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Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom

Mounting evidence suggests a role for alternative splicing (AS) of transcripts in the normal
physiology and pathophysiology of the pancreatic b-cell. In the apparent absence of RNA
repair systems, RNA decay pathways are likely to play an important role in controlling the
stability, distribution and diversity of transcript isoforms in these cells. Around 35% of
alternatively spliced transcripts in human cells contain premature termination codons
(PTCs) and are targeted for degradation via nonsense-mediated decay (NMD), a vital
quality control process. Inflammatory cytokines, whose levels are increased in both type 1
(T1D) and type 2 (T2D) diabetes, stimulate alternative splicing events and the expression of
NMD components, and may or may not be associated with the activation of the NMD
pathway. It is, however, now possible to infer that NMD plays a crucial role in regulating
transcript processing in normal and stress conditions in pancreatic b-cells. In this review,
we describe the possible role of Regulated Unproductive Splicing and Translation (RUST),
a molecular mechanism embracing NMD activity in relationship to AS and translation of
damaged transcript isoforms in these cells. This process substantially reduces the
abundance of non-functional transcript isoforms, and its dysregulation may be involved
in pancreatic b-cell failure in diabetes.
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INTRODUCTION

Diabetes mellitus currently affects ~460 m adults worldwide and its incidence is expected to exceed
700 m by 2045 (1). Both T1D and T2D – the latter being the predominant form – involve defective
pancreatic b-cell function, and a contribution of inflammatory processes which is most acute in the
former. b-Cell death is marked in T1D: typically >80% of the cell mass is lost, though this figure is
lower in some patients, particularly those with later disease onset (2), but more limited in T2D (3)
where dysfunction predominates (4). The molecular mechanisms involved in b-cell dysfunction and
loss in both settings are only partly understood.
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Insults associated with diabetes including challenge with
inflammatory cytokines, hyperglycaemia and gluco(lipo)
toxicity downregulate selected b-cell specific transcripts and
up-regulate others (4–6). This is followed by a profound up-
regulation of mRNA surveillance systems (7). The up-regulation
of splicing factors, and of proteins involved in pre-mRNA
processing, gives rise to alternative splicing (AS) events, which
in turn deregulate the balance and turnover of transcript
isoforms. Interestingly, most human genes exhibit alternative
splicing, but not all alternatively spliced transcripts are translated
into functional proteins and so targeted for degradation. This
varies in a cell-specific manner and depends on the capacity of
cells to cope with damaged transcripts (7–9).

At least four types of mRNA decay pathways have been
studied in mammalian cells and which scrutinize transcript
quality: nonsense-mediated decay (NMD), Staufen1 (STAU1)-
mediated mRNA decay (SMD), no-go decay (NGD), and
nonstop-decay (NSD) (10–12). Here, we focus on how the
NMD pathway interacts with alternative splicing to regulate
transcript isoform expression. We also consider how as its
deregulation may contribute to b-cel l dysfunction,
vulnerability, and destruction in diabetes.
ALTERNATIVE SPLICING (AS);
IMPLICATIONS IN b-CELLS

