of
false-positive screenings after 10 years of biennial screen-
ing in women aged 50-69 years that varied between 8
and 12% [9]. This justifies a quest for additional risk
markers to improve currently implemented breast can-
cer screening programs.

Breast cancer is a heterogenic disease for which several
different subtypes of genetic mutations and variations
have been identified. For example, mutations in the sin-
gle high-penetrance tumor suppressor gene BRCA1/2
are associated with a high relative risk of developing
breast cancer. The high-penetrant genes are, however,
rare and although women with a BRCA1/2 mutation
have a seven times higher risk of breast cancer [10], this
subtype only explains up to 10% of all breast cancers
[11]. It is hence infeasible to screen the general popula-
tion for such rare genetic traits and risk-markers [12,
13]; biomarkers that are more prevalent and indicative
of breast cancer are needed.

In contrast to rare, high-penetrant genes, the so-called
single-nucleotide polymorphism (SNPs) are genetic vari-
ants that are more commonly expressed in the general
population [14, 15]. Several studies have explored the po-
tential prognostic value of SNPs for breast cancer risk
stratification, as well as for other types of cancer [16-18].

Although studies have identified more than 100 low
penetrance genes as prognostic for breast cancer [19], no
single SNP has shown potential for screening purposes
[20, 21]. Several reasons can be identified for this absence.
While SNPs lead to various unfavorable changes in the
genetic transcription, translation, and epigenetic pro-
cesses, their direct biological mechanisms, in regards to
cancer susceptibility, are largely unknow [22]. SNPs are
only weakly associated with breast cancer, typically at a
(GWAS) significance threshold of 5 x 10~ ® [14]. It is well-
known that extremely high odds ratios are needed for new
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potential risk factors to achieve sizeable improvements in
discriminatory performance, in particular when added to
existing risk factors [23-25]. Combining effects of mul-
tiple SNPs into a single polygenic risk score (PRS) may
yield a more promising marker of subgroups differing suf-
ficiently in their genetic risk of developing breast cancer
[14, 26].

So far, the validity of a previously developed preva-
lence based PRS was mostly demonstrated through
relative risks [27]. Before involving PRS in screening
strategies, we need to evaluate its risk (incidence) pre-
diction in terms of calibration (relative and absolute
agreement between the observed and estimated inci-
dence), discrimination (the ability to correctly classify
women who develop breast cancer), and reclassifica-
tion (the ability to correctly re-classify women who
later develop breast cancer into a higher risk group,
given a specified risk threshold) [28].

Next in our PRS evaluation for breast cancer screening
[27], we estimate 3- and 5-year breast cancer incidence
from Cox models including either age alone or PRS and
age as predictors, for women without known current
breast cancer nor history of breast cancer in the EstBB
cohort. We assessed the prognostic performance of the
models in terms of calibration, discrimination, and
reclassification.

Methods

Study cohort

We included de-identified data from 30,901 female partic-
ipants from the EstBB cohort. In brief, the EstBB is man-
aged by the Estonian Genome Center at the University of
Tartu (EGCUT) and was established to collect genetic and
health information, from a large sample of the Estonian
population, to advance public health [29-31].

Eligible participants were 18 years or older volunteers
with Estonian nationality. Approximately 10,000 partici-
pants were recruited from 2002 to 2004. Recruitment
was thereafter paused until 2006, due to financial cir-
cumstances, but continued again from 2006 to 2012
from all of Estonia (15 counties), at which the EstBB co-
hort had included almost 52,000 participants.

Participants were initially, non-randomly, recruited
through general practitioners. Recruitment was later ex-
tended to private practices and hospitals, and special re-
cruitment offices of the EGCUT. Recruitment was
completely volunteer-based, since no direct contact with
the Estonian population was allowed; participants actively
signed up after hearing about the cohort study in private,
at their health care institution, or through promotion at
special public events and in the media [29, 30].

See Method section in the Supplementary File for
more detail of the cohort.
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Eligibility

Included in this analysis were data from women from
the EstBB cohort between 20 and 89 years and without a
current or previous diagnosis of breast cancer at the
time of cohort entry. We excluded women who had en-
tered the cohort after 2011, as their 3- and 5-year
follow-up information was not yet available at the time
of analysis (Fig. 1).

