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Plasma phenylalanine 
and glutamine concentrations 
correlate with subsequent 
hepatocellular carcinoma 
occurrence in liver cirrhosis 
patients: an exploratory study
Kung‑Hao Liang1,2,3,9*, Mei‑Ling Cheng4,5,6,9, Chi‑Jen Lo4, Yang‑Hsiang Lin7, Ming‑Wei Lai7, 
Wey‑Ran Lin7 & Chau‑Ting Yeh7,8*

Aberrant metabolisms have been hypothesized to precede the occurrence of hepatocellular carcinoma 
(HCC), therefore, we investigated biomarkers associated with subsequent HCC in peripheral bloods 
using metabolomic technologies. A cohort of 475 HCC-naïve liver cirrhotic patients were recruited 
and prospectively followed. A total of 39 patients developed HCC in the follow-up period. Baseline 
plasma metabolites were explored using untargeted nuclear magnetic resonance. Candidates were 
then quantified by ultra-performance liquid chromatography. A series of univairiate and multivariate 
analysis showed that Phenylalanine (Phe) and Glutamine (Gln) levels are associated with time to 
HCC, independent of viological etiologies and age. A HCC risk score R was then constructed using the 
polynomial combination of age, Phe and Gln in the units of micromolar (μM):

 R correlates with the time to HCC significantly (Hazard ratio [HR] = 2.368, 95% confidence interval 
[CI] 1.760–3.187, P < 0.001). An additional cross-sectional analysis showed that Phe and Gln 
concentrations both correlates with HCC occurrence in the next 3 years (area under the receiver 
operating characteristic curve [AUC] = 0.607 and 0.629, P = 0.033 and 0.010 respectively). In 
conclusion, phenylalanine and glutamine concentrations in the peripheral blood correlate with 
subsequent HCC.

Abbreviations
HCC	� Hepatocellular carcinoma
NMR	� Nuclear magnetic resonance

R = Age ∗ (0.0694)+ Phe ∗ (0.3399)+ Phe 2
∗ (−0.00188154)

+ Gln ∗ (−0.0133)+ Gln 2
∗ ( 0.00002244)
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UPLC	� Ultra-performance liquid chromatography
HBV	� Hepatitis B virus
HCV	� Hepatitis C virus
AST	� Aspartate transaminase
ALT	� Alanine transaminase
FIB-4	� Fibrosis-4
Phe	� Phenylalanine
HDL	� High-density lipoprotein
Gln	� Glutamine

Liver cirrhosis is a pathologic condition after decades of chronic hepatic necroinflammation, caused by either 
viral infections or chronic alcoholism. Once the liver become cirrhotic, the incidence of hepatocellular carcinoma 
(HCC) escalates significantly1. However, it seems unpredictable whether a cirrhosis person will develop HCC 
shortly after cirrhosis has commenced or will not develop HCC in their lifetime. The lack of patient stratification 
forces all cirrhosis patients to indiscriminately receive regular ultrasonography surveillance2. Unfortunately, the 
compliance is low among cirrhosis patients due to the insufficient awareness of the risk. HCC at early stages are 
often asymptomatic, consequently, many HCCs are diagnosed at intermediate or late stages.

As such, there is an unmet medical need to estimate the risk of HCC in liver cirrhosis patients. Metabolic 
disorders such as type 2 diabetes is one major etiology of HCC3,4. Even in the presence of viral infections, diabetes 
still independently raises the incidence of HCC5. Apart from diabetes, other aberrant metabolic processes may 
also precede the occurrence of HCC. The deregulated metabolites might be observed in the peripheral blood. 
Here we conducted a comprehensive exploratory screening of peripheral blood metabolites using the nuclear 
magnetic resonance technology (NMR). The concentrations of candidate metabolites were then quantified sub-
sequently using ultra-performance liquid chromatography (UPLC).

Results
A HCC risk score was constructed using metabolite concentrations.  Patient characteristics of this 
cohort was summarized in Table 1, including age, gender, etiology (hepatitis B virus [HBV] or hepatitis C virus 
[HCV] infection), aspartate transaminase (AST), alanine transaminase (ALT), AST/ALT ratio, platelet counts 
and fibrosis-4 (FIB-4) index6. A total of 39 patients developed HCC and diagnosed at the Barcelona Clinic Liver 
Cancer (BCLC) stage A.