Non-coding interspaced sequences, namely introns, are removed
by the splicesome, a dynamic RNA-protein complex, during
transcription from precursor-mRNAs (13, 14). Around 90%–
95% of human transcripts are thought to leave the nucleoplasm
aspre-mRNAs thatneed further splicing andprocessing to become
a mature mRNA (15). Alternate (or alternative) isoforms created
either by switching the usual promoter to alternative promoter of a
gene and/or pre-mRNA alternative splicing (Figure 1A).
Abbreviations: NMD, nonsense-mediated decay; AS, alternative splicing; PTCs,
premature termination codons; T1D, type 1 diabetes; T2D, type 2 diabetes; RUST,
Regulated Unproductive Splicing and Translation; SMD, Staufen1 (STAU1)-
mediated mRNA decay; NGD, no-go decay; NSD, nonstop-decay; RBPs, RNA
binding proteins; SREs, splicing regulatory elements; SRs, Serine Arginine rich
proteins; hnRNP, heterogeneous nuclear ribonucleoprotein; ESE, exonic splicing
enhancers; ISS, intronic splicing suppressors; IL-1b, interleukin-1b; IFNɣ,
interferon-ɣ; NOD mice, Non-obese diabetic mice; HbA1c, haemoglobin A1c;
TCF7L2, Transcription factor 7–like 2; Cask, calcium/calmodulin-dependent
serine protein kinase; Madd, MAP kinase-activating death domain; uORF,
upstream open reading frame; 3’-UTR, long 3’ untranslated region; eRF2,
eukaryotic releasing factors 2; eRF3, eukaryotic releasing factors 3; EJC, exon-
junction complex; PI3K, phosphoinositide 3-kinase; PNRC2, Proline-rich nuclear
receptor co-activator 2; iNOS, inducible nitric oxide; NMA, N-methyl-L-arginine;
MDS, myelodysplastic syndrome; ATAC-sequencing, assay for transposase-
accessible chromatin with sequencing; cncRNA, coding-noncoding RNA;
ncimRNA, noncoding mRNA isoforms; IRS1, Insulin receptor substrate 1;
circRNA, circular RNA; TDP43, TAR DNA-binding protein 43 KDa; RB,
retinoblastoma; Gsn, gelsolin; Cacna1c, calcium channel 1C; INSR, insulin
receptor; PLC b1, Phospholipase Cb1; SNAP-25, synaptosomal-associated
protein 25; SNPs, Single nucleotide polymorphisms; UPF1-3, Up-Frameshift
Suppressor 1 Homolog.
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Alternative splicing, an evolutionarily post-transcriptional pre-
mRNA processing process, produces multiple distinct transcript
variants of most human genes (16, 17). The mechanisms and
biology of splicing and alternative splicing have been extensively
reviewed (18–20). As described previously (15) and in Figure 1B,
AS can involve inclusion or skipping (exclusion) of an exon,
mutually exclusive exons, alternative 5′ donor splice sites, and
alternative 3′ acceptor splice sites and intron retention in mRNAs
(15). AS is a consequence of interactions between RNA binding
proteins (RBPs) and splicing regulatory elements (SREs) in pre-
mRNAs. The Serine Arginine rich proteins (SRs) are a family of
constitutive or regulatory RNA binding proteins recognize pre-
mRNA SREs through interaction with the N-terminal and C-
terminal domains enriched with arginine (R) and serine (S)
sequences. These then interact with other proteins and/or SREs
to enhance splicing by recruiting the spliceosome (21). On the
other hand, the second class of RBPs, members of the
heterogeneous nuclear ribonucleoprotein (hnRNP) protein
family, have been shown to antagonize SR functions by
competing for binding to exonic splicing enhancers (ESE) or
intronic splicing suppressors (ISS) (21, 22).

Alternative splicing is observed in all human tissues, but has
been most extensively studied in neurons (23, 24). Thus, aberrant
alternative splicing of the pre-mRNAs encoding calcium
signalling transducers affects neuronal function and causes
neurodegenerative diseases (25–27). In the past decade,
pancreatic b-cell transcriptomic analyses have revealed
differential expression profiles of the RBPs and splicing factors
which are abundantly expressed in neurons, and whose genetic
ablation can lead to impairments in insulin secretion and
reduced b-cell viability (28–30).

It is now established that alternative splicing plays an
important role in b-cell function and viability. Glucose, a
major regulator of pancreatic b-cell function (31), strongly
affects insulin gene expression, biosynthesis, and secretion,
through multiple mechanisms including changes in
transcription, pre-mRNA alternative splicing, translation and
mRNA stability (32–34). Insulin intron-2-containing pre-mRNA
levels increased six-fold within an hour of a human islet exposure
to high glucose, whereas increases in mature mRNA did not
occur before 48 h of exposure (35), suggesting that substantial of
insulin production is exerted at the level of pre-mRNA
alternative splicing. Another study (36) showed that alternative
splicing of the insulin receptor is regulated by insulin signalling
and modulates b-cell survival in an autocrine pathway involving
insulin secretion, binding to and activation of insulin receptors in
human and mouse islets and in clonal MIN6 cells.

