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Abstract. All‑trans retinoic acid (ATRA) and arsenic trioxide 
(As2O3) are currently first‑line treatments for acute promy-
elocytic leukemia (APL). However, a number of patients with 
APL are resistant to ATRA but still sensitive to As2O3, and the 
underlying mechanisms of this remain unclear. In the present 
study, two‑dimensional gel electrophoresis, mass spectrom-
etry and other proteomic methods were applied to screen 
and identify the differentially expressed proteins between 
the retinoic acid‑sensitive cell lines and drug‑resistant cell 
lines. The results demonstrated that in retinoic acid‑resistant 
NB4‑R1 cells, the protein expression of cofilin‑1 was markedly 
increased compared with that in the drug‑sensitive NB4 cells. 
Subsequently, the effects of cofilin‑1 on As2O3‑induced apop-
tosis in NB4‑R1 cells were further investigated. The results 
revealed that cell viability was markedly suppressed and 
apoptosis was increased in the As2O3‑treated NB4‑R1 cells, 
with increased expression levels of cleaved‑poly (ADP‑ribose) 
polymerase and cleaved‑caspase 12. Cofilin‑1 expression was 
significantly decreased at both the mRNA and protein levels in 
the As2O3‑treated group compared with the control. Western 
blotting further revealed that As2O3 treatment decreased the 
cytoplasmic cofilin‑1 level but increased its expression in 
the mitochondrion. However, the opposite effects of As2O3 on 
the cytochrome C distribution were found in NB4‑R1 cells. 
This suggested that As2O3 can induce the transfer of cofilin‑1 
from the cytoplasm to mitochondria and trigger the release 
of mitochondrial cytochrome C in NB4‑R1 cells. Moreover, 
cofilin‑1 knockdown by its specific short hairpin RNA signifi-
cantly suppressed As2O3‑induced NB4‑R1 cell apoptosis and 
inhibited the release of mitochondrial cytochrome C. Whereas, 
overexpression of cofilin‑1 using a plasmid vector carrying 
cofilin‑1 increased the release of cytochrome C into the 

cytoplasm from the mitochondria in As2O3‑treated NB4‑R1 
cells. In conclusion, cofilin‑1 played a role in As2O3‑induced 
NB4‑R1 cell apoptosis and it might be a novel target for APL 
treatment.

Introduction 

Acute promyelocytic leukemia (APL) accounts for 10‑12% of 
all cases of acute myeloid leukemia worldwide, with a char-
acteristic chromosomal abnormality t(15;17)(q22;q23) and a 
specific promyelocytic leukemia protein (PML)/retinoic acid 
receptor α (RARα) fusion protein (1,2). APL results from a 
blockade of granulocyte differentiation at the promyelocytic 
stage and is associated with a high incidence of coagulopathy, 
including disseminated intravascular coagulation, fibrinolysis 
and proteolysis  (3). In APL, there is a tendency to bleed, 
disproportionate to thrombocytopenia (4). APL blasts in the 
bone marrow can lead to megakaryocyte inhibition. Besides, 
the promyelocytes of APL are able to activate the coagula-
tion cascade and increase procoagulant activity in endothelial 
cells (3). The coagulopathy would also induce thrombocyto-
penia. Currently, combined all‑trans retinoic acid (ATRA) 
and arsenic trioxide (As2O3) treatment is recommended as 
the first‑line treatment for low‑risk APL worldwide (5), with a 
complete remission rate of 94‑100%, a 2‑year overall survival 
rate of 97% and a 4‑year survival rate of 93% (6,7). It has been 
reported that arsenic agent can bind to the PML portion of 
PML/RARα protein and activate the ubiquitin‑proteasome 
system, leading to the degradation of PML/RARα protein (8) 
and the apoptosis of APL cells. When ATRA combines with 
RARs or retinoid X receptors of PML/RARα protein, RARα 
can further induce APL cell differentiation, and promote 
myeloid and granulocyte maturation (9). However, the key path-
ways and proteins involved in the degradation of PML/RARα 
protein and apoptosis remain unclear; and certain patients 
relapse with resistance to ATRA or As2O3. Therefore, there 
have been numerous studies on the APL apoptosis pathway 
and the mechanism of resistance to ATRA and As2O3. Several 
studies have found mutations in the PML gene that contribute 
to resistance to arsenic. Goto et al (10) reported A216V and 
L218P mutations of the PML protein in two arsenic‑resistant 
cases. In 2014, a previous study found a PML gene mutation 
through gene sequencing and proposed a ‘mutation hotspot’ 
(c202‑s220) of PML in the case of arsenic resistance  (11). 
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Patients with PML mutations have a high fatality rate when 
arsenic resistance occurs. A French study successfully estab-
lished a mouse model of the A216V mutation, which presented 
resistance to arsenic treatment (12). ATRA resistance has a 
more complex mechanism. Prolonged oral administration of 
ATRA can lead to increased cytochrome P450 oxidase activity, 
which results in decreased blood ATRA concentration (13). 
Elevation of cellular retinoic acid‑binding protein contributes 
to a decrease in free ATRA, and a decreased ATRA concen-
tration in the nucleus also results in reduced efficacy (14,15). In 
the present study, using proteomics research methods, a total of 
21 differentially expressed proteins between retinoic‑resistant 
cell lines and non‑resistant cell lines were screened and identi-
fied, among which the expression of cofilin‑1 was upregulated.

