
REVIEW
published: 08 November 2018

doi: 10.3389/fchem.2018.00539

Frontiers in Chemistry | www.frontiersin.org 1 November 2018 | Volume 6 | Article 539

Edited by:

Fan Zhang,

Fudan University, China

Reviewed by:

Juchen Guo,

University of California, Riverside,

United States

Chun Xu,

The University of Queensland,

Australia

*Correspondence:

Wei Luo

wluo@dhu.edu.cn

Jianping Yang

jianpingyang@dhu.edu.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Nanoscience,

a section of the journal

Frontiers in Chemistry

Received: 18 July 2018

Accepted: 18 October 2018

Published: 08 November 2018

Citation:

Manj RZA, Chen X, Rehman WU,

Zhu G, Luo W and Yang J (2018) Big

Potential From Silicon-Based Porous

Nanomaterials: In Field of Energy

Storage and Sensors.

Front. Chem. 6:539.

doi: 10.3389/fchem.2018.00539

Big Potential From Silicon-Based
Porous Nanomaterials: In Field of
Energy Storage and Sensors

Rana Zafar Abbas Manj 1†, Xinqi Chen 1,2†, Waheed Ur Rehman 1, Guanjia Zhu 1, Wei Luo 1,3*

and Jianping Yang 1,3*

1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and

Engineering, Donghua University, Shanghai, China, 2 School of Physics and Mechanical and Electrical Engineering, Hubei

University of Education, Wuhan, China, 3 Institute of Functional Materials, Donghua University, Shanghai, China

Silicon nanoparticles (SiNPs) are the promising materials in the various applications due

to their unique properties like large surface area, biocompatibility, stability, excellent

optical and electrical properties. Surface, optical and electrical properties are highly

dependent on particle size, doping of different materials and so on. Porous structures

in silicon nanomaterials not only improve the specific surface area, adsorption, and

photoluminescence efficiency but also provide numbers of voids as well as the high

surface to volume ratio and enhance the adsorption ability. In this review, we focus on the

significance of porous silicon/mesoporous silicon nanoparticles (pSiNPs/mSiNPs) in the

applications of energy storage, sensors and bioscience. Silicon as anode material in the

lithium-ion batteries (LIBs) faces a huge change in volume during charging/discharging

which leads to cracking, electrical contact loss and unstable solid electrolyte interphase.

To overcome challenges of Si anode in the LIBs, mSiNPs are the promising candidates

with different structures and coating of different materials to enhance electrochemical

properties. On the basis of optical properties with tunable wavelength, pSiNPs are

catching good results in biosensors and gas sensors. The mSiNPs with different

structures and modified surfaces are playing an important role in the detection of

biomarkers, drug delivery and diagnosis of cancer and tumors.

Keywords: porous structures, silicon nanomaterials, core shell, bioapplication, lithium ion battery

INTRODUCTION OF SILICON-BASED NANOSTRUCTURES

Silicon nanoparticles (SiNPs) have been remained a material of great interest with versatile and
promising applications compared to the bulk material due to their physical and chemical properties
(Dinh et al., 1996; Shiohara et al., 2009). SiNPs render a range of properties and series of
functionalization (chemical and biological species), non-toxicity, biocompatibility and solubility
in physiological fluid (Kang et al., 2009; Park et al., 2009; Wang et al., 2012). Electrical properties of
silicon rely on temperature which is a conductor at room temperature. Electronic conductivity of
SiNPs can be enhanced by doping of 3rd and 4th group elements of periodic table, functionalization
and particle size (Anderson and Spear, 1977; Arora et al., 1982; Van Buuren et al., 1998; Veinot,
2006; Sivakov et al., 2009). SiNPs with different dyes also exhibit good photoluminescence (PL),
fluorescent properties, tunable wavelength of excitation and emission, excellent photo and chemical
stability (Chen et al., 2001; English et al., 2002; Shen et al., 2010; Intartaglia et al., 2012). Optical
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properties of SiNPs strongly depend upon quantum confinement
effect which varies with changes in particle size, concentration,
and functionalization (Trwoga et al., 1998; Dancil et al., 1999;
Ledoux et al., 2002). Due to these unique properties, SiNPs show
numbers of applications in different fields like drug carriers,
bioimaging, gas sensors, solar cells, electronics and energy storage
devices.