Several lines of evidence support the importance of regulated
AS in inflammatory stresses in pancreatic b-cells, as reviewed
previously (28, 37). The pro-inflammatory cytokines interleukin-
1b (IL-1b) and interferon-ɣ (IFNɣ) upregulate >30 splicing
factors, affecting alternative splicing of 35% of genes in the
human islet transcriptome (9, 37). Genetic manipulation of
several RBP candidates involved in alternative splicing, as listed
in Table 1, impaired insulin secretion and sensitised b-cells to
basal and/or cytokine-induced toxicity. These changes may reflect
March 2021 | Volume 12 | Article 625235
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deregulation of transcript isoforms encoding anti/pro-apoptotic
proteins as well as those annotated in exocytosis and secretory
pathways in pancreatic b-cells (28, 40, 41). Finally, genome-wide
RNA sequencing revealed that three transcript isoform variants of
CD137 were associated with T1D development in the NOD
mice (42).

At present, there is little direct evidence that genetic variants in
the genes involved in components of the NMD pathway are
involved in altered T2D risk (43). Nevertheless, alternative
Frontiers in Endocrinology | www.frontiersin.org 3
splicing of genes which are implicated may be relevant. For
example, variants in the Transcription factor 7–like 2 (TCF7L2)
gene are strongly associated with T2D risk in man (44–47).
Mapping of TCF7L2 splice variants revealed a specific pattern in
pancreatic islets, with variants carrying exons 4 and 15 correlated
with glycated haemoglobin A1c (HbA1c) (48). The presence of
deleterious TCF7L2 splice variants (i.e., exons 13-16) was also
suggested to be a mechanism of b-cell failure in T2D mouse
models (49). Although deletion of TCF7L2 selectively in the
A

B

FIGURE 1 | Scheme of alternative transcript isoforms as a result of (A) alternative promoters and post-transcriptional alternative splicing events of pre-mRNAs (B).
TABLE 1 | Examples of the function of alternative splicing regulators in b-cells.

Transcript targets in b-cells Knockout/downregulation phenotypes in b-cells References

NOVA1 INSR, PLCb1, SNAP-25 • Increase in basal and cytokine-induced cell death
• Impairment of GSIS

(38)

NOVA2 Not identified • Increase in basal and cytokine-induced cell death
• no effect on GSIS

(39)

RBFOX1
(A2BP1)

Gsn, Cacna1c, • No effect on apoptosis
• Increase in GSIS

(39)

RBFOX2
(RBM9)

Not identified • No effect on apoptosis
• Increase in GSIS and insulin content

(39)

ELAVL4 Not identified • Increase in apoptosis in basal condition, but decrease in cytokine-
induced apoptosis
• no effect on GSIS

(39)

SRSF6
(SRp55)

Pro-apoptotic Bcl2 proteins, e.g., BCL2L11, BAX, BOK,
DIABLO, BCLAF1
JNK pathway transducers, e.g., MAP3K7, JNK1, and JNK2

• Increase in apoptosis in basal condition
• Impairment of GSIS
• Induction of ER stress

(30)
March 2021 | Volume 12 | A
rticle 625235

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Ghiasi and Rutter Unregulated Transcript Processing in Pancreatic b-Cells
pancreas (50) or b-cell (51) in mice lowers b-cell function,
increased levels of TCF7L2 mRNA are associated with elevated
diabetes risk in man (52, 53), with the latter study reporting
increased levels of the 3’ exon (and 15 o 18 exons overall) in islets
of carriers of the risk rs7903146 allele. However, and as previously
discussed (51), risk allele-dependent alternative splicing of the
TCF7L2 gene in b-cells may affect the inclusion of a “CRARF”
motif in the expressed protein and, as such, may impact the
transcriptional activity of this factor (i.e., lowered transcriptional
activity despite an increased overall transcript load).

