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Abstract: Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to
opportunistic access of incumbent-free radio resources by users in co-located networks. In this study,
we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink
channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer
non-linear optimization problem for maximizing the network data rate, which is an NP-hard one.
This work explores a sub-optimal solution by dividing the optimization problem into downlink
channel allocation and power assignment sub-problems. Considering fairness, quality of service
and minimum interference for customer-premises-equipment, we also develop a greedy algorithm
for channel allocation and a non-cooperative game-theoretic framework for near-optimal power
allocation. The base stations of networks are treated as players in a game, where they try to increase
spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop
a utility function for the game to increase the data rate by minimizing the transmission power
and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness
and existence of the Nash equilibrium has been presented. Performance improvements in terms of
data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm
and a non-cooperative greedy approach have been shown through simulation studies.

Keywords: IEEE 802.22; cognitive radio; WRAN; OFDMA; game theory; Nash equilibrium;
non-linear optimization; distributed algorithm

1. Introduction

Cognitive radio (CR) [1,2] is the most advanced technology for increasing the spectrum utilization
efficiency of many radio users. This technology frontier promises to deal with the spectrum shortage
problem of the conventional inflexible frequency allocation policy. Experiential learning helps
CR-enabled devices to make intelligent decisions, which facilitate vacant spectrum utilization without
disturbing the licensed users. The licensed users are considered as primary users (PUs), and CR-based
unlicensed users are called secondary users (SUs). Recently, CR techniques have been used in WSNs
(termed CR-WSNs) to overcome the inherent limitations of traditional WSNs [3,4]. CR-WSN allows
unlicensed users to access multiple licensed channels opportunistically and gives great advantages
to WSNs to increase their communication power and the energy efficiency. A wireless sensor node
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with cognitive capabilities can provide various new opportunities to develop algorithms, hardware
and software that can overcome the limitations of WSNs. Exploiting the present progression in
CR-WSN development, it is now possible to mitigate the various issues in terms of spectrum
inefficiency in the WSN scenario.

The IEEE 802.22 wireless regional area network (WRAN) is the first wireless standard based
on CR technology [5] that operates over the licensed TV bands (54 MHz–862 MHz) [6]. It is an
infrastructure-based WRAN, where a base station (BS) controls stationary wireless subscribers called
customer-premises-equipment (CPE) (Figure 1). Each BS forms a single wireless network (CR cell) and
manages the resource access and scheduling in its own WRAN. It is used as the base infrastructure
network for smaller WSNs. Significant research studies on primary-secondary spectrum etiquette [7,8]
efficiently characterize primary incumbent activities in different regulatory domains. The IEEE
802.22 WRAN entities use geolocation databases [9] with spectrum sensing techniques for tracking
white spaces. These research studies mostly ignored (or partially covered) the secondary-secondary
spectrum etiquette such as maintaining quality-of-service (QoS) or fairness between SUs within
co-located CR network cells. Self-coexistence refers to the ability of ensuring interference-free
transmissions among neighboring homogeneous CR network cells. The IEEE 802.22 standard
proposes time division multiple access (TDMA)-based self-coexistence mechanisms such as dynamic
resource renting and offering (DRRO) and adaptive on demand channel contention (AODCC) [5].
Conforming to these self-coexistence mechanisms, the CR networks in densely-populated urban areas
are vulnerable to backhaul network downtime, beacon flooding, false QoS demands, prior network
knowledge distribution, recursive contention [7,10], etc. Therefore, an autonomous and dynamic
channel access among co-located CR network cells is necessary for reducing interference.

Graph coloring-based techniques are used in [11,12] to improve the self-coexistence mechanism
for WRAN. A bipartite matching-based channel allocation algorithm was proposed in our previous
work [13]. Kaushik et al. [14] propose a joint power and bandwidth allocation in IEEE 802.22-based
CR LTE networks. In real life, co-located CR cells can be operated by different service providers,
making these centralized approaches obsolete. In [15,16], the authors utilize game theory-based
models for autonomous channel scheduling. Even though these models improved channel utilization,
they failed to achieve better data rates and fairness among networks. Therefore, an efficient distributed
approach for resource allocation (channel, power, etc.) ensuring QoS and fairness of the IEEE 802.22
WRAN is necessary.
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Figure 1. The IEEE 802.22 network architecture. WRAN, wireless regional area network; CPE,
customer-premises-equipment.

In this study, we address the self-coexistence problem in co-located uncoordinated IEEE 802.22
WRANs (Figure 1) for CR-WSNs. The network cells may be partially (or completely) overlapped, and
they compete for the spectrum resources and try to find out interference-free spectrum bands from other
coexisting network cells. A narrowband interference-free common control channel (CCC) is used for
transferring control messages between BSs and CPEs. The objectives are to increase network data rate,
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minimize global power consumption and gain intra-cell fairness while maintaining QoS. To attain the
proposed objectives in multi-cell environment, we formulate a mixed-integer nonlinear optimization
problem that enhances the data rate. Then, we decompose the problem into two subproblems,
subchannel assignment and power allocation for individual network cells. We also propose a greedy
channel assignment algorithm and a game-theoretic power allocation mechanism to solve the above
subproblems distributedly. The solution scheme aims to achieve a better channel utilization ratio while
minimizing power loss of the BSs. The key contributions of this study are summarized as follows:

• We formulate the self-coexistence problem as a mixed-integer nonlinear optimization problem that
maximizes the network data rate by allowing neighboring base stations to allocate opportunistic
resources to SUs in a non-interfering manner.

• Owing to the NP-hardness of the formulated problem, we decompose it into two subproblems
to achieve near optimal solutions. We develop a greedy subchannel assignment algorithm
considering channel gain and interference(s).

• We propose a game-theoretic model and utility function for power allocation in the BSs. Then, we
derive the best response function for the BSs based on network data rate and power consumption.

• We provide a theoretical proof of the unique existence of the Nash equilibrium (NE) point and
develop distributed algorithms that can guide each BS toward that point.

• The simulation results, experimented on ns-3 [17], show that the proposed resource allocation
method outperforms state-of-the-art works in terms of data rate, fairness, convergence cost
and power usage.

The rest of the paper is organized as follows. In Section 2, we present a review of existing works on
this issue. The network model and problem formulation parts are presented in Section 3. In Section 4,
the proposed solution methodology and the game model are described. In Section 5, the performance
evaluation of the proposed system through simulation experiments is presented, and this is followed
by the conclusion in Section 6.

2. Related Works

The fluctuating nature of the spectrum in diverse CR networks produces manifold challenges for
spectrum management [10]. Statistical prediction-based models for primary incumbents [8] empower
secondary users to adopt spectrum-aware channel assignment techniques for unexploited radio
resources [18,19]. Cognitive radio sensor networks (CRSN) [20] harness this spectrum opportunity
with channel bonding, channel aggregation, channel assembling and channel width adaptation
techniques [18]. Bukhari et al. [21] propose algorithms to find contiguous channels for bonding
together in CRSN. These spectrum-sharing techniques can be used in cellular networks based
on code-division multiple access (CDMA) or carrier-sense multiple access (CSMA) channels [18].
For more spatial frequency utilization, CDMA is used together with orthogonal frequency-division
multiplexing (OFDMA) in which one aggregated CDMA channel is further divided into multiple
subchannels [5,22,23]. OFDMA enables co-located networks to operate over same channel in different
subchannels as long as interference among those resides below a certain signal-to-noise-ratio (SINR)
level [22,24]. This imposes new research challenges for self-coexistence in homogeneous wireless
CR networks.