Cofilin is a 21‑kD actin‑binding protein that is universally 
present in eukaryotes and is crucially involved in regulating 
the reorganization of the cytoskeleton and muscle develop-
ment (16). In humans, there are two cofilin gene subtypes, 
cofilin‑1 and cofilin‑2, which encode different proteins. The 
former is expressed in a variety of tissues except for muscle, 
whereas the latter is mainly expressed in muscle. Cofilin can 
bind to F‑actin, accelerate the dissociation of actin mono-
mers from the filament, and lead to the depolymerization of 
F‑actin (17). Besides the basic function of regulating the actin 
cytoskeleton, cofilin plays a role in the metastasis, infiltra-
tion and apoptosis of tumor cells (18,19). It was previously 
reported that at the early stage of apoptosis, cofilin transferred 
from the cytoplasm to the mitochondria and altered the 
permeability of mitochondrial membranes, leading to the 
release of cytochrome C and triggering cell apoptosis via the 
mitochondrial apoptosis pathway (20). 

In the present study, a significant increase of cofilin‑1 
expression was found in retinoic acid‑resistant NB4‑R1 cells. 
Following which, the effects of cofilin‑1 in As2O3‑induced 
apoptosis in NB4‑R1 cells were evaluated, and the possible 
underlying mechanisms were explored. The present study 
could provide novel strategies for APL treatment.

Materials and methods

Reagents and antibodies. As2O3 was purchased from 
Sigma‑Aldrich (Merck KGaA)_and dissolved at a concen-
tration of 5 µM in DMSO. Primary antibodies against poly 
(ADP‑ribose) polymerase (PARP; cat. no. 9532), cleaved PARP 
(cat. no. 5625), caspase 12/cleaved caspase 12 (cat. no. 2202), 
cofilin (cat. no. 5175), cytochrome C (cat. no. 11940), cyto-
chrome c oxidase subunit 4 isoform 1 mitochondrial (COX 
IV; cat. no. 4850) and GAPDH (cat. no. 5174) were purchased 
from Cell Signaling Technology, Inc. The annexin V‑FITC 
Apoptosis kit was purchased from BD Biosciences.

Cell culture. Human APL cell lines, NB4‑R1 and NB4 cells 
were obtained from the Institute of Hematology, Shanghai 
Ruijin Hospital (Shanghai, China). The NB4 cell line was 
derived from a patient with APL who underwent relapse and 
was established by Dr Lanotte (Saint Louis Hospital, France) 
in 1991, with characteristic chromosome translocation t (15;17) 
and positive PML‑RARα (L type) gene. The NB4‑R1 cell line 
is an APL subclone resistant to ATRA and is derived from 
NB4 cells. The NB4‑R1 and NB4 cells were maintained in 

RPMI‑1640 medium (Cytiva) supplemented with 10% fetal 
bovine serum (Gibco; Thermo Fisher Scientific, Inc.) and 1% 
penicillin‑streptomycin in a humidified atmosphere of 5% CO2 
at 37˚C. The culture medium was replaced every 3 days.

Two‑dimensional gel electrophoresis (2‑DE) and image 
analysis. Cells were collected and solubilized in lysis buffer 
containing 7 mol/l urea, 2 mol/l thiourea, 4% (w/v) 3‑[(3‑ 
Cholamidopropyl)‑dimethylammonio]‑1‑propane sulfonate 
(CHAPS), 1% (w/v) dithiothreitol (DTT), 1% protease inhibitor 
cocktail (v/v), and 2% (v/v) IPG buffer at 11,000 IU/min on ice. 
The agents used were purchased from Promega Corporation. 
Suspensions were then placed at 4˚C for 1  h followed by 
centrifugation at 10,000 x g for 30 min at 4˚C. Supernatants 
were obtained and protein concentrations were measured 
using the Bradford method. Each protein sample (90  µg) 
was loaded on 24‑cm immobilized pH gradient (IPG) strips 
(pH 3‑10; non‑linear; Cytiva). Following the rehydration of the 
IPG‑strips and isoelectric focusing, the strips were equilibrated. 
Subsequently, 2‑DE was performed in an Ettan‑Dalt twelve 
electrophoresis system (Cytiva). Following silver‑staining, 
as previously described (21), all the gels were scanned using 
ImageScanner™ (Cytiva) and the resulting images were used 
for detection, quantification, matching and analysis using 
ImageMaster™ 2D Platinum software (version 5.0; Cytiva). 
Each sample was run three times to minimize the variation 
and an average gel was made to represent the medium protein 
expression level of each group. The protein spots that changed 
in all three gels were compared between each conditioned 
group. The differentially expressed proteins were further 
identified by matrix‑assisted laser desorption ionization 
(MALDI) time‑of‑flight (TOF) mass spectrometry (MS).