The circadian clock has recently been shown to modulate
synchronicity of insulin secretion in dark-light phases by
regulating the alternative splicing of pre-mRNAs coding for
proteins involved in insulin biosynthesis and exocytosis in
primary mouse b-cells. The circadian clock core transcription
factors CLOCK and BMAL1 autonomously determine oscillatory
regulation of ~27% of the b-cell transcript isoforms corresponding
to genes coding for proteins that are involved in the assembly,
trafficking, and fusion of secretory vesicles at the plasma
membrane (54). Disruption of the CLOCK and BMAL1 genes
perturbs rhythmic genome-wide alternative splicing of pre-
mRNAs encoding regulators of insulin biosynthesis and
secretion in murine insulin-producing cell lines and primary b-
cells (41, 54). A later exploration of the underlying mechanisms
revealed that thyroid hormone receptor-associated protein 3
(THRAP3), an RNA-binding protein, modulates circadian clock-
dependent alternative splicing of calcium/calmodulin-dependent
serine protein kinase (Cask) and MAP kinase-activating death
domain (Madd). Consistent with findings of exon skipping due to
circadian clock perturbation, CRISPR-Cas9-mediated deletion of
exons-11 and -26 of Cask and Madd pre-mRNAs, respectively,
impairs insulin secretion in murine insulin-producing b-cells (41).
Madd knockout mice developed hyperglycaemia associated with
impaired insulin secretion in mice (55).

Alternatively spliced transcript variants can produce functionally
different protein isoforms with altered amino acid sequences and
protein domains, resulting in modification of activity. This, in turn,
may drive alterations in protein localization, interaction with
binding partners or post-translational polypeptide processing (56,
57). A substantial number of alternatively spliced variants contain a
premature termination codon (PTC) or other mRNA “discrediting”
features such as an upstream open reading frame (uORF), long 3’
untranslated region (UTR) or the retention of introns after stop
codons (58, 59). Any of these could potentially render the mRNA a
target forf nonsense-mediated decay (60–62). Whether these
isoforms are (mis-)expressed in pancreatic b-cells in diabetes –
for example as a result of inflammatory or metabolic stresses –
remains to be explored.
THE NMD PATHWAY: BIOLOGY AND
EMERGING ROLE IN b-CELLS

The nonsense-mediated decay pathway, originally identified as
an RNA surveillance mechanism, eliminates aberrant RNAs
Frontiers in Endocrinology | www.frontiersin.org 4
harbouring PTCs (63). Computational and experimental
results indicate that roughly a third of reliably inferred
alternative splicing events in humans result in mRNA isoforms
that harbour a PTC (64, 65). PTCs can arise in cells through
various mechanisms: germline or somatic mutations in DNA;
errors in transcription; or post-transcriptional mRNA damage or
errors in processing, notably including alternative splicing (66).
PTCs have been implicated in approximately 30% of all inherited
diseases, indicating that the NMD pathway plays a vital role in
survival and health (11, 67). Failure to recognize and eliminate
these unproductive transcripts seems likely to result in the
production of truncated dysfunctional proteins that directly
perturb cell function or lead to an accumulation of misfolded
proteins that accumulate in the ER to cause ER stress.

The human NMD machinery is complex and involves
multiple proteins including Upf1, Upf2, Upf3a, Upf3b, Smg1,
Smg5, Smg6, And Smg7 (See Table 2). Together, these are
responsible for the detection and decay of PTC-containing
transcripts (Figure 2A). ATPase-dependent RNA helicases play
a central role in NMD activity. Thus, the ability of UPF1 to
selectively target PTC-containing mRNAs depends on its
ATPase and helicase activities (59, 72). Additionally, activation
of NMD requires an interaction between Upf1 and protein
partners on the targeted mRNA. These partners consist of
UPF2 that forms a bridge between Upf1 and Upf3, forming
the Upf1–Upf2–Upf3 complex (66, 73). However, in addition to
canonical NMD pathway in which all key NMD components
function on target transcripts, NMD is also activated (in)
dependent of some of its key factors including Upf2 and Upf3
with a cell-type specific manner. Thus, NMD should be seen as a
“branched pathway”, with the different branches defined by
autoregulatory feedback loops (Figure 2B) (58, 66, 74).