The self-coexistence mechanism in the IEEE 802.22 standard uses the self-coexistence window
(SCW) and the co-existence beacon protocol (CBP) [5] for implementing beacon transmissions
among network cells. The IEEE 802.22 inter-BS coexistence mechanism [5] consists of four stages:
spectrum etiquette, interference-free scheduling, DRRO and AODCC. Spectrum etiquette is conducted
where BSs try to locally find channels that their neighboring BSs do not use. When there is a lack
of available channels, BSs will conduct interference-free scheduling, in which they share the same
channel by scheduling traffic in a non-interfering manner.

In DRRO, the IEEE 802.22 standard defines broadcasting beacon messages among renter and
offerer BSs, and channel sharing is conducted with proper acknowledgment messages between them.
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In AODCC, the renter BS becomes the contention source and randomly selects a channel contention
number (CCN) from a uniformly-distributed range. Contention sources broadcast the CCN
toward the contention destination BSs, which choose source BSs with a greater CCN value for
the contending channels. These TDMA-based self-coexistence mechanisms cannot ensure resource
scheduling for highly co-located CR cells. Adapting an orthogonal frequency division multiple access
(OFDMA) for interference-free scheduling creates a new problem domain for resource demands.
Recent research trends highly follow the self-coexistence techniques on OFDMA channels [25,26].

There have been several research works conducted to improve the self-coexistence mechanism
of the IEEE 802.22 standard. In [11,27,28], the authors address the self-coexistence problem by a
graph coloring perspective. They model the network using graph theory by representing network
cells, interference among them and channels with nodes, edges and colors, respectively. By using
different graph coloring techniques, they complete the channel assignment to each network cell.
The authors in [29] use the state-vector (set of networks allowed to transmit over a channel)
and recursively calculate the transmission probability for all possible state-vector combinations.
Co-located network cells choose a coordinator among them, which caries over the assignment process
based on the calculated probability. These research works are highly dependent on a centralized
spectrum manager and require complete knowledge of entire networks for graph formation. Greedy
algorithms are developed in [30] to solve the channel allocation problem using both cooperative and
non-cooperative methods. While the cooperative approach exploits the conventional graph coloring
with the enhancement of node sub-grouping, the non-cooperative approach uses a backoff mechanism
for channel scheduling. The authors in [31] propose an artificial intelligence-based regression model
for channel association among BSs. This work fails to provide definite applicability and a power
control mechanism in the cognitive environment particularly for the IEEE 802.22 networks.

Sengupta et al. [15,32] propose distributed game-theoretic solutions, in which network cells
play a non-cooperative game, trying to reach an NE by channel switching. They model the game as
a modified minority game (MMG) with a combined strategy. Their goal is to increase throughput
by minimizing false detection. A Similar non-cooperative game approach is adopted in [33] with
refined strategies. They also improve and analyze the expected cost function for channel switching.
An inter-BS coexistence technique for IEEE 802.22 is developed in [34] based on resource renting,
offering and contention. In this work, the authors update the conventional resource renting-offering
algorithm with a unique resource-sharing game model and explore different renter-acquirer scenarios.
In [16], the authors use a physical interference model to identify overlapping network cells and model
channel assignment as a potential game (PG). Their goal is to achieve an increased signal-to-noise-ratio
(SINR) value throughout the network. These research works highly focus on channel scheduling while
ignoring power assignment in different channels.

The downlink channel allocation problem has been focused on in [24,35–37]. Kibria et al. [35]
propose a modified OFDM modulation for downlink resource scheduling in machine-to-machine
(M2M) network [38]. Their greedy subchannel scheduling is limited by their proposed modulation
technique for the M2M network. The authors of [36] only consider a single cell network and
ignore the co-located network environment. Choi et al. [24] consider general CR networks, where
neighboring cells use a partial frequency reuse scheme to access channels. In [37], the authors propose
a channel/power allocation with global and local knowledge of active CPEs. Although the authors
of [24,37] provide embedded primary incumbent parameters, their methodology lacks fairness of
assignments and requires direct cooperation of PUs.

A branch-and-bound (B&B) algorithm for IEEE 802.22-based LTE networks has been developed
in a queue-based control (QBC) [14], where resource allocation is controlled by the queue size of
nodes following their packet arrival probabilities. They achieve optimal power and resource block
assignment for each mobile user, trading execution time and end-to-end packet delay.

The existing works are highly dependent on a centralized spectrum manager and a backbone
network that connects BSs to each other. Co-located networks operated by different service providers
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cannot connect to each other and share information between them. Again, they require collecting the
entire network information in a centralized place for running the optimization. Gathering information
in a centralized place causes overhead in the overall execution and leads to incorrect scheduling owing
to obsolete information and, in some cases, is not realistic. Therefore, an autonomous and distributed
approach for self-coexistence without the cooperation of PUs is required to ensure user QoS and
fairness with minimum power consumption.

3. Problem Definition

3.1. System Model

We consider the IEEE 802.22 WRAN standard [39], where N number of cognitive network
cells coexist, represented by a set N ≡ {1, 2, . . . , N}. The total frequency spectrum band (6 MHz
TV band) is divided into K separate orthogonal subchannels with equal bandwidth B. In each
network cell, there is a BS serving each stationary CPE opportunistically with one of the K subchannels.
There is a total of C CPEs in the area, where each CPE c ∈ C ≡ {1, . . . , C} can initiate one or
more sessions. Here, a session is defined as a unique connection demand of a CPE, which will be
fulfilled by the BSs. Each CPE c ∈ C in a cell n ∈ N can maintain multiple sessions at a time, and each
session s ∈ S n

c ≡ {1, . . . , Sn
c } can operate on any of the channels. Each subchannel k ∈ K ≡ {1, . . . , K}

will be assigned to no more than one session in the same network cell at a time. Because of the high
possibility of finding a CCC in a confined regional area [40], it is considered that contention-free usage
of CCC is regulated by a suitable mechanism [41,42].

In this study, we only consider the downlink transmission (from BS to CPE) in a multi-cell
OFDMA network, as shown in Figure 1. A BS searches for incumbent-free subchannels and assigns
downlink subchannels to the CPE. The BSs may assign multiple sessions to a CPE, which requires more
frequency bandwidth. A list of major mathematical symbols used in this study is given in Table 1.

Table 1. Major notations.