Information on all variables used in this analysis
(smoking status, educational level, prevalent comorbidi-
ties, age, BMI, and PRS) was initially collected on the
day of recruitment through standardized interviews and
questionnaires, blood samples, and from existing med-
ical records. Diseases were classified according to the
international Classification of Diseases (ICD-10) [29, 30].

The selection of SNPs and the development of PRS
follow advanced and complex methods that have been
described in detail elsewhere [14, 15]. In the Supplemen-
tary File we summarize the overall developmental ap-
proach of the prevalence based PRS (metaGRS,) used in
this analysis [27].

Follow-up information on incident breast cancers and
deaths was collected through biennial linkage to the Es-
tonian Health Insurance Fund, the Estonian Causes of
Death Registry, and the Estonian Cancer registry. Every
recorded diagnosis of breast cancer was confirmed by an
oncologist. The last linkages used in this analysis were
performed in December 2015 for breast cancer and in
June 2017 for death [27]. Below, we studied incident di-
agnosed breast cancer and death after entry into the
EstBB cohort. More information about the EstBB cohort
and the PRS can be found elsewhere [27, 29-32].

Statistical analyses

Descriptive statistics for our study group are presented
in Table 1. PRS results were categorized into 6 sub-
groups (0-25%, 25—-50%, 50—75%, 75—85%, 85-95% and
the top 5% PRS percentiles) as in Lill et al. [27]. A Cox
proportional hazards model for incident breast cancer
was then fitted with main effects of age, BMI, year of
entry, 6-level categorical predictors of PRS, smoking sta-
tus (never/former/current), education (less than second-
ary/secondary/university degree), and prevalent co-
morbidities (any prevalent cancer, Type 1 diabetes, Type

Women between 20-89 years from the EstBB
(n=30,901)

—

30,365 women included by
eligibility criteria -
Women with missing values (n = 53):
43 with missing BMI values
12 with missing smoking status
(of which 2 women had missing data of both BMI and smoking)
30,312 women included for the
analysis

Fig. 1 Flow diagram of participants included in the analysis

Women with prevalent breast cancer (n = 309)
Women recruited after 2011 (n = 227)
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Table 1 Demographic and clinical characteristics of included
participants

n (%); mean / median (SD; IQR)
30,312
9/ 859 years (2.6; 748-9.47)

Characteristic

Total included

Follow-up time (by June 2017)

Age 46 / 45 years (17; 32-58)
BMI 2644 / 2539 (5.69; 22.21-29.74)
Smokers
Currently: 6884 (23%)
Former: 3087 (10%)
Never: 20,341 (67%)
Education

4077 (14%)
17,979 (59%)
8256 (27%)

Less than secondary:

Secondary:

University degree:
Co-morbidities

Mean number: 0.2336 (range: 0-5)

With 0: 24,962 (82%)
With 1: 3952 (13%)
With 2: 1117 (4%)
With 3-5: 281 (1%)

Co-morbidities are all prevalent and include (any) cancer (pcancer), type 1
diabetes (T1D), type 2 diabetes (T2D), myocardial infarction (pMI), and
coronary artery disease (pCAD)

2 diabetes, myocardial infarction, and coronary artery
disease), together with interaction terms for BMI and
age, and PRS and age. Follow-up time was measured in
years from cohort entry to last linkage.

Only two covariates were statistically significant and
retained in subsequent models: age and PRS. We then
considered the model including only age, reflecting the
current screening strategy, and another adding PRS to
age as predictors. With the latter PRS-age-based model,
fitted to the full data set, we estimated breast cancer spe-
cific hazard ratios with main effects for age and PRS-
groups (Supplementary Table S3).

The proportionality assumption was checked using
Schoenfeld’s residuals (Supplementary Fig. S1). Nested
models were compared with a likelihood ratio test. We
estimated cause specific hazards of ‘death without breast
cancer’ and ‘breast cancer’ from Cox regressions. We call
the derived model-based cumulative incidences PRSage_
mlInc and age_mlInc, respectively.

To avoid overoptimistic incidence estimates, we evalu-
ated each model’s performance using 10-fold cross-
validation. We randomly split the data into 10 equally
sized parts, of which 9 parts were used to fit the model
and derived 3- and 5-year estimated incidences for the
remaining 10th part test set. All 10 test-sets were then
combined into the merged data set with their independ-
ently estimated incidences. This was used to evaluate
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calibration, discrimination, and reclassification for both
PRSage_mInc and age_mlnc.