Upf1 promiscuously binds to both NMD-targeted and non-
targeted mRNAs undergoing translation (75). On PTC-containing
mRNAs, Upf1 and its associated phosphoinositide 3-kinase
(PI3K)-like kinase, Smg1 act as a clamp to bind to eukaryotic
releasing factors 2 and 3 (eRF2 and eRF3) to form a surveillance
complex. The exon-exon junctions at least 50 nucleotides
downstream of stop codons possesses a nucleation point where
the EJC, Upf2, and Upf3b bind as a foundation of a decay-
inducing complex whose Interaction with the surveillance
complex triggers Upf1 phosphorylation, dissociation of eRF1
and eRF3, and conformational remodelling of NMD. This
adopts Upf1 activity to resolve mRNA secondary structure by its
helicase activity, allowing access to themRNA of the NMD effector
proteins Smg5-7 (59, 72–77). The decay of targeted transcripts
then takes place through the following steps: recruitment of the
endoribonuclease Smg6, which catalyses PTC-proximal mRNA
cleavage, producing 5ʹ and 3ʹ cleavage fragments that are degraded
by exoribonucleases (73, 78, 79); recruitment of the Smg5–Smg7
heterodimer, which bridges an interaction with the carbon
catabolite repressor protein 4 (CCR4)-NOT deadenylase
complex, thereby shortening the poly(A) tail to stimulate mRNA
decapping by the general decapping complex (80–82); recruitment
of the decapping enhancer Proline-rich nuclear receptor co-
activator 2 (PNRC2), possibly in a complex with SMG5, which
March 2021 | Volume 12 | Article 625235
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recruits the general decapping complex (83); and/or direct
recruitment of the general decapping complex (73, 79, 84).
Decapped mRNA is in turn degraded from the 5΄-end by the
Xrn1 exoribonuclease and from the 3’ terminus by the Dis3L1
and/or Dis3L2 exosome complex (85, 86). Xrn1 has also been
shown to promote general 5΄-3΄ co-translational mRNA decay
following the last translating ribosome (85). These degradation
pathways are not mutually exclusive, and their balance varies
depending on the particular mRNA or organism (73, 86).

NMDpathways have been studied in different human andmouse
tissues, and most recently by one of us (SMG) in human and rodent
islets (7). These studies revealed that NMD components are
differentially up/down-regulated by inflammatory cytokines and
glucolipotoxicity. Genetic suppression of the key NMD component
Smg6, an endoribonuclease which cleaves NMD targeted transcripts
at the proximate location of the PTC (Table 2), alleviated cytokine-
mediated toxicity associated with increased insulin biosynthesis and
glucose–induced insulin secretion in INS-1 cells, a rat insulinoma-
derived insulin-producing cell line. This study also revealed that
nitroxidative stress is mechanistically involved in cytokine-mediated
up-regulation of NMD components, since chemical inhibition of
inducible nitric oxide (iNOS) by N-methyl-L-argenine (NMA),
normalized cytokine upregulation of the NMD components in
INS-1 cells (7). Whether this up-regulation of NMD components
culminates in activation of the pathway remains to be elucidated.

Buffering mechanisms appear to have evolved in a cell-type
specific manner to control NMD activity, reflecting its important
role in regulating normal transcripts as well as eliminating
unproductive transcript isoforms. Three different mechanisms
include, firstly, microRNAs such as mir-128 targeting NMD
Frontiers in Endocrinology | www.frontiersin.org 5
component transcripts; another RNA decay pathway called
STAU1-mediated mRNA decay (SMD) whose the RNA-binding
protein Staufen 1 competes with Upf1 of the NMD, and auto-
regulatory feedback (Figure 2B) (87–90). The feedback loop has
been reported to be exerted at both the mRNA and protein levels of
the NMD factors. At the mRNA level, NMD controls the rate-
limitingmRNA levels of its components. At the protein level, control
is also exerted by protein stabilization of proteins involved in
regulation such as Upf3a, an RNA-binding protein suppressing
NMD activity (91, 92). It is therefore is not surprising that different
branches of the NMD pathway have different efficiency profiles in
different tissues (58, 93). Nevertheless, it will be important to
determine what branches of NMD control pathway activity in
stress conditions in primary pancreatic b-cells.