Symbol Definitions

S n
c Set of sessions assigned by BS n ∈ N

to CPE c ∈ C
S n Set of sessions assigned by BS n ∈ N ,

where S n =
⋃

c∈C S n
c

Sc Set of sessions initiated by CPE c ∈ C
S Set of all sessions in the total vicinity area,

where S =
⋃

c∈C Sc
D {ds,k}|S|×K , where ds,k is a binary indicator

having ‘1’ if downlink subchannel k ∈ K is
assigned to session s ∈ S and ‘0’ otherwise

hn
s,k Channel gain from BS n ∈ N , s ∈ S, k ∈ K

pn
k Transmission power of BS n in subchannel k ∈ K

Pn {pn
k }K×1Transmission power vector of BS n ∈ N

pn
max Maximum power level of a BS n ∈ N
P Power allocation matrix {P1, P2, . . . , PN}
η0 Average Gaussian noise power
γs Minimum SINR of session s ∈ S to achieve

a certain BER
σn

s,k Calculated SINR of session s ∈ S n in k ∈ K

θs Quality-of-service requirement for session s ∈ S
qn

s,k Data rate of session s ∈ S n in k ∈ K

In
s,k Total interference inflicted by session

s ∈ S n in k ∈ K
IPU
c,k PU interference inflicted by CPE c ∈ C in

subchannel k ∈ K
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3.2. Downlink Channel Allocation and Power Control

Each CPE periodically senses the available subchannels and shares the sensing results with its BS.
For any power allocation vector P, the total interference from all users measured across a session s on
a subchannel k at BS n is given by:

In
s,k = IPU

c,k +
N

∑
a=1,a 6=n

ha
s,k pa

k, ∀k ∈ K , ∀s ∈ S n
c , ∀c ∈ C , (1)

where n is the BS to which the session of the CPE is registered. Now, we can calculate the achieved
SINR σn

s,k of a session s in subchannel k at BS n as follows:

σn
s,k =

hn
s,k pn

k

In
s,k + η0

. (2)

Each CPE sends this sensing information (σn
s,k) to its associated BS, which then calculates the

achievable data rate using Shannon’s capacity formula as follows:

qn
s,k = B log2(1 + σn

s,k). (3)

A BS also calculates the achievable maximum data rate for each session s ∈ S n if it uses the
maximum transmission power pn

max in channel k.

Qn
s,k = B log2(1 +

hn
s,k pn

max

In
s,k + η0

). (4)

Now, we generate the relative data rate as:

Rn
s,k = α×

qn
s,k

Qn
s,k
− (1− α)×

pn
k

pn
max

. (5)

The relative data rate Rn
s,k represents the relationship between the power and data rate in

each session. As our objective is to maximize the data rate using the least transmission power
as possible, we take the difference of the normalized power from the normalized value of the data
rate. Here, α is a control parameter, generally set by the network designer in each BS. This parameter
is fixed for each BS, and it helps to provide control over the power and data rate. The relative data
rate in Equation (5) is the difference between the data rate ratio and power ratio multiplied by α and
(1− α), respectively. α > 0.5 will reduce the power ratio more than the data rate ratio, which leads to
more positive values. Therefore, the rate of change of the data rate ratio will be higher than that of the
power ratio. On the other hand, α < 0.5 will increase the power ratio more than the data rate ratio,
which leads to more negative values. Therefore, the rate of change of the data rate ratio will be lower
than that of the power ratio.

Now, our combined problem of downlink subchannel allocation and power control boils down to
maximizing this relative data rate for all sessions and subchannels in all networks. Thus, the problem
is formulated as follows:
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max
D, P

∑
n∈N

∑
s∈S n

∑
k∈K

Rn
s,kds,k (6)

s.t. 0 ≤ pn
k ≤ ∑

s∈S n
ds,k pn

max, ∀k ∈ K , ∀n ∈ N (7)

∑
k∈K

∑
s∈S n

ds,k pn
k ≤ pn

max, ∀n ∈ N (8)

∑
k∈K

ds,kqn
s,k ≥ θs ∑

k∈K

ds,k, ∀s ∈ S n, ∀n ∈ N (9)

∑
k∈K

ds,k ≤ 1, ∀s ∈ S n, ∀n ∈ N (10)

∑
s∈S n

ds,k ≤ 1, ∀k ∈ K , ∀n ∈ N (11)

ds,k ∈ {0, 1}, ∀k ∈ K , ∀s ∈ S (12)

∑
s∈S n

∑
k∈K

ds,k ≤ K, ∀n ∈ N (13)

Here, BSs from all network cells gather relative data rate values Rn
s,k from each session s ∈ S for

each subchannel k ∈ K . The objective function in Equation (6) is to maximize the total sum of the
relative data rates for all sessions and all channels. That is, it always tries to choose the set of sessions
that achieves the maximum data rate with minimal power increment. Note that a CPE residing in
interfering zones may produce a negative relative data rate value because the BS has to use very high
power for it to achieve the required SINR. Thus, the objective function would eventually remove such
CPE from the optimal subchannel allocation.

The constraints of the objective function are given as Equations (7)–(13). Equations (7) and (8)
represent the transmission power allocation limits for the subchannels in a BS. Equation (7) provides
that the transmission power of a BS in a subchannel is bounded by its maximum transmission power.
We take a separate constant pn

max for each BS n ∈ N without loss of generality even though the
maximum transmission power can be the same for all BSs. Equation (8) limits the total power allocated
to all sessions in different subchannels by the maximum power of a BS.

Equation (9) ensures the user QoS for each session by measuring the expected data rate.
Equations (10) and (11) are the subchannel assignment constraints, i.e., one subchannel can be
assigned to at most one session under a BS and vice versa. Equation (12) is a domain constraint
for subchannel allocation. The maximum number of sessions that can be allocated is limited by the
total number of available subchannels in the network based on Equation (13).

We observe that the above optimization problem belongs to a class of mixed-integer nonlinear
optimization problems. For single-channel networks and small number of CPEs, this problem can be
solved in polynomial time by converting it into a sequence of approximating linear programs [43].
However, for densely co-located CPEs in networks with a large number of channels, this problem
becomes intractable. Furthermore, we require a global coordinator for accommodating and running the
optimization solver on behalf of all the network cells. It is impractical to choose a global coordinator
in our assumed network environment as different networks are run by dissimilar service providers.
It is also assumed that the neighboring networks do not exchange information. In the real-world
environment, it is fairly common to deploy different networks by service providers in co-located areas.
Therefore, a distributed approach is urgently required to solve this NP-hard problem.

4. Distributed Solution for Self-Coexistence

We propose a distributed approach to solve the mixed-integer nonlinear optimization problem
expressed in Equation (6). The proposed system aims to achieve the following goals: (i) the
transmission power should be allocated such that both inter-cell and PU interferences are minimized;
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(ii) channels should be efficiently allocated to increase the data rate; (iii) proportional fairness should be
achieved by all CPEs within a cell; and (iv) the user QoS requirement should be achieved for all CPEs.
Thus, we develop a distributed self-coexistence and non-cooperative power allocation game (DSPG)
that divides the NP-hard problem of Equation (6) into two subproblems: greedy subchannel assignment
and non-cooperative game for power allocation. We also provide a simultaneous iterative water-filling
algorithm, which harnesses the backoff timer approach to synchronize the independent BSs.

4.1. Greedy Subchannel Assignment

We use a greedy approach to assign a subchannel to a CPE by giving each CPE c ∈ C a
certain weight, calculated as follows:

wc,k =
hn

s,k p̃n
k

In
s,k + η0

, ∀k ∈ K , ∀s ∈ S n
c , (14)

where p̃n
k is the assigned power in channel k ∈ K for a beacon message. For simplicity, we divide

the total transmission power equally among all subchannels for the beacon signals. Note that we will
obtain the same channel gain hn

s,k for each CPE c ∈ C in a particular subchannel k ∈ K , because the
CPEs are stationary. Again, before any subchannel assignment, a BS does not have any assigned
session to any CPE. Therefore, after collecting the sensing results from the CPEs in response to a
beacon message, the BS initializes Sn

c = 1, ∀c ∈ C . The CPEs located beyond the sensing region of the
BS will have zero weight (see Equation (14)), as there will be no response signal for them.