Since the screening age in Estonia at the time of the
analysis was 50 to 62 years [33], we constructed three
age categories of women: < 50 years, 50 to 62 years, and >
62 years and combined these with the PRS groups, to
evaluate calibration of the PRSage_mInc for women both
in- and outside the usual screening age.

Our calibration plots show for each PRS-age subgroup
the observed cumulative incidence against the mean
PRSage_mlInc for the same group. The observed cumula-
tive incidence was calculated as the proportion (%) of
breast cancer events within 3 or 5 years among the total
number of women in each PRS-age subgroup, with cor-
responding 95% CI calculated using the Wilson method
(Fig. 3, Supplementary Table S9 and S10). Per study de-
sign, no censoring was encountered over the periods
envisaged.

Receiver operating characteristic (ROC) curves were
constructed and the corresponding area under these
curves (AUC) was calculated to express discrimination
based on age_mlInc and PRSage_mlnc, for both the 3- and
the 5—year time points. The 95% CI of the AUC was cal-
culated with a non-parametric method (Delong) (Fig. 4).

Using a risk threshold of 21%, we classified women as
high or low risk within 3 and 5years. Separately for
women with and without observed breast cancer we thus
constructed reclassification tables for PRSage_mlInc and
age_mlnc (see more detail in the Supplementary File
Method Section). The net-reclassification index (NRI)
followed by first subtracting the incorrect reclassifica-
tions from the current ones in each group and then add-
ing the two proportions. The 95% CI intervals of the
NRI were calculated as proposed by Pencina et al., 2008
[34] (Supplementary Table S13 and S14).

P-values below 0.05 were considered to indicate statis-
tically significant differences. All statistical analyses were
performed using RStudio (Version 1.1.463, 2009-2018
RStudio, Inc.)

Results

Of the 30,901 women from the EstBB cohort between 20
and 89 years, 309 women had prevalent breast cancer at
recruitment while 227 women had been recruited after
2011. Hence, a total of 30,365 women were eligible, of
which 30,312 had complete data and were included in
the analyses (Fig. 1). Demographic and clinical charac-
teristics of this study group are presented in Table 1
and, per PRS-groups and age-groups, in Supplementary
Table S1, S2, and Fig. S2.

The observed cumulative incidence of breast cancer in
the study group was 3.33%o (101 events) at 3 years and
6.0%o (185 events) at 5years (Supplementary File Table
S9 and S10).
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Proportional hazards models and risk distributions

The PRS-age-based model fitted the data significantly bet-
ter than the age-based model (p-value = 1.75e-14) with no
significant improvement in model fit for the full model
with all evaluated putative predictors (p-value = 0.25).

The estimated age-adjusted effect of the PRS on the
breast cancer specific hazard followed the rank order of
the PRS-groups, with HR ranging from 1.2 (95% CL:
0.81-1.84) to 4.6 (95% CI: 2.97-7.14), relative to the
lowest 0-25% PRS subgroup (Supplementary Table S3).

From the Cox models, we estimated the 3- and 5-year
breast cancer specific cumulative incidence for women in
the cohort with the age-based model (age_mlInc) and with
the age plus PRS-based model (PRSage_mlInc). The
PRSage_mlInc distribution showed a slightly wider spread
than age_mlnc, visible in the right-hand tail for both the
3- and 5-year estimated incidence (Fig. 2 and Supplemen-
tary Table S4 - S8).

Prognostic performance

We evaluated the prognostic performance of PRSage_
mlnc in terms of calibration, discrimination, and reclas-
sification, comparing it to age_mlnc whenever
appropriate.

95% Cls for the observed incidences were wide: 1.55 to
7.35%0 and 3.39 to 11.04%o at 3 and 5 years, respectively.
Calibration varied across the PRS-age subgroups, how-
ever, the estimated incidences were still within the 95%
CI for all subgroups (Fig. 3).

For women in the screening age (50—62 years), the ra-
tio of observed cumulative incidence vs PRSage_mlnc
was 0.86 for women in the 75-85% PRS-group, 1.34 for
the 85-95% PRS-group, and 1.41 for the top 5% PRS-
group. For 5-year PRSage_mlnc, these were 0.94, 1.15,
and 1.08, respectively.