Protein identification by MS. The selected protein spots 
were excised from silver‑stained gels, cut into small pieces, 
and dehydrated in 50 µl acetonitrile (ACN) for 5 min at room 
temperature. The gel pieces were dried following removal of 
the acetonitrile and incubated in 50 µl 10 mM DTT at 56˚C for 
1 h, followed by an alkylating incubation in 50 µl 55 mM iodo-
acetamide in the dark. Subsequently, the spots were dehydrated 
with 50 µl ACN, rehydrated in 5 µl trypsin for 30 min, and then 
10 µl 25 mM ammonium bicarbonate was added. Proteolysis 
continued overnight at 37˚C and was then stopped by adding 
10 µl 2% formic acid and desalted using C18 ZipTips (EMD 
Millipore). The resulting peptides were concentrated, mixed 
with α‑cyano‑4‑hydroxycinnamic acid (α‑HCCA), deposited 
on a 384‑well MALDI target and air‑dried. All samples 
were analyzed in the positive‑ion, reflectron mode on a TOF 
Ultraflex II mass spectrometer (Bruker Corporation). The 
accelerating potential was 20 kV with eight shots per second. 
Trypsin autodigestion peaks were used for internal calibration.

Database searching using MS/MS data. All peptide mass 
fingerprinting (PMF) and MS/MS data were used for 
protein identification using the MASCOT search program 
(http://www.matrixscience.com) based on the Uniprot protein 
database (http://www.uniprot.org). Up to one missed trypsin 
cleavage per peptide was allowed, although most matches did 
not contain any missed cleavages. A mass tolerance of 100 
ppm was the window of error allowed for matching the peptide 
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mass values. Proteins with a score >56 identified by MASCOT 
were considered significant and were verified manually for 
spectral quality. 

Lentiviral vector infection. Three short hairpin RNAs 
(shRNAs) targeting the human cofilin‑1 gene (GenBank 
no. NM_005507) for RNA interference were designed using 
siRNA Wizard™ software version 3.1 (https://www.invivogen.
com/sirnawizard/design.php). The efficacy of the sequence for 
cofilin‑1 knockdown was evaluated using western blotting 
(data not shown) and the most effective one was screened as 
follows: 5'‑GAC​AGG​GAT​CAA​GCA​TGA​A‑3'. The scrambled 
sequence (5'‑AAU​CGC​AUA​GCG​UAU​GCC​GUU‑3') was 
used as a negative control. Following heating and annealing, 
the sequence was ligated into the AgeI and EcoRI sites of 
pGCSIL‑GFP (containing human U6 promoter; Shanghai 
GeneChem Co., Ltd.) to generate a pGCSIL‑GFP‑cofilin 
vector, which was then transformed into E.  coli. Positive 
recombinant clones were selected by DNA sequencing. The 
new recombinant viral vector was generated by co‑transfecting 
293T cells (American Type Culture Collection) with the 
lentivirus expression plasmid and packaging plasmids 
(pHelper 1.0 and pHelper 2.0) using Lipofectamine® 2000 
(Invitrogen; Thermo Fisher Scientific, Inc.) according to the 
manufacturer's protocol. A total of 48 h after transfection, the 
recombinant lentiviral vector was harvested for the subsequent 
viral infection.

NB4‑R1 cells were divided into two groups: i) Sc, infected 
with negative control lentiviral vector; and ii)  shCofilin, 
infected with the pGCSIL‑GFP‑cofilin lentiviral vector. Cells 
were cultured at a density of 6x105/well in 6‑well plates with 
addition of 8 µg/ml polybrene (Sigma‑Aldrich; Merck KGaA) 
and infected with specific or negative control lentiviral vectors 
(viral titer range, 2x108‑2x109 TU/ml). Following incubation 
for 48 h, cells were observed under a fluorescence microscope 
(magnification, x200 or x400). The knockdown efficiency of 
transfection was analyzed by reverse transcription‑quantita-
tive PCR (RT‑qPCR) and western blotting. For the subsequent 
experiments, 48 h after infection, cells were divided to four 
groups, sc, sc+As2O3, shCofilin and shCofilin+As2O3. Cells is 
in the sc+As2O3 or shCofilin+As2O3 groups were then treated 
with 2.5 µM of As2O3, while the other two groups were treated 
with an equal volume of culture medium. One day later, cells 
were collected for the subsequent experiments. 