After calculating the weights of the CPEs in different subchannels, a BS n ∈ N creates a subset
C n ⊂ C as follows:

C n =

{
c ∈ C | ∑

k∈K

wc,k > 0

}
, ∀n ∈ N . (15)

Note that Equation (15) helps a BS to find out active CPEs associated with it. It is assumed that
the BSs store subchannel assignment statistics for their CPEs. A BS then calculates the CPE metric
as follows:

Wc,k = wc,k ×
2 ∑Tn

i=1 yi
ci

Tn(Tn + 1)
, ∀k ∈ K , ∀c ∈ C n, (16)

where Tn is the total number of historical channel usage information stored for each CPE in BS n ∈ N

and yi
c is a Boolean variable indicating whether a CPE c ∈ C n is assigned to any subchannel at the

i-th step or not. Let us redefine the i-th subchannel assignment matrix instance as Di = {di
s,k} where

1 ≤ i ≤ Tn and:

yi
c =

{
1, if ∑s∈Sc di

s,k = 0, ∀c ∈ C n.
0, otherwise.

(17)

Here, i = 1 represents the current assignment step and y1
c = 1, because no subchannel assignment

has been made for the current step. Consecutively, i = 2 is the previous subchannel assignment step,
i = 3 is the one before that, and so on.

A high value of the system control parameter Tn takes more historical experiences and thus
achieves better results. Note that wc,k represents the subchannel perception of a CPE in terms of SINR.
Choosing a CPE based only on wc,k leads to always selecting CPEs with high SINR values, depriving the
ones with low values. Because our network environment is composed of high CPE density with a
small number of available subchannels, it is more likely that some CPEs will not obtain any subchannel.
The term CPE metric (Wc,k) is introduced to address this type of scenario. The CPE metric is just a
statistical measurement of any CPEs subchannel acquisition history. With the help of this CPE metric,
the low SINR-valued CPEs will be able to access a subchannel sometimes; thus, no CPE will be
deprived of network resources.
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Let us analyze how historical subchannel usage information helps to improve fairness in
subchannel assignment. We present a comparison of CPE metric values for different Tn parameters
in Figure 2. In this figure, suppose that two CPEs, namely {CPE1, CPE2} ∈ C n, are competing over
subchannel k ∈ K . Consider that CPE1 obtained subchannel access for 2 < Tn ≤ 5, while CPE2

obtained subchannel access for Tn = 2. For Tn = 1, we obtain the direct SINR values for both CPEs
as CPE metrics. When Tn ≤ 4, CPE1 has a high CPE metric value; thus, CPE1 will be selected for k.
On the other hand, Tn = 5 provides a high CPE metric value for CPE2, which will be selected for
subchannel k. It helps to clarify that a CPE having the subchannel access for a longer period of time
will be penalized more than other CPEs. Thus, the subchannel winning chance will become lower, and
a deprived CPE will have a greater chance over the subchannel.

Figure 2. Effect of Tn over the CPE-metric.

Algorithm 1 in Figure 3 shows our subchannel assignment procedure for each CPE. We take
session demands from CPEs as input, initialize the required variables and calculate Wc,k using
Equation (16) in Phase 1. We then sort the CPEs and channels in decreasing order of their Wc,k values.
After completing Phase 2, we have the optimum CPE for each channel in W ′. At the beginning of
Phase 3, we create a subset of CPEs having session demands. Then, we assign the best subchannels
mapped from W ′ to associated CPEs. The assignment procedure continues until an available
subchannel and an unassigned CPE having a session demand exist.

The following is an illustrative example of the operation of Algorithm 1 in Figure 3. Consider a
network n ∈ N that has seven available subchannels K = {k1, k2, k3, k4, k5, k6, k7} and four CPEs
C n = {CPE1, CPE2, CPE3, CPE4} having session demand S n = {3, 1, 1, 2}. In Figure 4, we present
the step-by-step execution of Phase 3 in Algorithm 1. The bottom bars represent CPE metric values in
dBm and Tn = 1; therefore, the CPE metric is equal to the SINR value of each CPE in each subchannel.
CPEs in the list C ′ are marked with the asterisk (‘*’) sign over the bars. The top bars show current
session demand (Sn

c ) for each CPE. The selected CPEs are marked with a tick (‘X’) sign over
the bars. The execution step progresses from left to right over the sorted (by CPE metric value)
subchannel list. For subchannel (k2), all the CPEs are in C ′, and CPE1 has a higher CPE metric value
with a session demand. Therefore, CPE1 is selected for subchannel k2, and its session demand is
deducted by one in the following step. After the fourth step, C ′ becomes empty, and it is refilled with
CPEs {CPE1, CPE4} having remaining session demands. The execution stops when no unassigned
subchannel or CPE having session demand is left.
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Figure 3. Greedy subchannel assignment.
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Figure 4. Step-by-step execution of Phase 3 in Algorithm 1.

4.2. Non-Cooperative Game for Power Allocation

Based on the assigned subchannels, each network tries to find out the optimal power allocation
for the CPEs. Owing to the distributed nature of the network environment, individually, each BS has
to estimate its power for the selected subchannels. We leverage the non-cooperative game theoretic
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approach [25,44] to characterize the multi-cell power allocation problem. As a player in the game,
each BS competes for gaining the optimal relative throughput with different power allocation strategies.

Each BS n ∈ N participates in the game defined as G (N , P, {Un}). Here, P = {P1, P2, . . . , PN}
is the power allocation matrix, Pn = {pn

k }K×1, where pn
k represents the transmission power level of

BS n ∈ N in subchannel k ∈ K . A BS will participate in the game for a subchannel k ∈ K if it does
not sense any PU signal on the channel and σn

s,k ≥ γs, s ∈ S n. This constraint is added to remove
hidden incumbent problems. During data transmission, if the condition σn

s,k ≥ γs fails or the BS senses
a PU signal on subchannel k, it restrains all transmissions of CPEs and resets all its parameters and
its channel allocation procedure. After reaching an NE point, the corresponding transmission power
values are assigned to the subchannels.

4.2.1. Game Model and Utility Function

As stated above, each BS n ∈ N , as a player of the game, independently maximizes its
own objectives, as defined in Equation (6). Therefore, the utility function corresponding to the
objective in Equation (6) is defined as follows:

Un(P) = ∑
s∈S n

∑
k∈K

Rn
s,k(P). (18)

If any session experiences high interferences, then the BS power for the session should be
increased in order to allow the session to achieve the required minimum data rate. On the other hand,
sessions with low interference would gain a better data rate for minimum possible power. In each
game iteration, a BS tries to maximize its utility by allocating optimal power for its sessions.

The strategy profile of a BS is denoted by P = {Pn, P−n}, where P−n =

{P1, P2, . . . , Pn−1, Pn+1, . . . , PN}. The payoff of player n for choosing strategy profile P is Un(Pn, P−n).
Let P∗ = {Pn,∗, P−n,∗} refer to the strategy profile in any NE point; then we have:

Un(Pn,∗, P−n,∗) ≥ Un(Pn, P−n,∗). (19)

Given the power-based utility function in Equation (18), each BS n ∈ N selects its power vector
Pn to maximize its Un(Pn, P−n). Because we set pn

k = 0, where ds,k = 0, ∀s ∈ S n, we need to determine
the value of pn

k , ∀s ∈ S n only, where ds,k = 1. Again, we are calculating the assigned power value after
the subchannel assignment using Algorithm 1 in Figure 3, where we will only consider the sessions
s ∈ S n, which have been selected for the downlink transmissions in channel k ∈ K , i.e., ds,k = 1.
By eliminating ds,k, the non-cooperative game G (N , P, {Un}) can be formulated as:

max
Pn

Un(Pn, P−n) (20)

s.t. pn
k ≥ 0, ∀k ∈ K (21)

∑
k∈K

pn
k ≤ pn

max (22)

∑
k∈K

qn
s,k ≥ θs, ∀s ∈ S n (23)

Proposition 1. For the non-cooperative power allocation game presented in Equation (20), a BS n ∈ N will
update its power by the following best response:

BRn(P−n) = Pn = {pn∗
k }K×1 (24)

where:

pn∗
k =

[
(φn

1,k + λn∗
3,k)B loge

2

φn
2 − λn∗

1,k + λn∗
2
− 1

ξn
s,k

]+



Sensors 2017, 17, 2838 12 of 26

and:

φn
1,k =

α

Qn
s,k

, φn
2 =

(1− α)

pn
max

,

ξn
s,k =

hn
s,k

In
s,k + η0

∀n ∈ N , ∀k ∈ K .