The approximation of PRSage_mlInc to observed inci-
dence was similar for the top 3 PRS-groups for women
below 50years and also for the age groups above 62
years, with exemption of the groups of women in the
top 5% PRS-group and older than 62 years (1 = 265), for
which the PRSage_mInc was considerably overestimated.
Yet, the number of breast cancer events were low in
each of the PRS-age subgroups. More detail on calibra-
tion for the 3- and 5-year observed incidence and
PRSage_mlInc across all PRSage subgroups is shown in
Supplementary Table S9 - S12.

The ability of PRSage_mlnc to accurately classify
women with breast cancer into a high-risk category and
women without breast cancer into a low-risk category
was assessed by building ROC curves and estimating the
corresponding AUC. The PRSage_mInc model had an
AUC of 0.720 (95% CI: 0.675 to 0.765) for 3-years and
0.704 (95% CI: 0.670 to 0.737) for 5-years, respectively,
just 0.022 and 0.023 higher than for the age_mlinc
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Fig. 2 Three- and 5-years age_minc and PRSage_minc distributions. The figure shows the absolute incidence distributions for the age_minc (red) and
PRSage_mlinc (blue). The full vertical line shows the mean PRSage_minc and the dotted lines the 0.5, 1% and the 1.5% risk thresholds, respectively

model. Neither increment was statistically significant (p-
values 0.23 and 0.11 respectively, calculated with the
Delong test) (Fig. 4).

We constructed risk classification tables for age_mlnc
and PRSage_mlnc, using a risk threshold of 1% for both
3- and 5-years (Supplementary Table S13 and S14), and
scrutinized reclassification through the use of PRSage_
mlnc rather than age_mlnc.

The 3-year risk reclassification showed that 13% of
women with breast cancer (13/101) were correctly re-
classified into a high risk-group while 1% (1/101) was in-
correctly reclassified by PRSage_mlInc. This resulted in a
net-improvement of 12% correctly reclassified women
with breast cancer. Among women without breast can-
cer (30,211), PRSage_mlInc reclassified more women

incorrectly as high risk (3%) than correctly as low risk
(0.4%), resulting in a net-loss of 2.6% of incorrect up-
ward reclassifications (Supplementary Table S13). The
net reclassification index (NRI) was 0.09 (95% CI: 0.02—
0.16, p = 0.01).

For the 5-year risk, PRSage_mlInc correctly reclassified
15% of women with breast cancer as high-risk (27/185)
but also incorrectly reclassified 10% (18/185) down-
wards, leading to a net improvement of 5% correct
reclassifications of women with breast cancer. In women
without breast cancer (30,127), 6.7% were incorrectly re-
classified upwards, while 6.9% were correctly reclassified
downwards (Supplementary Table S14), resulting in a
net improvement of 0.2% and an NRI of 0.05 (95% CI: -
0.02 - 0.12, p=0.17).
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Younger than 50 Age 50-62

5-years observed incidence (%)

the mean PRSage_minc for each PRS-age subgroup

Age 50-62

3-years PRSage-modelled incidence (%)

5-years PRSage-modelled incidence (%)

Fig. 3 Three- and 5-year incidence calibration plots. Calibration plots with the observed cumulative incidence (incl. 95% Cl) on the y-axis against
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Discussion

We evaluated the incremental prognostic value of adding
PRS as a biomarker to age, in a Cox proportional haz-
ards model, for screening of the general population. We
found that adding PRS to age significantly improved
model goodness-of-fit. The 3-year and 5-year PRSage_
mInc were well calibrated. Overall improvements in
terms of discrimination and reclassification were, how-
ever, modest.

The large number of participants in the EstBB cohort,
together with the genotyping data that were available for
each participant and the direct linkage to several Esto-
nian population registries [29, 30, 35], are key strengths
of this study. Even though events per category were rela-
tively limited, we estimated absolute 3- and 5-year inci-
dence from these data, in which all observation times

were uncensored up to 5years of follow-up. To our
knowledge, no other study has examined absolute risk
estimates with a similar design. Instead, other PRS evalu-
ations have relied on input from external sources to con-
vert relative to absolute risks [20, 21, 36—40].