Could NMD transcript variations such as geneticmutations, SNPs
and environmental factors affecting NMD activity be associated with
cause and development of diabetes? Considering the emerging role of
NMD in regulating transcript processing in pancreatic b-cells, we
sought to understand whether transcript variants of NMD
components are associated with T2D. Our interrogation of
publicly-available GWAS data (type2diabetesgenes.org) reveals that
an accumulated list of the NMD transcript variants with surprisingly
high burden of natural loss-of-function variation including stop-
gained, essential splice, and frameshift variants are significantly
associated with T2D (p<0.05) (Figure 3A). In addition, chromatin
analysis using ATAC-sequencing, a popular method for determining
chromatin accessibility across the genome, indicates high chromatin
accessibility to enhancers and subsequent strong transcription upon
the key NMD components, e.g., Upf1 and Upf2 and Upf3a
(Figure 3B).
TABLE 2 | Characteristics of core machinery and effective NMD components.

NMD component MW
(kDa)

Alternative
names

Localization Direct NMD
interactors

Functions in NMD

UPF1
(an ATP-dependent
RNA helicase)

123 NORF1,
RENT1, smg-2

shuttling to nucleus, but
mainly in cytoplasm

UPF2, SMG1,
SMG6, SMG7

ATP-dependent helicase,
RNA binding protein; regulated by phosphorylation; direct binding
to eRFs, PNRC2, and decapping factors

UPF2 148 RENT2, smg-3 Perinuclear (cytoplasmic) UPF1, SMG1,
UPF3

Regulates UPF1 helicase activity; stimulates SMG1 kinase activity;
establishes a physical link between UPF1 and UPF3

UPF3A 55 RENT3A,
UPF3

shuttling to nucleus, but
mainly in cytoplasm

UPF2, EJC Establishes a physical link between UPF1-UPF2 and the EJC;
EJC-independent function unknown

UPF3B 56 RENT3B,
UPF3X

shuttling to nucleus, but
mainly in cytoplasm

UPF2, EJC Establishes a physical link between UPF1-UPF2 and the EJC;
EJC-independent function unknown, promotes UPF1
phosphorylation; UPF3B- independent is the NMD branch

SMG1
(A PI3‐kinase‐like
kinase)

410 ATX, LIP Cytoplasm and nucleus UPF1, UPF2,
SMG8, SMG9

Phosphorylates UPF1

SMG5 114 EST1B Cytoplasm and nucleus UPF1, SMG7 Forms a complex with SMG7; recruits PP2A for UPF1
dephosphorylation; provides additional binding affinity to
phosphorylated UPF1

SMG6
(A endoribonuclease)

160 EST1A Cytoplasm and nucleus UPF1, EJC Promotes UPF1 dephosphorylation; directly degrade transcripts at
vicinity of the PTC

SMG7 122 EST1C Cytoplasm UPF1, SMG5 Forms a complex with SMG5; required for SMG5/7 binding to
phosphorylated UPF1; recruits POP2 for mRNA deadenylation

SMG8 110 FLJ10587,
FLJ23205

Not identified SMG1, SMG9 Regulation of SMG1 kinase activity; induces inactivating
conformational changes in SMG1

SMG9 58 FLJ12886 Not identified SMG1, SMG8 Regulation of SMG1 kinase activity; required for SMG1 complex
This table is extracted from these review articles (58, 68–70).
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A

B

C

FIGURE 2 | Simplified canonical model of NMD pathway activation (A) in human cells which is controlled by three different ways so far and yet to be identified (B).
Inter-individual variation of NMD efficiency due to transcript variants modifies the presentation of clinical phenotypes and response to the PTC read-through drug
PTC124 treatment (B). At early ER stress, UPR suppresses NMD to provide maximum capacity of UPR proteins replenishment. Once ER stress is being resolved,
the UPR is downregulated, while NMD is supposed to return to its normal activity to eliminate unproductive transcript isoforms, thereby leading to further
downregulation of the UPR as UPR transcripts isoforms are NMD specific targets. Unresolved ER stress induces apoptosis which in turn suppresses NMD pathway
to execute the cell to avoid deleterious outcomes (C) (59, 68, 69, 71).
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TRANSCRIPT PROCESSING IN THE b-
CELL TRANSCRIPTOME

The integrity and accuracy of transcript processing is likely to be
crucially important to shape the transcriptome of the b-cell and, in
turn, to meet the physiological demands and pathophysiological
challenges it faces.