An untargeted metabolomic profiling was conducted using NMR on a wide spectrum of 1H chemical shifts 
(Fig. 1). Among the baseline clinical factors, age, HCV and AST were found to be associated with HCC occur-
rence in the univariate Cox-regression analysis (Table 2). Additionally, four metabolites was successfully anno-
tated as phenylalanine (Phe), glutamine (Gln), high-density lipoprotein (HDL)-CH3, and ketoglutarate, based on 
the 1H chemical shifts significantly associated with HCC occurrence (P ≤ 0.01, Fig. 1). Phe levels were positively 
associated with HCC, while Gln, HDL-CH3 and ketoglutarate were negatively associated (Fig. 1). A multivariate 
Cox regression analysis (of the factors with P < 0.05 in the univariate analysis) showed that age, HCV, Phe and 
Gln were the factors independently associated with time-to-HCC (adjusted P < 0.001, = 0.030, 0.037 and 0.046 
respectively, Table 2). Analyzing the 4 factors jointly, that Phe, Gln remained significantly associated with time-
to-HCC (adjusted P = 0.037 and 0.011 respectively, Table 2), independent of age and HCV. Hence, Phe and Gln 
represent the metabolite candidates of this study.

With the candidates being found in the NMR exploration, we further employed UPLC for the absolute quan-
tification of the candidates using corresponding standards. The measurement from NMR and UPLC are highly 
correlated (Pearson’s correlation coefficients of Phe and Gln are 0.676 and 0.550 respectively, both P < 0.001, 
N = 475). A risk score R was derived using age and the Phe and Gln in the unit of micromolar (μM):

The score reflect the hazards of the patient i:

The risk score is significantly associated with time-to-HCC (HR = 2.368, CI 1.760–3.187, P < 0.001). Fur-
thermore, distinct cumulative incidences of HCC were found in patient strata by the score (tertile 1 vs. tertile 3: 
P < 0.001; tertile 1 vs. tertile 2: P = 0.005; tertile 2 vs. tertile 3: P = 0.048; Fig. 2A).

Correlations of the UPLC‑quantified metabolites and the derived risk score with subsequent 
HCC occurrence at different time points.  We then evaluated the performance of the risk score by a series 
of cross-sectional analysis using HCC status at years 1, 2 and 3 after baseline. The score can classify patients with 
or without HCC at 1 year successfully (area under the receiver-operating-characteristic curve [AUC] = 0.697, 
P = 0.004, Fig. 2B). The optimum cutoff which maximizes the Youden’s index7 is 18.543 (Table 3). At this cutoff, 
the sensitivity is 0.579 and the specificity is 0.754. The score can also be used for classifying patients’ status at 
2 years (AUC = 0.751, P < 0.001, Fig. 2C). Interestingly, the same optimum cutoff was found (Table 3). The sen-
sitivity is 0.643 and the specificity is 0.765. At year 3, the AUC is 0.766 (P < 0.001, Fig. 2D). The same cutoff was 
found again (Table 3). The sensitivity is 0.667 and the specificity is 0.772.

The Phe and Gln concentrations were also evaluated individually in terms of their performance in estimating 
patients’ status at subsequent time points. The Phe concentration is only significantly associated with the HCC 

(1)
R = age ∗ (0.0694)+ Phe ∗ (0.3399)+ Phe2 ∗ (−0.00188154)

+ Gln ∗ (−0.0133)+ Gln2 ∗ (0.00002244)

(2)H(t|R) = H0(t)e
(R)
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Table 1.   Demographic information of the study cohort. HBV, hepatitis B virus; HCV, hepatitis C virus; AST, 
aspartate transaminase; ALT, alanine transaminase; FIB-4, fibrosis-4.

The cohort

Patient number 475

HCC (%) 39

Age (years) 59.50 ± 11.04

Gender—male (%) 298 (63%)

HBV (%) 273 (57%)

HCV (%) 149 (31%)

AST 44.50 ± 38.57

ALT 39.19 ± 43.27

AST/ALT 1.26 ± 0.48

Platelet 130.87 ± 57.54

FIB-4 index 4.51 ± 4.60

Figure 1.   Metabolomic profiling of the cohort of liver cirrhosis patients. The vertical axis indicated the 1H 
nuclear magnetic resonance chemical shifts (between 0.505 and 9.495 ppm). The horizontal axis indicated 
Welsh’s t-statistics in the comparison of patients with or without the occurrence of HCC during follow-ups. 
Cyan and yellow dots represent positive or negative associations with HCC. Those with significant association 
(P ≤ 0.01) were particularly highlighted as red dots.

Table 2.   Clinical variables and metabolites in association with the time to HCC occurrence. P values less than 
0.05 are indicated in bold. HBV, hepatitis B virus; HCV, hepatitis C virus; AST, aspartate transaminase; ALT, 
alanine transaminase; FIB-4, fibrosis-4; Phe, phenylalanine; HDL, high-density lipoprotein; Gln, glutamine.