Overexpression plasmid. Cofilin‑1 overexpression plasmid 
(pcDNA3.1‑cofilin) and a control vector were designed 
and constructed by Shanghai GeneChem Co., Ltd. For 
transfection, NB4‑R1 cells at a density of 5x105/ml in 6‑well 
plates were transfected with 3 µg expression plasmid in each 
group using Lipofectamine 2000 reagent (Invitrogen; Thermo 
Fisher Scientific, Inc.) according to the manufacturer's 
protocol. After 48 h of transfection, cells were divided into 
three groups, control, As2O3 and As2O3 + oeCofilin groups. 
The cells were then treated with 2.5 µM of As2O3 (or an equal 
volume of culture medium for the control). One day later, cells 
were collected for subsequent experiments. The present study 
aimed to investigate the effects of As2O3 on drug‑resistant cell 
NB4‑R1, so NB4 cells were not used for the overexpression 
experiments.

3‑(4,5‑Dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide 
(MTT) assay. Cell viability was determined using the MTT 
method. The NB4‑R1 cells were inoculated in 96‑well plates 
at 5x103 cells/well and then treated with As2O3 of different 
concentrations (0, 0.625, 1.25, 2.50, 5.0, 7.5 and 10 mmol/l). 
After 24 h, 20 µl MTT reagent (cat. no. ab211091; Abcam) was 
added into each well and incubated for 4 h, then 150 µl DMSO 
was added and the plates were oscillated until the crystalline 
matter was fully dissolved. The absorbance at 490 nm was 
measured using a spectrophotometric plate reader. 

Isolation of mitochondria. The cytoplasm and mitochondria 
extraction was conducted using a Mitochondria Isolation 
kit (cat. no. MITOISO2; Sigma‑Aldrich; Merck KGaA) in 
accordance with the manufacturer's protocols. Briefly, cells 
from each group were collected, washed with ice‑cold PBS, and 
subsequently were subjected to a 5 min 600 x g centrifugation 
step at 4˚C. The supernatant was discarded and cells were 
incubated and homogenized with Extraction Buffer A on ice 
for 10 min. Then, the homogenate was pelleted for 10 min at 
700 x g at 4˚C. The post‑nuclear supernatant was subjected to 
a 25 min, 10,000 x g centrifugation step at 4˚C to pellet the 
mitochondrial fraction. The post‑mitochondrial supernatant 
was collected and regarded as the remaining cellular 
cytoplasm for further analysis. The pellet was suspended with 
Fractionation Buffer Mix as the mitochondrial fraction. To 
confirm the protein origin, GAPDH was applied as the internal 
reference for cytoplasm, while COX IV, a membrane protein in 
the inner mitochondrial membrane, was the internal reference 
for mitochondria.

Western blot analysis. NB4‑R1 cells were cultured in 6‑well 
plates and following the different treatments, proteins were 
collected and lysed with RIPA buffer (Thermo Fisher Scientific, 
Inc.) containing a protease and phosphatase inhibitor cocktail 
(Sigma‑Aldrich; Merck KGaA) for western blotting. Protein 
concentration was determined using the BCA method (Pierce; 
Thermo Fisher Scientific, Inc.) and lysates (20‑40 µg/sample) 
were subjected to 12% SDS‑PAGE and transferred onto PVDF 
membranes. Membranes were blocked at room temperature 
for 1 h in 5% non‑fat dry milk in Tris‑HCl buffer followed by 
incubation with primary antibodies overnight at 4˚C. Primary 
antibodies (1:1,000 dilution) against COX IV and GAPDH 
served as loading controls, GAPDH for cytoplasm  (22) 
and COX IV for mitochondria (23). Membranes were then 
incubated with HRP‑conjugated anti‑rabbit IgG secondary 
antibody (1:1,000; cat. no. 7074; Cell Signaling Technology, 
Inc.) for 1 h at room temperature. Following a thorough rinse, 
immunoreactive bands were detected using an enhanced 
chemiluminescent substrate (Pierce; Thermo Fisher Scientific, 
Inc.) and were visualized by the charge‑coupled device imaging 
system (Bio‑Rad Laboratories, Inc.). The protein expression 
was quantified using ImageJ 3.5 software (National Institutes 
of Health). The values were normalized to the GAPDH band.