Here, all optimal Lagrange multipliers λn∗
1 , λn∗

2 and λn∗
3 can be found (e.g., using bisection method)

to satisfy:

∑
k∈K

[
(φn

1,k + λn∗
3,k)B loge

2

φn
2 − λn∗

1,k + λn∗
2
− 1

ξn
s,k

]+
= pn

max

We use the Karush–Kuhn–Tucker (KKT) [43] condition to obtain the above equations. The detailed
proof is provided in Appendix A.

The proposition provides us a way of determining the power level of each subchannel for
a BS. The second part of the best response is the inverse of SINR. Therefore, it is a water-filling
allocation with the water level determined by the first part of the best response function [45]. In the
following subsection, we provide the necessary conditions for the convergence of the water-filling
solution, i.e., the existence and uniqueness of the NE.

4.2.2. Existence and Uniqueness of the Nash Equilibrium

We have formulated a non-cooperative power allocation game by maximizing the social welfare
and also provide the best response for each BS for participating in the game. Let us now prove the
existence and uniqueness of the NE.

Theorem 1. There exists an NE of the game G(N , P, {Un}), defined in Section 4.2.

Proof. According to the fixed point theorem [46], the following two conditions must be satisfied for
the existence of NE in a game [44]:

• The strategy space P is a non-empty, compact and convex subset of a particular Euclidean space.
• The payoff function Un, n ∈ N is continuous in P and quasi-concave in Pn.

Here, the strategy space is a set of power values. In a utility function, we consider the assigned
transmission power in channels as the control variable, which is bounded by zero and pn

max. Hence,
it is definitely non-empty, closed and bounded, i.e., a compact and convex set of Pn.

According to Equation (18), Un is a linear combination of pn
k in Pn, and hence, Un is continuous

in P. Furthermore, it is trivial to show that Un is also concave on its strategy set.

Now, we provide the required conditions for the uniqueness of the NE.

Theorem 2. If

max
n

{
|X n

k |
hn

s,k
∑
a 6=n

ha
s,k

}
< 1, ∀k ∈ K (25)

where:

X n
k =

αpn
max(ξ

n
k )

2(loge
2)

2

(φn
2 − λn∗

1,k + λn∗
2 )(log2(1 + ξn

k pn
max))

2(1 + ξn
k pn

max)
− 1

for the non-cooperative game G(N , P, {Un}); then:

1. The NE is unique.
2. Starting from any random point, the best response converges to the unique equilibrium in

successive iterations.
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The key concept of the proof is using the contraction mapping theorem [47] to verify that a
particular norm of the Jacobian J is less than one. We explore the value of X and provide the detailed
proof in Appendix B.

It should be noted that Equation (25) provides the required condition for the uniqueness of the NE.
For a particular CPE, the sum of channel gain from all other interfering BSs on channel k must be
less than the channel gain of its associated BS on that channel. This should also restrict the position
of the CPEs to be not far away from the associated BS. The interference from neighboring BSs and
PUs is captured by the value of X . The interesting fact is that, as long as the CPE resides in a less
interfered region, the uniqueness always holds. The increment of interference may be controlled by
the co-efficient value α, which can be set by the network designer for each BS.

4.3. Iterative Water-Filling Power Allocation

In Sections 4.1 and 4.2, we have developed two distributed and non-cooperative approaches for
solving the optimization problem in Equation (6). We have showed that the best response function
is a water-filling solution for each BS. We have also proven the uniqueness and existence of the NE.
In this section, we present a simultaneous iterative water-filling algorithm (SIWA) (Algorithm 2 in
Figure 5), which exploits the aforementioned approaches to solve the power and channel allocation
problem in coexisting WRANs.

Figure 5. Simultaneous iterative water-filling algorithm (SIWA) for each BS n ∈ N .

To save energy, each BS independently wakes up from the sleep state and starts the sensing
and channel-power allocation process. It is necessary to maintain the time-synchronization of the
BSs with each other and ensure that no two BSs run the process at the same time. There are several
research works [11,16,48] on finding the perfect time interval to ensure excellent synchronization
among CR networks. We use [16] for defining the backoff window bn, n ∈ N as follows:

bn = [Fn, Fn + n̂] (26)
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where:

Fn = min
k∈K

In
s,k

γs
, ∀s ∈ S n

c .

Here, n̂ is the number of neighboring networks that a BS n senses. Thus, the backoff
window size, as defined in Equation (26), reflects the amount of interference faced by a BS n on
the chosen subchannels. A BS experiencing a high interference level will try to change its subchannel
more frequently. A backoff counter value is chosen randomly from the backoff window and is
decreased by one at each time slot when the medium is found free. When the backoff timer of a BS
reaches zero, it wakes up and continues the resource allocation process. In the next iteration, the backoff
window and timer are reset. The above process provides the BSs with their fair participation in the
game so that they would earn a weighted share of the resources for their CPEs. It also facilitates the
joining process of the CPEs residing in the overlapped regions of multiple BSs.

In Algorithm 2 in Figure 5 from Lines 6–10, the backoff mechanism is presented. After waking up,
each BS collects sensing results from its CPEs (Lines 11 and 12) by broadcasting a beacon signal. The
CPEs send the channel sensing information to the BSs when they receive the beacon signal from the
BSs. Time and channel synchronization between BS and CPE is done by following the regulatory
protocol of the IEEE 802.22 standard. Therefore, a synchronized CPE will always get a beacon signal
sent by the BSs in the downstream subframe. A BS experiencing a high interference level will try to
change its channel more frequently. As a result, the BS sends a beacon signal, and consequently, the
CPEs send back sensing results more frequently. The sensing result sent to the BS is a two-dimensional
array of a BS subchannel, along with the PU interference in each subchannel. Each element of this array
contains the sensed signal (multiplication of power and channel gain) for each BS and each subchannel.
With these sensing results, a BS can find its new power value using the best response in Equation (24).

After receiving the sensing results, the BS completes the channel assignment procedure using
Algorithm 1 in Figure 3. With the power allocation values in the previous iteration, the BS calculates
the interference using Equation (1) in Line 14. It computes the power values for the current iteration
using the best response given in Equation (24) (Line 15). Line 16 in Algorithm 2 checks whether the
system reaches an equilibrium state. If the condition is met, we stop the iteration. The value of ω

ranges as 0 < ω << 1; this helps the algorithm to tune the equilibrium condition. We obtain more
accurate results if ω gets closer to zero. The variable MaxIter is the upper bound of the iteration counts
to avoid infinity loops. The convergence of the simultaneous iterative water-filling approach for a
Gaussian frequency-selective interference channel is proven in [45]. Here, in a similar environment,
SIWA water fills each subchannel power to the designated water level determined by the first part of
the best response. Hence, our SIWA will eventually converge to a unique NE with successive iterations.