A number of limitations to our study should also be
acknowledged. The EstBB participants were non-
randomly recruited, primarily through general practi-
tioners and other medical sites. Consequently, the in-
cluded women are younger, slightly more resourceful
and better educated than the general Estonian popula-
tion [29, 30]. The analysis was furthermore retrospective
meaning that the data used for the analysis, primarily
the event of breast cancer, was collected before this
study was planned. This could limit generalizability of
our results and potentially introduce a selection bias,
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respectively. As breast cancer incidence is higher in the
middle to older generation, the incidence in our cohort
may be underrepresented. However, the observed inci-
dence of breast cancer in our analysis is in accordance
with Estonian breast cancer statistics [41]. The cohort
was, moreover, prospectively recruited with a dedicated
purpose of performing health-research and no partici-
pant was lost to follow-up.

Errors in data registration, such as missing or misclas-
sified events of breast cancer or death, could also exist.
Yet, considering the large sample size and the link to
several, different and well-established registries, we be-
lieve that the number of such registry-errors is unlikely
to have a major impact our results.

Though no statistically significant interaction between
age and the PRS was observed, we cannot rule out a stron-
ger discriminating effect on breast cancer risk from the
PRS in younger than in older women. The number of
breast cancer events in the EstBB cohort may have been
too small for the formal test to have sufficient power. Such

a PRS-age interaction has been reported in the PRS evalu-
ation by Mavaddat et al., 2015 and 2019 [19, 21].

Three and 5 years are relatively short time horizons
for evaluating model-estimated breast cancer incidences,
in particular because relatively few incident events have
emerged in the cohort. This led to large uncertainty in-
tervals for the top 5% PRS-groups primarily. Yet we be-
lieve that these time points are particularly relevant in
the evaluation of the PRS for potential use in current
practice. As the Estonia screening program invites
women for screening every second year and the EstBB
cohort had full follow-up until 5years, cohort entry
could mimic a ‘first screen’ in our sample. Indeed, no
women in our sample had known current or previous
breast cancer and the 3- and 5-year time points roughly
correspond to the timing of two screening rounds fol-
lowing cohort entry.

Several studies have shown that women with a high
PRS are at increased risk of breast cancer [19-21, 37—
39, 42]. One of the most recent publications was made
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by Léll and colleagues, from the Estonian Genome Cen-
ter. They developed and compared seven different types
of breast cancer PRS, of which one (metaGRS,) showed
a HR of 4.2 (95% CI: 2.8—6.2), when women from the Es-
tonian Biobank Cohort (EstBB) in the 95th percentile
(the top 5% PRS-group) were compared to women in
the lowest 50th percentile PRS-group [27]. In agreement
with results from Léll et al. and other PRS evaluations
[19, 21, 27, 37-39, 42], the PRS was found to be moder-
ately to strongly associated with breast cancer, primarily
when comparing the top 3 percentile PRS-groups to the
lowest (0-25%) PRS-group.

In terms of calibration, PRSage_mlInc approximated
the observed incidence relatively well for each PRS-age
subgroup, as only one exception, the top 5% PRS in
women older than 62 years, was considerably overesti-
mated at both time points. This overestimation may
own to the low sample size of this subgroup. Some
under- and overestimation is expected at both tails of
the PRSage_mlInc. Calibration was more accurate for the
highest 75—-100% PRS-group than for the lowest 0-25%
PRS-group. This too could be explained by the consider-
ably higher observed incidence in the highest 75-100%
PRS-group, with similar total sample size.

The AUC estimates the percentage of (randomly se-
lected) pairs of women with and without breast cancer
where the woman with breast cancer has the higher risk
prediction, here age_mInc and PRSage-mInc. Upon add-
ing PRS to age, the increase in AUC was limited to 2—
3% more pairs assigning higher risk to the breast cancer
case. Although the AUC in our analysis are slightly
higher than in other PRS evaluations [21, 36-39, 42],
two studies have reported similarly small improvements
in AUC of 3-4% [37, 38], while two other studies re-
ported an increase of 7-9% when adding SNPs/PRS to
existing risk factors [21, 39]. Yet, the AUC does not in-
form on whether the small improvement could translate
into sufficient discrimination of clinically defined sub-
groups, supporting different screening recommenda-
tions. Net-reclassification gives a more direct indication
of the incremental performance upon defining poten-
tially clinically relevant risk-groups using a threshold
value. With a threshold of 1% in the reclassification we
exemplified defining new PRSage-based risk groups with
corresponding screening recommendations.