RT‑qPCR. NB4‑R1 cells were cultured in 6‑well plates and 
treated with different concentrations (0.625, 1.25, 2.5, 5, 7.5 
and 10 µmol/l) of As2O3 for 24 h. Total RNA was extracted 
from cultured cells using TRIzol® reagent (Thermo Fisher 
Scientific, Inc.). RT was performed using the RevertAid First 
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Strand cDNA Synthesis kit (Thermo Fisher Scientific, Inc.) 
and the reaction was carried out in a thermocycler at 25˚C for 
5 min, 42˚C for 60 min, and 70˚C for 5 min. The relative abun-
dance of mRNA in each sample was determined by qPCR using 
the SYBR Premix Ex Taq™ II kit (Takara Biotechnology Co., 
Ltd.) on an iQ™ Multicolor Real‑time PCR Detection System 
(Bio‑Rad Laboratories, Inc.). The corresponding primers 
were designed and synthesized by Takara Biotechnology 
Co., Ltd., as follows: Cofilin‑1 forward, 5'‑CAC​CTT​TGT​
CAA​GAT​GCT‑3' and reverse, 5'‑GGA​GCT​GGC​ATA​AAT​
CAT‑3'; GAPDH forward, 5'‑GTC​ATC​CCA​GAG​CTG​AAC‑3' 
and reverse, 5'‑TCA​GTG​TAG​CCC​AAG​ATG‑3'. The PCR 
cycles were performed under the following conditions: 95˚C 
for 30 sec, 40 cycles at 95˚C for 5 sec and 60˚C for 30 sec. 
Data were analyzed using the 2‑ΔΔCq method (24) and GAPDH 
served as the internal control. The results are presented as the 
mean ± standard deviation (SD) of triplicate reactions from 
three separate experiments.

Flow cytometry analysis. NB4‑R1 cells with or without 
cofilin‑1 shRNA treatment were routinely cultured in the 
6‑well plates, and cell density was adjusted to 4.0x105/well. 
Subsequently, cells were treated with As2O3 or an equal 
amount of solvent for 24 h according to the grouping. The 
cells were then collected, washed with cold PBS, stained with 
Annexin V‑fluorescein isothiocyanate (FITC) and propidium 
iodide (PI) using an Annexin V‑FITC Apoptosis Detection 
kit (Merck KGaA) according to the manufacturer's instruc-
tions, and then analyzed by a FACSCalibur (BD Biosciences) 
accompanied with CellQuest™ software (version  5.1; 
BD Biosciences). Each experiment was performed in triplicate 
wells and repeated three times.

Fluorescence. NB4‑R1 cells were cultured at a density of 
1x105/well in 6‑well plates, following the different treatments. 
After fixation in 4% formaldehyde in PBS (pH 7.2) at room 
temperature for 15 min, cells were stained with 20 µM DAPI 
in antifade solution (Qbiogene, Inc.) at room temperature for 
5 min. The stained cells were visualized using a BX51 fluores-
cent microscope (magnification, x200 or x400) equipped with 
a DP70 digital camera (Olympus Corporation).

Statistical analysis. All the data are reported as the 
mean  ±  SD from at least three independent in  vitro 
experiments. Shapiro‑Wilk test was used to test normality of 
data. Differences among groups were analyzed using one‑way 
analysis of variance, followed by Tukey's post hoc test. All 
statistical analyses were performed using the SPSS statistical 
software (version 19.0; IBM Corp.). P<0.05 was considered to 
indicate a statistically significant difference.

Results

Protein expression profiles of NB4‑R1 and NB4 cells. In the 
present study, 2‑DE and silver staining were used to analyze 
the proteomic profile of NB4‑R1 and NB4 cells from three 
independent biological replicates. The representative gel 
images are shown in Fig. 1, which indicates the total differen-
tial spots. In total, >1,000 protein spots per gel (1,068±33 for 
NB4‑R1 cells and 1,160±51 for NB4 cells) were detected using 
ImageMaster™ 2D Platinum software. One 2‑DE gel of the 
NB4 cells was randomly selected as the reference gel, and other 
gels were matched with it for analysis. The results showed that 
the matching rate of protein spots was 81% in NB4 cells and 
78% in NB4‑R1 cells. The matching rate between NB4‑R1 

Figure 1. Analysis of differentially expressed proteins between NB4‑R1 and NB4 cells. (A) Detection of protein spots by 2‑dimensional electrophoresis in 
NB4‑R1 and NB4 cells. (B) Matrix‑assisted laser desorption ionization‑time‑of‑flight‑mass spectrometry analysis of the M3 spot. (C) Identification of the M3 
spot by the MASCOT search program. (D) Cofilin‑1 expression in NB4‑R1 and NB4 cells, as indicated by reverse transcription‑quantitative PCR and western 
blotting. ***P<0.001.
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and NB4 cells was 67%. Moreover, there were 21 protein spots 
found to be significantly up‑ or downregulated, ≥2 or ≤0.5‑fold, 

respectively, in NB4‑R1 cells (data not shown). Among these, 
six proteins were upregulated, M1‑M6 shown in Fig. 1A. 