In addition to degrading PTC-containing transcripts (i.e.,
“unproductive” transcripts) (63), NMD is also involved in
normal physiology and in the transcriptional regulation of
normal transcripts (i.e., “productive” transcripts), functioning
as a fine-tuning mechanism of gene expression (59, 71). In fact,
early embryonic lethality of mice depleted of the NMD factors
Frontiers in Endocrinology | www.frontiersin.org 7
Upf1, Upf2, Upf3a, Smg1, and Smg6 suggests that NMD is
important for normal development and growth of the cell (60,
94–97). Whether impaired transcript processing due to
deregulated NMD pathway may induce the dedifferentiation of
b-cells, as may occur in T2D (98) and possibly T1D (99), or
hinders interactions between b- with other cell types in the islet
(100, 101) are important questions.

In T2D, a compensatory increase in insulin secretion in
response to insulin resistance can stimulate a sequence of
“stressful” events in the b-cell (the most important being; ER
stress, inflammasome activation with subsequent b-cell-driven
cytokine (e.g., IL-1b) production and NF-kB activation and
nitroxidative/oxidative stress). Together, these may then
A

B

FIGURE 3 | Number of transcript variants of the NMD pathway components and alternative splicing regulators associated with type 2 diabetes (A) and an ATAC-
sequencing analysis for chromatin accessibility of the Upf1 gene (B), extracted from publicly available type 2 diabetes datasets.
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initiate low-grade inflammation in the islet microenvironment
(102, 103). In T1D, a cascade of inflammatory cytokines secreted
from the immune cells leads to autoimmune destruction of b-
cells (104). Cellular senescence may also be involved (105, 106).
The overt loss of functional b-cell mass in T1D is thought,
ultimately, to result from accelerated apoptosis (3). ER stress is a
common upstream culprit in both T1D and T2D (102, 104). The
unfolded protein response, which may lead to ER stress, on the
one hand, and NMD on the other, mutually regulate each other
in mouse and human tissues and cell lines (71). Thus, UPR
transcripts may be NMD-specific targets (58).

The NMD plays a central role in the RUST mechanism to
eliminate the PTC-containing transcript isoforms generated due
to perturbed AS (107). The degree andmagnitude of NMD activity
differs among studied mice and human cells and tissues, as
reviewed previously (89). In transgenic mice ubiquitously
expressing the Men1 gene, the ratio of PTC-containing versus
wild-type transcripts was significantly different between adult
mouse tissues. Among the tested tissues, testis, ovary, brain, and
heart exhibited high NMD activity, measured by strong
downregulation, and lung, intestine, and thymus exhibited weak
downregulation of the mutantMen1 transcripts compared to wild-
type transcripts (108). Unfortunately, neither this study nor others
reported NMD efficacy in the pancreas.

Other studies have suggested that NMD efficiency varies
among individuals with nonsense mutations e.g., in the cystic
fibrosis gene CFTR in response to the drug PTC124, forcing
read-through of mutated mRNAs (Figure 2B) (109). The RUST
mechanism was first proposed by Lewis and colleagues in 2003
(64). These authors found that 35% (i.e., 1,989 out of 5,693) of
alternatively spliced transcript isoforms in the human cell
transcriptome were NMD targets since they contained PTCs
(64). Several subsequent studies identified a role for incomplete
RUST in regulating transcript processing in breast and
myelodysplastic syndrome (MDS) cancers, and in neurological
disorders such as Alzheimer’s disease and multiple sclerosis (16).
However, the role of RUST is completely unknown in transcript
processing in pancreatic b-cells. Knowing that pro-inflammatory
cytokines regulate alternative splicing events and the NMD
pathway in human and rodent primary b-cells (9, 28, 37, 40,
41), we propose a model (Figure 4) in which incomplete RUST
leads to accumulation of unproductive transcripts whose
translation into unfolded, truncated polypeptides overwhelms
ER capacity and consequently drives unresolved ER stress.
Consistent with this view, enforcing ribosomal read-through of
such PTC-containing mRNAs with the drug PTC124 aggravates
cytokine-induced apoptosis and is associated with an increase in
ER stress in human islets and INS-1 cells (7).
PERSPECTIVE: A NEW TYPE OF
UNPRODUCTIVE TRANSCRIPT?