We now estimate the asymptotic complexity of our proposed algorithm for a single iteration.
At first, we calculate the complexity of Algorithm 1 in Figure 3. In Lines 3–6, we sort CPEs for
each subchannel, which costs O(KC log(C)). Sorting selected subchannels in Line 7 has a cost of
O(K log(K)). Hence, the total complexity in Phase 2 is O(KC log(C) + K log(K)) = O(K(C log(C) +
log(K))). In Phase 3, we prepare a list of CPEs having session demands and assign them the best
matched subchannels (high CPE metric value). We search through the CPE list for each subchannel,
assign a CPE with session demand to that subchannel and remove it from the session demand list.
For the worst case scenario, the first subchannel will get the first CPE; the second subchannel will get
the second CPE (if the first one was removed from the session demand list), and so on. This process
is done once for each CPE in the session demand list. Since there can be at most C items in this
session demand list, subchannel assignment for a session demand list has complexity of O(C(C +

1)/2) ≈ O(C2). If there is an unassigned subchannel and the session demand list becomes empty, it is
refilled with CPEs having more session demands. Note that there will be min(K, Sn) assignment tasks
needed in Phase 3. Since one iteration over the session demand list costs O(C2), which completes C
assignments among min(K, Sn), to complete all the assignments, the total number of iterations needed
over the session demand list is at most min(K, Sn)/C. Therefore, the total complexity of Phase 3
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is O

(
dmin(K, Sn)

C
eC2

)
. The best response in Algorithm 2 in Figure 5 has a complexity of O(K2).

Thus, the overall complexity of our proposed resource allocation mechanism is:

O

(
K(C log(C) + log(K) + K) + dmin(K, Sn)

C
eC2

)
.

5. Performance Evaluation

We present representative simulation results for the proposed scheme and compare its
performances with the state-of-the-art works and the optimal method. We use ns-3 [17] as the
simulation tool and develop corresponding IEEE 802.22 modules for channels, ports, users, etc.
We deploy different network entities, namely BSs, CPEs, PUs, etc., in our simulation environment
system and apply different resource allocation algorithms to study the comparative performances.
Designing all the network entities by following the IEEE 802.22 standard with the listed network
parameters in Table 2 conforms with the homogeneity of the nodes and links.

5.1. Environment Setup

We consider an area of 75 km × 86 km, in which nine IEEE 802.22 overlapping network cells
are deployed. We deploy a random number of CPEs ranging from 20–100 across the entire region
using a uniform distribution. Moreover, there are random numbers of PUs placed across the area.
We implement our proposed algorithm, DSPG, in each BS and CPE, which are designed to sense the
environment and share the data with their associated BSs. Simulation parameters are summarized in
Table 2.

Table 2. ns-3 implementation parameters.

Parameter Value

Node mobility Stationary
Area 75 km × 86 km
Operational frequency 470 MHz–608 MHz
Bandwidth 6 MHz
Duplexing method TDD
Modulation type 16-QAM
Coding rate 1/2
Path loss exponent 2
Transmission range 25 km–30 km
BS Sensing range 50 km–75 km
CPE Sensing range 10 km–25 km
Max. transmission power 46 dBm
α 0.8
ω 0.001
Tn min{10, number of previous steps}
Propagation loss model Friis propagation loss model [49]
Noise model (AWGN)

For comparing the relative performances, we also implement two other state-of-the-art works,
namely QBC [14] and the bisection method for power allocation and greedy subchannel allocation
(BPGS) [24], in each BS. While QBC is based on centralized spectrum manager, BPGS is a distributed
solution for a similar network environment. Both of these works are slightly modified for our
network model. In the implementation of QBC, the queue size for BSs is dynamically calculated
using their proposed method; therefore, there is no need for an explicit congestion control algorithm.
BPGS is designed for downlink subchannel allocation. Therefore, apart from the distance between the
transceivers and path loss model, no changes are made for its implementation.
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We compute the results for the optimal resource allocation in a cloud-based IAAS server having a
2.6-GHz quad core processor and 2 GB of RAM powered by a 32-bit Ubuntu 14.04 LTS. The optimizer is
modeled using Convex.jl [50] tools. In this platform, it requires 400 s–450 s on average to compute the
optimal result for the parameters presented in Table 2. By contrast, the non-optimal solutions DSPG,
BPGS and QBC reach their convergence point in at most 10 s. For convenience in the comparison,
all the parameters presented here for the optimal result are taken after the completion of the total
computation, and they are only presented for the comparison of the achievable data rate (average per
CPE and network).

5.2. Performance Metrics

We compare the performances of the resource allocation algorithms, that is DSPG, QBC [14]
and BPGS [24], based on the following metrics

– Data rate: The data rate is the achievable bit-rate value given in Equation (3), which is calculated
using Shannon’s capacity formula [49]. Because, we only consider the downlink resource
allocation, we measure the data rate values at the CPEs.

– Tenth percentile data rate: Fairness is orchestrated by measuring the 10th percentile data rate of
the network cells. This means that more than 10% of the CPEs have data rates higher than the
measurement, presented in the associated graphical representations.

– Convergence cost: The convergence cost is measured by the number of iterations required
per network to reach the NE point. A high convergence cost adds overhead to the algorithm
performance and delays the scheduling process.

– Aggregated utility: To measure the optimality of the algorithms, we calculate the aggregated
utility values given in Equation (6). For effective comparison of DSPG and BPGS with the optimal
value, the utility value is calculated using Equation (18) in each BS separately and aggregated
later. Then, we take the percentage of the aggregated utility value with respect to the optimal
value obtained using Equation (6) under the same network environment constraints.

5.3. Experimental Results

To evaluate the performance of our proposed DSPG, we study the performance by varying the
number of CPEs in the total network area. We also collect results with varying numbers of PU density to
analyze the effects of PUs. As the operation of PUs over the spectrum is random and varied over time,
we take the percentage of spectrum usage by PUs at a given time; for example, 60 subchannels with
30% primary incumbent density means that the PUs occupy 30% of the total 60 subchannels at a
given time. We also study the effect of the network power budget imposed by the BSs. The network
power budget is the amount of transmission power for each BS in all subchannels. We compute the
average of the results from 25 simulation runs and present the confidence interval for data points in
the graphs.

5.3.1. Impact of CPE Density

In this experiment, we vary the number of CPEs from 20–100 and place them in a network area
with a uniform random distribution. We deploy seven BSs each having maximum a 46-dBm power
budget and considering 60 subchannels with 30% primary incumbent density.

The curves in Figure 6a depict the average data rate achieved by each CPE in Mbps. The results
show that the average data rate significantly decreases for all the studied resource allocation
mechanisms with increasing number of CPEs. Our network resources (number of subchannels
and power budget for each BS) are limited, and thus, the increasing number of CPEs intensifies
the interference, which eventually reduces the data rate. However, the proposed DSPG offers a
higher data rate compared to those of QBC and BPGS. This is because DSPG increases the spatial
channel utilization by allowing transmissions from coexisting networks at optimal powers on the
least interfering subchannels, as opposed to deferring transmissions from neighboring nodes on a
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subchannel in QBC and BPGS. Prioritizing the performance of CPEs by using a CPE metric helps DSPG
achieve a better average data rate than the optimal result at a lower number of CPEs. Although this
affects the overall network data rate, a moderate QoS level across all CPEs is achieved by using DSPG.
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QBC, queue-based control; BPGS, bisection method for power allocation and greedy subchannel allocation; DSPG, distributed

self-coexistence and non-cooperative power allocation game.