Figure 2. Effects of As2O3 in NB4‑R1 or NB4 cells. (A) As2O3 treatment with a concentration ≥2.5 µmol/l significantly inhibited cell viability of NB4 and 
NB4‑R1 cells. (B) As2O3 inhibited NB4‑R1 cell growth, as indicated by immunofluorescence (scale bar, 50 µm). (C) As2O3 treatment at concentrations of 2.5 and 
5 µmol/l notably increased cleaved‑PARP and cleaved‑caspase 12 expression in NB4 and NB4‑R1 cells, as indicated by western blotting. As2O3 decreased cofilin 
expression at the (D) mRNA and (E) protein levels in NB4‑R1 cells. (F) As2O3 notably reduced cytoplasmic cofilin expression, whereas it markedly increased the 
mitochondrial content, as indicated by western blotting. The opposite result was found for the cytoplasmic and mitochondrial levels of cytochrome C. *P<0.05, 
**P<0.01 vs. control group. As2O3, arsenic trioxide; PARP, poly (ADP‑ribose) polymerase; COX IV, cytochrome c oxidase subunit 4 isoform 1 mitochondrial.
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The M3 spot was further studied using PMF and 
MALDI‑TOF‑MS analysis (Fig.  1B) and the data were 
analyzed using the MASCOT search program (http://www.
matrixscience.com)  (25,26). The results revealed that M3 
corresponded to cofilin‑1 (Fig. 1C). The RT‑qPCR and western 
blotting results further confirmed the significantly increased 
expression of cofilin‑1 at the mRNA and protein levels in 
NB4‑R1 cells, compared with that in the NB4 cells (Fig. 1D).

As2O3 suppresses cell viability and promotes apoptosis in 
NB4‑R1 or NB4 cells. NB4 and NB4‑R1 cells were treated with 
different concentrations (0.625, 1.25, 2.5, 5, 7.5 and 10 µmol/l) 
of As2O3 for 24 h, and the results showed that cell viability was 
significantly inhibited by As2O3 at a concentration ≥2.5 µmol/l 
in both cell types (Fig. 2A). Immunofluorescence staining 
further indicated the inhibitory effect of As2O3 on NB4‑R1 
cell growth (Fig. 2B). A similar result that As2O3 suppressed 

the proliferation was also seen in NB4 cells (data not shown). 
Besides, western blotting demonstrated that both cleaved‑PARP 
and cleaved‑caspase 12 were notably increased following As2O3 
treatment at a concentration of 2.5 and 5 µmol/l in NB4‑R1 
cells. Similar results were found in NB4 cells (Fig. 2C). 

Effects of As2O3 on cofilin‑1 expression and transfer in 
NB4‑R1 cells. Cytoplasmic and mitochondrial cofilin levels 
in NB4‑R1 cells were detected using RT‑qPCR and western 
blotting, with or without As2O3 treatment. The results showed 
that following As2O3 treatment at 5 µmol/l for 24 h, both the 
mRNA level and cytoplasmic protein content of cofilin‑1 were 
significantly decreased, whereas the protein level of cofilin‑1 
in mitochondria was markedly increased (Fig. 2D‑F). This 
indicated that As2O3 could decrease the production of cofilin‑1, 
as well as induce cofilin‑1 transfer to the mitochondria from 
the cytoplasm in NB4‑R1 cells. Besides, experiments were 

Figure 3. Cofilin knockdown suppresses the effects of As2O3 on cell viability and apoptosis in NB4‑R1 cells. (A) Immunofluorescence staining showed that the 
recombinant viral vectors containing shRNA were successfully transfected into the NB4‑R1 cells (scale bar, 100 µm). The expression of cofilin was markedly 
decreased by shRNA at the (B) mRNA and (C) protein levels. (D) Cofilin knockdown increased cell viability in As2O3‑treated NB4‑R1 cells. (E) Cofilin knockdown 
inhibited apoptosis in As2O3‑treated NB4‑R1 cells. **P<0.01 vs. sc or sc + As2O3 group. As2O3, arsenic trioxide; shRNA, short hairpin RNA; sc, negative control.
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conducted to study the effects of As2O3 on cofilin‑1 transloca-
tion in NB4 cells. The results showed that As2O3 treatment 
could also induce cofilin‑1 transfer to the mitochondria from 
the cytoplasm in NB4 cells (data not shown).

Effects of As2O3 on the production and transfer of cytochrome 
C in NB4‑R1 cells. In NB4‑R1 cells, mitochondrial expression 
of cytochrome C was notably decreased, whereas the cyto-
plasmic level was markedly increased after As2O3 treatment, 
compared with the control group (Fig. 2F). Combined with 
the result of increased cleaved‑caspase 12 following As2O3 
treatment (Fig. 2C), the data suggested that cytochrome C was 
released to the cytoplasm, which activated the mitochondrial 
apoptosis pathway at the early stage of cell apoptosis.