Variables

Univariate analysis Multivariate analysis (7 variables) Multivariate analysis (4 variables)

HR 95% CI P HR 95% CI P HR 95% CI P

Age (years) 1.072 1.040 1.106  < 0.001 1.065 1.031 1.101  < 0.001 1.064 1.030 1.098  < 0.001

Gender—male 0.677 0.361 1.271 0.225

HBV 0.698 0.372 1.308 0.261

HCV 3.277 1.731 6.204  < 0.001 2.685 1.406 5.129 0.030 2.619 1.377 4.979 0.030

AST 1.004 1.001 1.008 0.022 1.002 0.997 1.008 0.366

ALT 1.003 1.000 1.007 0.091

AST/ALT 1.073 0.579 1.988 0.823

Platelet 0.998 0.992 1.003 0.443

FIB-4 index 1.039 0.996 1.085 0.079

Metabolites assessed by NMR

Phe 1.056 1.015 1.098 0.006 1.060 1.004 1.120 0.037 1.061 1.003 1.122 0.037

HDL-CH3 0.998 0.996 0.999 0.005 0.998 0.996 1.001 0.181

Gln 0.984 0.973 0.995 0.005 0.986 0.972 1.000 0.046 0.986 0.975 0.997 0.011

Ketoglutarate 0.990 0.982 0.999 0.022 1.009 0.996 1.022 0.180
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Figure 2.   Risk score performance in time to event analysis and cross-sectional analysis. (A) The Kaplan–Meier 
plot of patients stratified into tertiles by the risk score (N = 475). (B) The receiver-operating-characteristic (ROC) 
curve of the risk score for classifying patients with or without HCC at 1 year after recruitment. The area under 
the ROC (AUC) is 0.697. (C) The ROC curve for classifying patients at 2 years after recruitment (AUC = 0.751). 
(D) The ROC curve for classifying patients at 3 years after recruitment (AUC = 0.766).

Table 3.   The classification of HCC status at the subsequent years 1, 2 and 3 after patient recruitment.

AUC​ P

Performance at the cutoff which optimizes Youden’s index

Cutoff Youden’s index Sensitivity Specificity PPV NPV

Risk score

Year 1 0.697 0.004 18.543 0.333 0.579 0.754 0.089 0.977

Year 2 0.751  < 0.001 18.543 0.408 0.643 0.765 0.146 0.972

Year 3 0.766  < 0.001 18.543 0.439 0.667 0.772 0.195 0.966

Phe

Year 1 0.580 NS

Year 2 0.597 NS

Year 3 0.607 0.033 66.320 0.252 0.806 0.446 0.107 0.965

Gln

Year 1 0.638 0.041 39.398 0.307 0.737 0.570 0.067 0.981

Year 2 0.631 0.020 42.359 0.258 0.714 0.544 0.089 0.968

Year 3 0.629 0.010 39.398 0.239 0.667 0.572 0.114 0.954
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status at year 3 (P = 0.033, AUC = 0.607, Table 3) but not at years 1 and 2 (AUC = 0.580 and 0.597 respectively). 
On the other hand, the Gln concentration is significantly associated with HCC at years 1, 2 and 3 (P = 0.041, 
0.020 and 0.010 respectively, AUC = 0.638, 0.631 and 0.629 respectively, Table 3). The value distributions of Phe 
and Gln concentrations in patients with or without HCC at year three were visualized using Box-and-Whisker 
plots (Fig. 3).

Discussion
Liver cirrhosis often precedes HCC, justifying the need for intensive ultrasound surveillance for all cirrhosis 
patients, a task difficult to achieve in many countries. Effective risk stratification in cirrhosis patients could 
lessen this medical burden. The NMR and ultra-performance liquid chromatography are two distinct platforms 
commonly used for exploring and quantifying metabolites. We used untargeted NMR for finding candidates 
associated with HCC. The candidates were then quantified using ultra-performance liquid chromatography with 
standards. Our NMR and UPLC measurements are highly correlated with each other. This approach led toward 
the discovery of Phe and Gln, the concentrations of which are associated with subsequent HCC occurrence in 
liver cirrhosis patients, independently of virological etiologies (Table 2). The relationship between these two 
amino acids and HCC has been sporadically reported in literature, mainly in cross-sectional studies rather than 
time-to-event analysis. Phe in the peripheral blood was elevated in HCC patients compared with that in liver 
cirrhosis patients8. Phe is an essential amino acid that can be metabolized into tyrosine by the phenylalanine 
hydroxylase (PAH). Abnormal metabolism of tyrosine, known as tyrosinemia, was reported to be linked to HCC 
occurrence9. Aberrant Gln metabolism has been implicated in metabolic syndrome, mitochondrial diseases as 
well as multiple cancers including HCC10,11. Gln can be metabolized to glutamate by glutaminases, GLS1 and 
GLS2, which have also been implicated to HCC12.