In order to improve the performance in different applications,
the structure of silicon has modified into the porous structure.
On the basis of pores size, porous silicon is classified into
microporous (pore diameter<2 nm), mesoporous (pore diameter
2–50 nm) and macro porous (pore diameter >50 nm). Because
of alternation in the structure of silicon, a tremendous variation
happen in optical properties of SiNPs which can attribute
to the reduction in refractive index and enhancement in PL
efficiency as compare to silicon at room temperature (Bsiesy
et al., 1991; Astrova and Tolmachev, 2000; Chao, 2011; Min-
Dianey et al., 2018). Surface properties also affected by varying
the structure of silicon, the specific surface area per unit volume
increase owing to pores in structure. Mesoporous structure of
silicon improves surface to volume ratio, physical adsorption and
electrical resistivity of silicon due to large void spaces (Karlsson
et al., 2004; Hajji et al., 2006; Lasave et al., 2013; Azadeh et al.,
2018). On behalf of these structural base properties, porous
silicon nanomaterials have high potential to resolve challenges in
different fields i.e. energy storage devices, sensors and biomedical
applications (Yang et al., 2014a, 2016; Wang et al., 2015).

FIGURE 1 | Schematic diagram of preparation of multi-shell hollow silica sphere (Ma et al., 2017b). Copyright © 2017 Elsevier B.V. All rights reserved.

APPLICATIONS OF SILICON-BASED
POROUS NANOMATERIALS

Lithium-Ion Batteries
Si as anode material has very high theoretical specific capacity
4,200mA h g−1 as compare to graphite (Goodenough and Kim,
2009). In spite of high specific capacity of Si, Si as anode material
has a major problem of volume expansion (up to 400%) during
charging/discharging which lead to cracking of anode, electrical
contact loss, unstable solid electrolyte interphase (SEI) film and
finally fast fading of capacity (Yang et al., 2002; Jung et al., 2003;
Baranchugov et al., 2007). Besides, the low intrinsic electrical
conductivity (1.56 × 10−3 S m−1) and lithium diffusivity of Si
also limits its electrochemical performance. It has been noted that
micro and nanostructure of silicon have good electrochemical
performance as compare to bulk silicon as anode material

(Ryu et al., 2004; Kim et al., 2008). The volume expansion
of silicon anode material has been controlled by introducing

nanostructure of silicon as Si micro/nanostructures, nanowires,
hollow-structured and porous silicon (Li et al., 2000; Huang and
Zhu, 2010; Xu et al., 2011; Wen et al., 2013; Cho et al., 2017; Kim
et al., 2017). Spherical nano-particles of silicon having diameter
of 150–200 nm was used as bulk silicon anode material which
exhibited capacity higher than 500mA h g−1 at current 0.2 A
g−1 up to 100 cycles (Liang et al., 2018). To further enhance
the electrochemical properties, silicon nanowires (SiNWs) on
stainless steel was prepared by CVD process. SiNWs as anode
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FIGURE 2 | Schematic diagram of a process of synthesis mesoporous silicon, in (A,B), three-dimensional (3D) view and two-dimensional (2D) cross-sectional view

(Wu et al., 2016). Copyright © 2016 Elsevier B.V. All rights reserved.

FIGURE 3 | Schematic diagram to elaborate the working of CMC and GA binder during volume change in charging/discharging (Ling et al., 2015). Copyright © 2014

Elsevier Ltd. All rights reserved.
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FIGURE 4 | (A) Schematic diagram of the coating process, the evolution of SEI film of impregnation and non-filling coating during cycling. (B) Analysis of specific

capacity of non-filling, impregnation coated pSiMPs over 1,000 cycles. Reproduced with permission (Lu et al., 2015). Copyright © 2015, American Chemical Society.