Figure 6. Impact of CPE density on the performance of the studied resource allocation systems.

In Figure 6b, we measure the 10th percentile data rate of the studied systems with varying CPEs.
This helps us to compare the degree of fairness achieved by the CPEs throughout the network.
In terms of fairness, the proposed DSPG system significantly outperforms both state-of-the-art works.
The CPE metric, defined in Equation (16), helps DSPG to achieve a high data rate fairness by taking
into consideration the historical channel usage behavior of different CPEs. Moreover, Figure 6b clearly
shows QBC’s approach for higher importance on the data rate value rather than compromising it
for fairness. For BPGS, the value of the fairness factor ζ is taken as 0.4. However, increasing the ζ value
increases the 10th percentile data rate value with the cost of reducing the average data rate obtained in
Figure 6a. It also affects the efficiency of the algorithm given in BPGS. As a summary, our DSPG offers
moderate fairness without loss of efficiency and average data rate.

The graphs in Figure 6c show the iteration counts to reach the equilibrium point by the
studied systems. The proposed DSPG requires much fewer iterations to reach the NE point,
when compared to both state-of-the-art works. DSPG’s distributed solution approach and lower
dependency on neighboring BSs of the network, as well as on the backhaul network help it to
reduce the iteration count by water-filling the power level eventually, in contrast to the step size
approximations in conventional approaches. BPGS’s overhead comes from the computation of several
parameters and sharing between BSs to estimate the final results. QBC’s B&B algorithm creates more
branches to fathom, which leads to an increased number of iterations. Furthermore, the iteration count
is dependent on the degree of the generalized optimization algorithm, which increases the count value.

5.3.2. Impact of PU Density on the Network

Here, we discuss the performance results on varying primary incumbent densities. Note that
only the PU transmitters will create interference to our CPEs. Therefore, we control the transmission
from the PUs such that they occupy 30% of the total 60 subchannels at a given time. The occupancy
percentage is varied from 10%–70%, which resulted in 54–18 vacant available subchannels at a given
time. Other parameters are kept constant: number of BSs = 7, number of CPEs = 80, total number of
subchannels = 60 and power budget of a BS = 46 dBm.

In Figure 7a, we quantify the total user data rate per network observed during the
simulation period. Here, we take the total data rate instead of the average because the increment
of spectrum usage increases the interference to nearby CPEs. BPGS assigns a subchannel to a CPE
with a low transmission power even if it resides in a high interference region. However, DSPG
ignores the CPEs with high interference values because transmissions toward that CPE from BS
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will further increase the interference to the primary receivers, as well. Again, QBC uses different
interference thresholds in assigning subchannels. Therefore, the rate of change in the average data rate
for different spectrum usage parameters is different, and it does not provide the required information
for the network. On the other hand, the total data rate provides a proper insight into the data rate
achieved in the CPEs. We can observe that for less than 30% spectrum usage values, BPGS provides a
better total data rate, which eventually reduces with the increment of spectrum usage. Not changing
the channel assignment and waiting for the distress signal from the PU affect the aggregated data rate.
DSPG changes the channel assignment upon receiving the sensing results, which helps to maintain a
better data rate during high densities of PUs in the spectrum bands. Although QBC achieves a network
data rate as great as the optimal result for low PU densities, its performance degrades over high PU
densities as it does not incorporate PU interferences directly in its objective function.
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Figure 7. Impact of PU density on the performance of the studied resource allocation systems.

We can observe this effect more clearly on the 10th percentile data rate in Figure 7b. Even if the
aggregated data rate is better in BPGS for lower PU densities in the spectrum bands, the 10th percentile
data rate is lower than that achieved in DSPG. BPGS can achieve better fairness compared to DSPG by
compromising the network data rate (ζ > 0.4). The overall result suggests that our proposed DSPG
offers a better data rate in terms of fairness by increasing PU spectrum usage percentages.

In Figure 7c, we show the convergence cost in terms of the number of iterations per network.
In this case, for low spectrum usage by PUs, DSPG and BPGS require almost the same number of
iterations, while QBC requires a larger iteration number to reach the convergence point. The iteration
count increases more rapidly in all cases for the increment of spectrum usage, as the network becomes
more dynamic for higher spectrum usage values.

5.3.3. Impact of Number of BSs

Here, we analyze the results with varying network setups by deploying different numbers of
BSs using a honeycomb model of networking with a total area of (75 × 86) km2, (75 × 65) km2,
(75× 44) km2and (45× 44) km2 for 9, 7, 5,= and 3 BS network setups, respectively. Other parameters
are kept constant: number of CPEs = 80, total number of subchannels = 60 with 30% PU density and
power budget for a BS = 46 dBm.

In Figure 8a, we present the average data rate per CPE in Mbps for different network setups.
In this case, we observe that all three approaches achieve almost the same values of the optimal average
data rate. A network with 3 BSs shows a low data rate of 2.375 Mbps on average. For this case, most of
the CPEs cannot acquire a subchannel because of the limited network resources. The CPEs acquiring
the vacant subchannels have low data rates owing to high interference from neighboring networks.
For a network setup with increased number of BSs, the available network resources are increased, and
thus, the probability of BS association increases for each CPE, which helps to achieve the data rate
exponentially, as shown in Figure 8a.
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Figure 8. Impact of the number of BSs in the network on the performance of the studied resource
allocation systems.

In Figure 8b, the 10th percentile data rate is shown for different network setups. In this case,
the performance of all approaches is almost the same for small BS setups. However, for large
number of BSs, QBC suffers owing to its thresholding of the interference values, which imposes
a low transmission power toward the CPEs. Figure 8c shows the convergence cost for different
network setups in terms of the average iteration count per network. QBC suffers most for all network
setups. Again, its B&B-based algorithm resulted in higher iteration cost. Our proposed DSPG offers a
lower iteration cost owing to its autonomous calculation and lower dependency on neighboring BSs
and the backhaul network.

5.3.4. Network Power Budget Estimation

In this experiment, we estimate the effects of the power budget on the data rate and allocated
power level for different α values. We provide an analysis of α values by comparing SINR and power
for each subchannel. Then, an estimation of the average data rate per network is performed for
different power budgets.

We show the changes in water level with different α values in Figure 9. The network parameters
are 7 BS, 60 CPEs and 50 subchannels with 80% usage of the spectrum by PUs. Here, the estimation is
performed for a BS in different subchannels with a total power budget of 40 W. The interference plus
noise-to-gain ratio (INGR) is the inverse of ξn

s,k, and ω represents the water level. The subchannels
are sorted in decreasing order of their associated CPE INGR. In Figure 9a, for α = 0.25, the total
water level is 2.875 W. Here, Subchannels 0 and 1 have more INGR than the water level. Therefore,
DSPG does not assign any power to them. For Subchannels 2 and 3, although the INGR is lower than
the water level, their achieved SINR value does not reach their minimum required SINR (γs) level.
For low water levels, only 13.1766 W is assigned among the rest of the subchannels, and the remaining
power is saved or is not allocated. In Figure 9b, for α = 0.5, the total water level reaches 4.566 W.
In this case, the water level is higher than the INGR level of all subchannels. Therefore, all subchannels
are assigned a power value. Here, only 29.31671 W is assigned, and the rest is unallocated. In Figure 9c,
for α = 0.8, the total water level reaches 6.20333 W. In this case, all 40 W are assigned and distributed
to all subchannels. The total allocated power value will not change for α > 0.8, because 40 W is the
maximum power for a BS, although it increases the water level. Therefore, this experimental result
suggests that for high α values, a better data rate and CPE coverage are achieved by maximizing the
power usage of the BSs. Decreasing the α value will save power by compromising the data rate and
eliminating CPEs with high interference.
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Figure 9. Effect of α on the water level and allocated power values.