A risk score was constructed using age and the UPLC quantified values of Phe and Gln in a quadratic equa-
tion (Eq. 1). The quadratic equation was determined based on the time-to-event data using a computer-assisted, 
automatic GIM algorithm, which is capable of picking up any polynomial combination of variables, in an attempt 
to maximize the likelihood function as in the Cox-regression model. The risk score is significantly associated with 
time-to-HCC (HR = 2.368, CI 1.760–3.187, P < 0.001). We then performed a series of cross-sectional analysis to 
demonstrate that the risk score can classify patients with or without HCC at 1, 2 and 3 years from baseline (all 
P ≤ 0.004, Table 3).

We also evaluated the classification performance of Phe and Gln individually at these time points. Gln can 
successfully classify the HCC status at years 1, 2 and 3 from baseline (P = 0.041, 0.020 and 0.010 respectively, 
Table 3), while Phe can only classify patients at year 3 successfully (P = 0.033, Table 3). We took a closer look at 
the performance and found that balanced pairs of sensitivity and specificity were achieved consistently by Phe, 
Gln and the risk score. In contrast, high negative predictive values (NPV) and low positive predictive values 
(PPV) were achieved by the two biomarkers and the risk score (Table 3). The low PPV is caused by high false 
positives, which are the high-risk patients who have not developed HCC at the time point. This implied that the 
metabolite dis-regulation may have a slow, accumulating effect in HCC occurrence, with a time frame longer 
than we previously anticipated. Hence, this study is still limited by the insufficient duration of observation and 
also the insufficient sample size. It would also be interesting to examine the metabolite levels 3 month, 6 month 
or even night month before the diagnosis of HCC, provided that the HCC case numbers are large enough for 
showing the metabolite value distributions. This again requires longer observations in larger sample size, and 
remain to be our future research. Finally, this study is only an exploratory study where a validation study with 
an independent patient cohort is required in the future to confirm the findings.

Figure 3.   Box-and-Whisker plots overlaid with the Phe and Gln concentrations (μM) in patients who have 
or have not developed HCC at the third year. (A) The distribution of Phe concentrations (Mann–Whitney 
P = 0.033, non-HCC N = 435, HCC N = 36, censored N = 4). (B) The distribution of Gln concentrations (Mann–
Whitney P = 0.010).
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In conclusion, age, Phe and Gln concentrations in plasma samples altogether offer a risk score which cor-
relates with subsequent HCC occurrence in liver cirrhosis patients. Further validations on a larger cohort with 
longer duration of follow up is warranted.

Methods
Patients.  This study was approved by the institutional review board of Chang Gung Memorial Hospital, 
Taiwan and conducted according to the principles in the declaration of Helsinki. A cohort of 475 consecutive 
HCC-naïve liver cirrhosis patients were recruited from three medical centers, the Keelung, Linko and Kaohsiung 
branches of Chang Gung Memorial Hospitals, which were located respectively in the northern, central-north 
and southern regions of Taiwan. The cirrhosis was diagnosed by either liver biopsy, or ultrasound imaging in 
conjunction with the detection of esophageal varices using endoscopy, or the transient elastography (Fibroscan; 
Echosens, France) measurements greater than 12 kilopascal (kPa). All patients were above 18 years old and have 
given informed consent. Peripheral bloods for the metabolomics study were collected between January, 2013 
and August, 2014. These patients were then regularly followed in outpatient clinics every 3 months. Ultrasound 
survey were performed regularly until HCC was diagnosed. The end of follow-up is 2017/2/28. During the study 
period, all HBV patients have achieved sustained virological response. Patients with HCV were viremic.

Baseline clinical information such as age, gender, etiology (HBV, HCV), and aspartate Aminotransferase 
(AST), alanine Aminotransferase (ALT), AST/ALT and the Fibrosis 4 score (FIB-4)6 were retrieved from chart 
records. Patients were prospectively followed until the occurrence of HCC or the end of follow-up. A total of 
39 patients developed HCC during the follow up time. The peripheral blood samples were centrifuged for the 
separation of plasma, which were then stored in − 20 °C until further analysis.