Role of cofilin‑1 in As2O3‑induced apoptosis of NB4‑R1 
cells. A stable shCofilin cell line was obtained with a down-
regulated expression of the cofilin gene (target gene sequence: 
GACAGGGATCAAGCATGAA) by transfection of NB4‑R1 
cells with shRNA. Immunofluorescence staining demonstrated 
that the recombinant viral vectors containing shRNA were 
successfully transfected into the NB4‑R1 cells, and RT‑qPCR 
and western blotting indicated that cofilin expression was 
significantly decreased by shRNA (Fig. 3A‑C). No significant 
alterations in viability and apoptosis were found between the 
shRNA control and shCofilin groups. Compared with the 
sc + As2O3 group, cell viability was increased (Fig. 3D) and 
apoptosis was significantly decreased in the shCofilin + As2O3 
group (Fig. 3E). 

Association between cofilin‑1 expression and mitochondrial 
cytochrome C release. The cytoplasmic and mitochondrial levels 
of cytochrome C in the shCofilin and oeCofilin groups with or 
without As2O3 treatment were detected using western blotting. 
The results showed that in the absence of As2O3 treatment, 
the cytoplasmic and mitochondrial levels of cytochrome C 
were hardly affected by either shCofilin or oeCofilin (data not 
shown). As2O3 treatment markedly increased cofilin expression 
and decreased cytochrome C expression in the mitochondria, 
whereas cytoplasmic cytochrome C expression was remarkably 
increased (Fig. 4A and B). This result was consistent with the 

finding in Fig. 2F. However, in the shCofilin + As2O3 group, 
mitochondrial cytochrome C levels were notably increased 
while its cytoplasmic level was markedly reduced, compared 
with the As2O3 group (Fig. 4A). Opposite results were found 
in the oeCofilin + As2O3 group; the mitochondrial level of 
cytochrome C was notably decreased and the cytoplasmic level 
of cytochrome C was marginally increased, compared with the 
As2O3 group (Fig. 4B). It revealed that alterations in cofilin‑1 
levels had little influence on the release of cytochrome C from 
the mitochondria, whereas As2O3‑induced cofilin‑1 translocation 
was the primary factor triggering cytochrome C release.

Discussion

Differential proteomics has been widely used in hematological 
tumors. In the study, comparative proteomics were applied 
to screen and identify the differentially expressed proteins 
between retinoic acid‑sensitive cell lines and drug‑resistant 
cell lines. Key proteins that may be related to apoptosis and 
drug resistance were identified and the effects of cofilin‑1 
on As2O3‑induced apoptosis in NB4‑R1 cells were further 
investigated. The results of the primary study indicated that 
cofilin‑1 serves a role in the mitochondrial apoptosis pathway 
in As2O3‑treated NB4‑R1 cells.

The combined treatment of ATRA and As2O3 has achieved 
favorable clinical efficacy in APL, which can be mainly 
attributed to the targeted mechanism of inducing cell differ-
entiation and apoptosis (27). However, these results are not 
seen in patients with other types of acute leukemia as there 
are no specific targeted drugs. Therefore, further studies 
are required to illustrate the molecular mechanisms in APL 
and identify novel factors that regulate differentiation and 
apoptosis. NB4‑R1 cells are naturally resistant to ATRA but 
sensitive to As2O3, thus this cell line is a useful model for 
the study of drug resistance and apoptosis (28,29). Through 
protein spectrum analysis, the present study identified that the 
expression of a number of proteins was significantly increased 
in NB4‑R1 cells, a retinoid‑resistant cell line, compared with 
that in NB4 cells, a retinoid‑sensitive cell line. Particularly, the 
expression of M3 protein was increased by 2.3‑fold. Following 
the PMF and database retrieval, cofilin‑1 was identified for 

Figure 4. Role of cofilin‑1 in mitochondrial cytochrome C release. (A) Knockdown of cofilin‑1 increased the mitochondrial expression of cytochrome C, 
whereas it decreased the cytoplasmic content of cytochrome C in As2O3‑treated NB4‑R1 cells. (B) Overexpression of cofilin‑1 markedly decreased the 
mitochondrial expression of cytochrome C, whereas it increased its cytoplasmic content in As2O3‑treated NB4‑R1 cells. As2O3, arsenic trioxide; shRNA, short 
hairpin RNA; oe, overexpression vector; COX IV, cytochrome c oxidase subunit 4 isoform 1 mitochondrial.
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M3. Increased expression of cofilin‑1 in non‑small cell lung 
cancer has been reported, suggesting cisplatin resistance and 
poor prognosis (30). Liao et al (31) found that cofilin‑1 expres-
sion was markedly increased in drug‑resistant liver cancer cell 
lines and an inhibitor of cofilin‑1 could abolish drug resistance 
and induce tumor cell apoptosis. Nevertheless, little is known 
about the role of cofilin‑1 in APL. Cofilin‑1 may be involved 
in the resistance of NB4‑R1 cells to retinoic acid, but hardly 
affect the pro‑apoptotic potency of As2O3 in NB4‑R1. Thus, 
the present study further investigated the role of cofilin‑1 in 
the As2O3‑induced apoptosis of NB4‑R1 cells.