In Figure 10, we show the average data rate achieved per network for different power budgets
applied at the BSs. The network power budget is varied from 40 dBm–46 dBm. Other network
parameters are taken as 7 BSs, 80 CPEs and 60 subchannels with 30% spectrum usage by PUs.
Our proposed DSPG has achieved a better data rate per network, as it distributes total power values
to at least one CPE; furthermore, interference-free CPEs are getting high data rate values for low
transmission power. A comparison with the optimal results suggests that all the approaches are
lagging behind in terms of optimal power allocation. However, DSPG has a smaller lag toward the
optimal result compared to the other approaches.
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Figure 10. Average data rate vs. power budget of a BS.

5.3.5. Estimation of Aggregated Utility at Different BSs

In Figure 11, we show the utility values for DSPG and BPGS compared to the optimal result.
We model the optimization by using Equation (6) with the constraints in Equations (7)–(13) and take
the maximized values for different number of BSs (1–7). In the DSPG system, after achieving the
NE point, the sum of utility values in Equation (18) is taken for different BSs. Note that with the sum for
different networks, Equation (18) is equivalent to Equation (6). We take the percentage of DSPG utility
by considering the optimal value as 100%. Note that α = 1 is set for convenience of a fair comparison
with BPGS. In BPGS, the same approach is taken, except for the modified greedy channel assignment
algorithm and bisection method for power allocation. In this case, BPGS shows an almost average
performance of up to 95.49% utility gain, whereas DSPG gains up to 96.01% aggregated utility. Note that
in both cases, the power values are suboptimal based on the assigned channels. Different greedy
approaches are affecting the aggregated utility value in both cases. Therefore, we can conclude that
our autonomous approach achieves almost the same performance and, in some cases, a better gain
compared to a non-autonomous approach.
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Figure 11. Estimation of aggregated utility for different numbers of BSs.

In summary, the above results suggest that our proposed DSPG system is capable of using BS
power for various network conditions more practically. Our formulated objective function provides an
insight into using power on selected subchannels in such a way that the interference is minimized and
the network data rate is maximized. This helps us to design a greedy solution that achieves significant
performance improvements for our network environment.

6. Conclusions

This study explored downlink resource allocation strategies for a cognitive wireless sensor
network. A mixed-integer non-linear programming problem was developed to maximize the network
data rate while keeping the interferences among the cells at a minimum. Owing to the NP-hardness of
the optimization problem, we divided it into two subproblems: greedy subchannel assignment and
game-theoretic optimal power allocation. Our new metric for quantifying the suitability of a subchannel
for a CPE in terms of channel gain and interference(s) greatly facilitated the proposed greedy
subchannel assignment algorithm and game-theoretic power allocation scheme in achieving better
performances. The best response for each subchannel was calculated through an iterative approach.
The proposed method was able to complete the resource allocation without any cooperation from PUs,
and BSs were operated independently. We provided theoretical proofs of the existence and uniqueness
of the NE in the proposed game model. The performance results proved the efficacy of the proposed
system compared to state-of-the-art works. Our simulation results reflected that a near optimal
resource allocation is possible by minimizing power consumption in a dynamic network environment
without any direct cooperation between the network entities. We have only analyzed the downlink
resource allocation problem for the IEEE 802.22 networks; a slight modification in utility function with
proper interference modeling can extend our work for the uplink resource allocation, as well.

Appendix A. Proof of Proposition 1

Proof. After the completion of sub-channel assignment, we can only consider the sessions s where
ds,k = 1. Thus, we can eliminate the iteration over the sessions from the utility function in Equation (18),
and we get,
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Un(P) = ∑
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Therefore, the Lagrangian can be written as,
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where λn
1 ∈ RK×1, λn

2 ∈ R, λn
3 ∈ RK×1 are Lagrange multipliers. Now, we get,
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By applying Karush–Kuhn–Tucker (KKT) [43] conditions,
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Complementary slackness:

λn∗
1,k pn∗

k = 0, ∀k ∈ K (A2)
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2 ( ∑

k∈K

pn∗
k − pn

max) = 0, (A3)

λn∗
3,kB log2(1 + ξn

s,k pn∗
k )− λn∗

3,kθs = 0, ∀k ∈ K (A4)
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Primal dual constraints:

pn∗
k ≥ 0, ∀k ∈ K (A5)

B log2(1 + ξn
s,k pn∗

k ) ≥ θs = 0, ∀k ∈ K (A6)

∑
k∈K

pn∗
k = pn

max (A7)

λn∗
1 , λn∗

3 � 0 (A8)

λn∗
2 ≥ 0 (A9)

Using the KKT theorem, we have the best response of BS n ∈ N in channel k ∈ K that satisfy
(A2)–(A9):

⇒ pn∗
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[
(φn
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3,k)B loge

2
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2
− 1
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]+
By putting pn∗

k in Equation (A7), we get,
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which concludes Proposition 1.

Appendix B. Proof of Theorem 2

Proof. From the best response function in Equation (24), we have,

BRn
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hn
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]+
(A10)

The existence of equilibrium was already proven in Theorem 1. By showing that Equation (A10)
is a contraction mapping, we can prove jointly the uniqueness and convergence of the equilibrium. Let
us revisit the definition of contraction mapping theorem [47] as follows:

Contraction mapping theorem: Let a complete metric space M and a mapping f : M→ M. For
any constant 0 ≤ k < 1 and ∀u, v ∈ M, if d( f (u), f (v)) ≤ kd(u, v); then, f is called a contraction. Then,
f has a unique fixed point u∗ ∈ M, and the updated point u → f (u) eventually converges to the
unique fixed point.

Let Mbe the Euclidean space and d(.) be the induced distance function by a vector norm.
Then, we have,

d( f (u), f (v)) = || f (u)− f (v)||

≤ ||∂ f
∂x
||||(u− v)|| = ||∂ f

∂x
||d(u, v).

The matrix norm is induced by the vector norm, and the property of the matrix norm brings

the inequality. Now, if we can prove that the Jacobian ||∂ f
∂x
|| < 1− ε everywhere for some positive ε,

we let k = 1− ε < 1, conforming the contraction mapping theorem. Since, ε is arbitrarily small,
we ignore it in the following derivations. The Jacobian J for Equation (A10) is defined as,

Jna =
∂pn

k
∂pa

k
. (A11)
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Now, if n = a, then Jna = 0 and, if n 6= a, then:
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it then follows that,

||J||∞ = max
n

{
|X n

k |
hn

k
∑
a 6=n

ha
k

}
, ∀k ∈ K .

By the assumption in this theorem, we can conclude that ||J∞|| < 1. Hence, Equation (A10)
is a contraction mapping, and both uniqueness and global convergence toward equilibrium are
guaranteed [47].
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