material delivered great area capacity of 7.1 cm with retention
60 % at current rate C/50 and good rate performance (Leveau
et al., 2016). To accommodate volume expansion of Si anode
and cycling stability, the structure of silicon was modified to
the spherical hollow structure of silicon as shown in Figure 1.
The multi-shell hollow silica microsphere (MHSM) was prepared
by the sacrificial template process. MHSM as anode material
delivered high capacity 750mA h g−1 at current 0.1 A g−1

after 500 cycles. MHSM exhibited excellent cycling stability
because of a porous structure which provides the easy reaction
among the lithium ion and anode material and reduced the
reaction path (Ma et al., 2017b). Further, three-dimensional
(3D) macroporous silicon was synthesized by magnesiothermic
reduction to enhance structure stability, capacity and cycle life
of Si anode as shown in Figure 2. 3D porous silicon as anode
material showed high capacity with excellent retention and cycle
life (1,058mA h g−1 with current rate 2A g−1 after 800 cycles)

(Wu et al., 2016). The structural modification in silicon anode
material provided a significant improvement in electrochemical
performance as compared to bulk silicon anode. The large area of
nano-structure and greater voids of porous structure provided a
large surface to the diffusivity of lithium ions and controlled the
pulverization and compensated the electrical contact loss.

Silicon Nanostructures With Binders in LIBs

The nano-structural silicon enhanced the electrochemical
performance to some extent, but a modification in silicon
anode was still required. Further electrical contact loss
in silicon anode due to pulverization was controlled by
adding conductive additives and polymer binders in Si anode
(Priyono et al., 2017; Teng et al., 2018). Conductive additives
provided an electronic path in charging/discharging but
after some cycles failed to contact silicon particles because
conductive additives could not provide binding force Si particles
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FIGURE 5 | (A) Evaluation of SEI film and surface kinetics of Si@mNOC during cycling. (B) Schematic representation of conductivity, stability and stable SEI film on

Si@mNOC after cycling. (C) Cycling performance with coulombic efficiency at current 2 A g−1. Reproduced with permission (Yu et al., 2016). Copyright © 2017

Elsevier Ltd. All rights reserved.

(Beattie et al., 2008; Renganathan et al., 2010). To overcome
these issues, numbers of conductive binders were used to
improve electronic conductivity and stability of Si anode for
long cycle life (Lin et al., 2016; Sarode et al., 2018). By taking
the advantages of self-healing ability of a material, a conductive
binder was prepared by use of ureidopyrimidinone (UPy)
and polyethylene glycol (PEG). By use UPy-PEG-UPy as a
binder with SiNPs in anode material excellent electrochemical
performance was achieved. SiNPs anode with UPy-PEG-UPy
binder delivered high capacity 1,454mA h g−1 over 400 cycles
with the decay of 0.04 % per cycle. The self-healing ability of
UPy-PEG-UPy binder maintained the good integrity of silicon
anode as compared to the traditional binder (Yang et al., 2018).
Electrical contact loss in Si anode has been tried to control

by the chemically bonded conductive binder. The aqueous
hybrid gel prepared with sodium carboxymethyl cellulose by
cross-linker sodium borate and used with silicon as an anode
material. Hybrid gel covalently bonded with silicon particles
and also acted as a buffer for silicon particles. Si anode with
gel exhibited good capacity and cycle life of 1211.5mA h g−1

after 600 cycles with coulombic efficiency 88.95 % (Zhang et al.,
2018). Furthermore, to enhance the electrochemical properties
and stability of Si anode, a naturally derived gum Arabic (GA)
polymer (as fiber-reinforced concrete) was used to control
cracking of Si anode during charging/discharging as shown
in Figure 3. Si anode with GA polymer binder delivered high
capacity as compare to CMC binder 2,000mA h g−1 at current
rate 1C after 500 cycles and excellent cycle life with capacity
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FIGURE 6 | (A) Schematic representation of charging/discharging process of the yolk-shell structured Si@mC electrode with 10 and 50 nm voids. Reproduced with

permission (Yang et al., 2015). Copyright © 2015 Published by Elsevier Ltd. (B) Schematic diagram of synthesis process of Si@micro-C composite, surface

morphology, and cycle performance. Reproduced with permission (Luo et al., 2016b). © 2016 Elsevier Ltd. All rights reserved. (C) Schematic representation of

charging/discharging process of Si@C and Si@C@Ge. Reproduced with permission (Luo et al., 2016a). (D) Schematic representation of the behavior of SiNPs and

Si@TiO2 before and after cycling. Reproduced with permission (Yang et al., 2017). (E) Schematic illustration of conclusion and cycling performance of Si@C@TiO2 as

anode material. Reproduced with permission (Luo et al., 2016c). Copyright © 2016, American Chemical Society.