The recent discovery of a special class of bifunctional RNAs,
namely coding-noncoding RNAs (cncRNA), implicates another
culprit in the pathogenesis of diseases such as Alzheimer’s disease.
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Amongst the cncRNAs, certain noncoding mRNA isoforms
(ncimRNA) of (usually) protein-coding genes quantitatively
predominate (110, 111). The precise function and underlying
molecular mechanism(s) of action of cncRNAs has been
investigated in a few cases (110). Insulin receptor substrate 1
(IRS1), a major substrate and cytoplasmic docking protein for the
insulin receptor and insulin-like growth factor receptor, is
involved in insulin signalling. The level of IRS1 is highly
increased in proliferative cells such as human and mouse cancer
cells (110), whereas profoundly decreased in differentiated cells. In
addition, whole body Irs1 knockout mice exhibited severe insulin
resistance in skeletal muscle and liver, with compensatory b-cell
hyperplasia (112). Surprisingly, a further study (113) found that
the 5′UTR of Irs1 mRNA acts as an antisense mRNA to the cell
cycle regulator retinoblastoma (Rb).

Intronic or exonic Circular RNAs (circRNAs) are a type of
single-stranded noncoding RNAs whose 5’ and 3’ termini are
covalently linked by back-splicing of exons from a single pre-
mRNA and they are, therefore, stable and resistant to
exonuclease degradation (114). With a feature of cell-specificity
and being conserved between species, circRNAs play important
roles in the development of diseases by modulating post-
transcriptional regulation of gene expression (114, 115).
Recently, two intronic circRNA borne from murine insulin
genes, ci-Ins2 and ci-INS have been reported to control insulin
secretion. Thus, silencing of ci-Ins2 in pancreatic islets deceases
in the expression of key components of the secretory machinery
of b-cells, resulting in impaired pulsatile insulin secretion and
calcium signalling (116). Interestingly, these circRNAs were
shown to interact with the RNA-binding protein TAR DNA-
binding protein 43 KDa (TDP43) (116), indicating a possible
correlation with alternative splicing and pre-mRNA turnover,
and eventually NMD activity.
FIGURE 4 | Deregulation of NMD due to islet inflammation largely influence
RUST mechanism of transcript processing and subsequent accumulation of
unproductive transcript isoforms, which implicates in b-cell dysfunction,
vulnerability, and death.
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DISCUSSION

Pancreatic b-cells must fine tune protein synthesis given large
fluctuations between low and very high demands for insulin
secretion. Post-transcriptional regulation plays an important role
(33, 117). Transcript processing is, however, not limited only to
alternative splicing events. Other homeostatic pathways
including NMD directly, and UPR indirectly, are involved in
this fine-tuning. Inflammatory cytokines and glucolipotoxicity
are major drivers of ER stress in pancreatic b-cells leading to
UPR and NMD activation and are likely needed to efficiently and
accurately eliminate unproductive transcript isoforms (Figure
2C). If these remained intact, the production of truncated
proteins may exert deleterious effects on b-cell function
and viability.

With respect to the identified role of RBPs and alternative
splicing factors in pancreatic b-cell function and viability, and
given that over 90% of human genes transcribed into at least four
transcript isoforms (17, 118–120), we suggest that transcript
processing by the RUST mechanism may be mandatory to
guarantee functional accuracy and integrity of pancreatic b-
cells. In regard to the development, differentiation, function
and resilience of pancreatic b-cells in health and in diabetes,
we suggest that the following questions represent important
areas for future research:

1. What is the role of the NMD in regulating normal transcripts?
2. Can we identify NMD-specific targets?
3. What is the contribution of the NMD to the RUST

mechanism of eliminating unproductive transcript isoforms?
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4. Do inflammatory and glucolipotoxic stresses exerts adverse
effects on insulin biosynthesis and secretion, as well as cell
viability, through changes in NMD activity?

5. If so, which branches of NMD are involved and are the key
components indispensable in normal, stress and disease conditions?
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