Untargeted metabolomics using NMR.  The plasma sample (350 μl) was mixed with 350 μl of plasma 
buffer solution (75 mM Na2HPO4, 0.08% TSP, 2 mM NaN3, 20% D2O), and 600 μl of the supernatant was trans-
ferred to NMR tubes for data acquisition.

1H NMR spectra were acquired on a Bruker Avance III HD 600 MHz NMR spectrometer with a 5 mm inverse 
triple resonance CryoProbe (1H/13C/15N) (Bruker Biospin GmbH, Rheinstetten, Germany). The spectra were 
acquired by Carr-Purcell-Meiboom-Gill spin-echo (CPMG) pulse sequence at 310 K, and broad signals from 
proteins were attenuated by the 80 ms T2 relaxation time. The spectrum was collected with a spectral width of 
12,019.23 Hz and 72 k data points and then acquisitions were accumulated 64 times. All NMR spectra were 
phased and baseline-corrected and then referenced to the doublet of 1H-α-glucose at 5.23 ppm by using Topspin 
software (version 3.2.2; Bruker Biospin GmbH, Rheinstetten, Germany)13. We chose CPMG pulse as a compro-
mise of efficiency and effectiveness for the current study. The utilization of NOESY, PURGE, PROJECT pulses 
and other technique remain our future research14.

Each 1H NMR spectrum (in the range of 9.5–0.5 ppm, excluding the water region) from plasma was seg-
mented into 0.01 ppm with equal widths, and normalized to the reference by AMIX (version 3.9.14; Bruker 
Biospin GmbH, Rheinstetten, Germany). The resulting data sets were analyzed by SIMCA-P+ (version 13.0; 
Umetrics, Umea, Sweden), and all data were Pareto-scaled for multivariate statistical analysis. Resonant frequen-
cies of each metabolite were referred from an in-house library, Chenomx NMR Sutie 7.1 (Chenomx, Edomonton, 
Canada), or HMDB (https​://www.hmdb.ca/)15. More technical details can be found in literature13.

Ultra‑performance liquid chromatography (UPLC)‑based amino acid measurement.  The 
plasma samples (100 µl) were precipitated by adding an equal volume (100 µl) of 10% sulfosalicylic acid contain-
ing an internal standard (norvaline 200 µM)16. The 20 µl of the supernatant was mixed with 60 µl borate buffer 
(pH 8.8) and then the derivatization was activated by adding 20 µl of 10 mM AQC in acetonitrile. After 10 min 
reaction time, the reaction was disrupted by mixing with an equal volume of Eluent A (20 mM ammonium for-
mate/0.6% Formic acid/1% acetonitrile) and analyzed using the ACQUITY UPLC System. The AQC derivatiza-
tion reagent was obtained from the Waters Corporation (Milford, MA, USA)17.

The Waters ACQUITY UPLC System (Waters crop., Milford, USA) consisted of a Binary Solvent Manager 
(BSM), a Sample Manager fitted with a 10-µl loop, and a Tunable UV (TUV) detector. The system was controlled, 
and the data was collected using Empower 2 software. The separations were performed on a 2.1 × 100 mm 
ACQUITY BEH C18 column at 60 °C and flow rate of 0.70 ml/min, and the detection was set at 260 nm using a 
sampling rate of 20 points/s. The mobile phase was 20 mM ammonium formate/0.6% formic acid/1% acetonitrile 
in water (Eluent A) and in acetonitrile (Eluent B)15.

Data visualization and analysis.  Clinical variables were compared using Welch’s t test (a.k.a. unequal 
variances t-statistics), Mann–Whitney U test and χ2 test, where the obtained P values smaller than 0.05 were 
considered statistical significance. The result of NMR exploration was presented using a scatter plot of the Welch’s 
t statistics and the 1H chemical shifts. Welch’s t-test were performed on patients with or without the occurrence 
of HCC during the follow-up. Cox regressions were used for univariate and multivariate analysis of clinical and 
metabolic variables for their correlation with the time to HCC. Cumulative incidence of HCC of different patient 
strata were compared using log-rank tests. The IBM SPSS software version 20 (IBM, Armonk, NY) was used. 
The Box-and-Whisker plots were produced by the R statistical package. The HCC risk models were constructed 
by the multivariate combination of variables using the generalized iterative modelling method (GIM). This algo-
rithm can identify optimum polynomial combinations of variables with respect to the fitness function18,19, which 
in this research is the likelihood function as in the Cox regression. The software code of GIM (capable of doing 
the time-to-event analysis) can be downloaded at the following website (https​://githu​b.com/khlia​ng/GIM).

https://www.hmdb.ca/)
https://github.com/khliang/GIM
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