The main pathways of apoptosis include extracellular 
signal‑triggered caspase activation and intracellular apop-
totic enzyme release from mitochondria, which activates 
caspase (32). At the early stage of apoptosis, cytochrome C 
is released by mitochondria and binds to apoptotic 
protease‑activating factor 1, ATP/dATP and pro‑caspase‑9 
in the cytoplasm, forming an apoptotic complex. Then, 
the complex activates caspase‑9 and leads to apop-
tosis  (20,33,34). Increasing evidence has suggested that 
mitochondrial translocation of cofilin seems to be necessary 
in regulating apoptosis. It was reported that in the patho-
genesis of Alzheimer's disease activated cofilin could form 
a complex with p53 and promote its mitochondrial localiza-
tion, resulting in promotion of apoptosis (35,36). Moreover, 
Li et al (37) demonstrated that allyl isothiocyanate (AITC) 
could induce dephosphorylation of cofilin, which then 
translocated to mitochondria, leading to the release of 
cytochrome C and apoptosis. Furthermore, it was revealed 
that the underlying mechanisms of cofilin activation by 
AITC might involve the ROCK1/PTEN/PI3K signaling 
pathway  (37). In the present study, the results indicated 
that As2O3 treatment significantly decreased the expression 
of cytoplasmic cofilin‑1 and increased the mitochondrial 
expression of cofilin‑1 in NB4‑R1 cells. Downregulation 
of cofilin‑1 expression using specific shRNAs did not have 
much of an effect on the proliferation and apoptosis of 
NB4‑R1 cells. This suggested that alterations in the location 
of cofilin‑1 rather than its expression level were the primary 
cause of As2O3‑induced apoptosis in NB4‑R1 cells, which 
was consistent with the aforementioned studies  (35‑37). 
Besides, Xing et al (38) demonstrated that isoalantolactone 
inhibits IKKβ kinase activity and promotes apoptosis of glio-
blastoma cells by inducing translocation of cofilin‑1 to the 
mitochondria and the release of mitochondrial cytochrome C 
to the cytoplasm, which activates caspase‑3/9. In human 
leukemia cells, cofilin‑1 translocation to the mitochondria 
could induce mitochondrial injury and cell apoptosis (39). 
Xiao et al (40) revealed that docetaxel induced apoptosis 
of prostate cancer cells by inhibiting cofilin‑1 and paxillin 
signaling pathways. These results were consistent with the 
data of the present study. However, others found that genetic 
ablation of cofilin does not affect apoptosis in mouse embry-
onic fibroblasts (MEF), suggesting that cofilin activity is not 
generally required for inducing apoptosis (17). The observa-
tion that cytochrome C release from mitochondria proceeds 
normally in the absence of cofilin in MEF suggests that 
cell‑type‑specific functions for cofilin in apoptosis might 
exist. Further studies are needed to explore the underlying 
mechanisms.

The current results confirmed for the first time that 
the downregulation of cofilin‑1 expression suppressed 
As2O3‑induced apoptosis in NB4‑R1 cells. The underlying 
mechanism may involve the reduction of cytochrome C release 
from mitochondria following cofilin‑1 translocation to the mito-
chondria. These results suggested that the change of cofilin‑1 
location occurs earlier than the release of cytochrome C in 
the mitochondrial apoptosis pathway. Cofilin‑1 serves as a key 
regulatory point in apoptosis, and it may be a novel potential 
drug target for APL treatment. Both NB4 and NB4‑R1 cells 
are sensitive to As2O3 (41,42). Dual induction therapy is effec-
tive in certain patients with APL and arsenic‑resistant APL. 
Besides, the effectiveness of combination therapy is higher 
compared with that of single drug use (43), which is consistent 
with the real‑world conclusions. Further studies are needed to 
investigate mechanisms by which cofilin‑1 regulates apoptosis 
in APL cells.

In conclusion, the present study demonstrated that during 
the process of As2O3‑induced apoptosis in NB4‑R1 cells, 
cofilin‑1 is transferred to mitochondria from the cytoplasm, 
which promotes the release of cytochrome C from mitochon-
dria and further activates the mitochondrial apoptosis pathway. 
Cofilin‑1 may play a key role in the mitochondrial apoptosis 
pathway and has the potential to be used as a drug target in 
APL treatment.
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