The 3-year PRSage_mlInc showed a modest but statisti-
cally significant improvement in overall reclassification
over age_mlInc, whereas the improvement was smaller and
non-significant for the 5-year incidence. Several other
studies also showed that incremental improvements by
SNPs/PRS were primarily restricted to women with breast
cancer, while improvements for women without breast
cancer was almost absent [20, 36, 38, 39]. Except for one
smaller study, which found that women without breast
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cancer were also shifted downwards [37], these stud-
ies overall suggest that the benefits are primarily lim-
ited to women with breast cancer, often at a small
cost for women without breast cancer. In summary,
this suggests that the potential for the PRS to have
sufficiently large implications for screening programs
may be limited.

If and to what extent the PRS could meaningfully con-
tribute to the development of more efficient screening
strategies could not be fully answered by our data and
should be further evaluated. The wave of incoming data
from 150.000 new participants in the EstBB cohort [43—
45] will enable a more refined and a more precise evalu-
ation of the estimated incidences in the PRS-age-
subgroups. The Estonian Genome Center is also plan-
ning a pilot project to explore if the PRS can identify
subsets of women outside the screening age, who could
be recommended (mammography) screening at an earl-
ier or older age (e.g. age 45—49 and 70-75 years), since
the benefit of using PRS for women within the usual
screening age was modest.

Future evaluations may consider different risk thresholds,
use microsimulation models to explore how risk-based
screening could bring benefits for the high-risk group, in
terms of breast cancer specific- and overall mortality. It may
also document corresponding potential harms.

To our knowledge, no countries have implemented
genetic testing for screening purposes. Yet advanced
technology for genotyping is already in place in Estonia
[43], and such test only requires a single blood sample
collected at any given time. In this setting, the economic
costs for detecting SNPs would not appear to be a limit-
ing factor for adding PRS to age. From a broader public
health perspective, clinical- and cost-effectiveness should
be evaluated in the next phases of the biomarker evalu-
ation, together with the broader impact of implementing
PRS, given the resources, ethical, and safety aspects of
large-scale genetic testing [46].

For a complete biomarker evaluation, a large, prag-
matic, randomized trial would bring valid and convin-
cing evidence of clinical effectiveness. Though few such
studies are conducted in biomarker research, several lar-
ger trials were recently initiated, to evaluate the feasibil-
ity and/or effect of alternative risk-based strategies, that
utilizes women’s personal risk to guide at what age to
start, when to stop, and how often to screen. The
women’s personal risk is then calculated using PRS,
among other risk factors.

One is the WISDOM study in US (ClinicalTrials.gov
identifier NCT02620852). This is a prospective, random-
ized trial, aiming to compare the proportion of breast
cancers detected (stage IIB or higher) between a control
group, which receives standard of care (annual routine)
screening and an intervention, i.e. risk-based, group of
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women between 40 to 74 years, for a time horizon of 5
years. Personal risk is calculated using 9 high pene-
trant genes and nearly 200 SNPs, in addition to other
known risk factors including family and medical his-
tory, and breast density [47]. A second randomized
study is the My Personalized Breast cancer Screening
(MyPeBS), a large European international initiative
(ClinicalTrials.gov Identifier NCT03672331) [48]. This
trial compares the incidence rate of stage II (and
higher) breast cancer in 4vyears between a control
group (women receiving standard of care screening
according to their given national guidelines) and an
intervention group of women from 40 to 70 years,
who also receive alternative, personalized risk-guided
screening. The risk in this study is calculated using
age, family history, medical history, breast density,
hormone and reproductive history, in addition to a
PRS as risk factors. A non-random feasibility trial of
the PRS that we evaluated has been initiated in
Estonia (ClinicalTrials.gov identifier NCT03989258).
As a secondary objective, this study compares the
number of screen-detected breast cancer in 3years
between two cohorts of women; one that receive
standard of care and another that also receives
screening recommendation, according to their genetic
personal risk.

Conclusion

Our analysis of women from the EstBB showed a low
observed cumulative incidence, which varied across
PRS percentile groups. Adding the PRS significantly
improved the fit of a Cox proportional hazards model
based on age only. The derived 3- and 5-year cumula-
tive incidence based on PRS and age approximated
the observed incidence relatively well. Through cross
validation, the calculated PRS-age based incidence
showed modest incremental prognostic performance,
compared to the age-based incidence, in terms of dis-
criminatory ability and reclassification. The low num-
ber of breast cancer events in the study group was
associated with large uncertainty intervals and further
research is needed to assess whether and how PRS
can contribute to more effective breast cancer screen-
ing strategies.
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