1,000mA h g−1 at rate 1C over 1,000 cycles. Glycoprotein chain
in GA provided good mechanical properties which behaved
like a fiber in concrete and polysaccharide provided binding
force due to the presence of hydroxyl groups (Ling et al., 2015).
Conductive binder polymers have significantly enhanced the
electrochemical properties of Si anode material and its structural
integrity.

Coated-Silicon Nanostructures in LIBs

Continuous charging/discharging solid electrolyte interphase
film by direct interaction between electrolyte and silicon particles
is developed on silicon particles in the anode. SEI film on silicon
particles acts as a barrier to further diffusion of lithium-ion and
directly affects cycle life of Si anode (Yang et al., 2008; Zhou et al.,

2014). Fast decay in capacity and SEI film has been controlled
by a coating of different materials on silicon particles. Coating
of different materials provides a barrier between direct contacts
of electrolyte to active silicon which leads to decrease interfacial
reaction between electrolytes to the electrode material and
suppress the transformation of structure because of mechanical
properties of coating materials (Kim et al., 2015). To stabilize
SEI film, carbon has been used widely in the coating of silicon
particles due to its good electronic and mechanical properties.
Carbon coating controls the pulverization of silicon particles and
prevents direct contact of the electrolyte with silicon particles
(Yi et al., 2017). By leaving interior voids, unfilled pSiMPs was
coated with carbon as shown in Figure 4. Unfilled carbon coated
SiMPs as anode material delivered high capacity and excellent
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FIGURE 7 | Schematic diagram of a process of synthesis porous silicon sample and setup for range of ochratoxin (0.01–5 ng/ml) detection by using pSi

immunosensor under UV Laser. Protein A covalently immobilized surface on pSiNPs further modified by anti-OTA and BSA which was sensitive toward ochratoxin

(Myndrul et al., 2017). Copyright © 2017 Elsevier B.V. All rights reserved.

cycle life (1,500mA h g−1 at current rate C/4 over 1,000 cycles).
Exterior carbon coating prevented the direct contact electrolyte
with silicon particles and interior voids provided extra space to
silicon particles during volume expansion as in Figure 4 (Lu et al.,
2015). Furthermore, Apple-like silicon@nitrogen, oxygen-doped
carbon hierarchical mesoporous structure was prepared and
used as anode material shown in Figure 5. Si@mNOC as anode

material delivered good capacity and long cycle life (1,203 and
900mA h g−1 at current rate 2A g−1 after 2,000 and 4,000 cycles
in Figure 5C). In Si@mNOC, the void space and mesoporous
structure accommodated the volume expansion and facilitated
ion transport and also controlled SEI film and improved the
mechanical stability of the anode material. Nitrogen and oxygen
doping improved the electronic conductivity and electrochemical
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performance of Si@mNOC anode shown in Figures 5A,B (Yu
et al., 2016). Many attempts have been taken to enhance the
kinetics of ionic diffusion and electrical conductivity of coating
material (carbon) by doping of different atoms (oxygen, nitrogen,
and sulfur) and by using hierarchical structure (Xu et al., 2015;
Wang et al., 2016).

Yolk-Shell and Core-Shell Silicon Nanostructures

Furthermore, electrochemical properties of silicon anode
material enhanced by the modified structure of SiNPs and
by using double coating of different materials (Ensafi et al.,
2017; Jang et al., 2018; Xing et al., 2018). Herein, to improve
electrochemical performance of anode material in LIBs, a series
of surface and interface engineering to fabricate carbon and
titanium oxide coated Si with yolk and core-shell structure have
been fabricated as shown in Figure 6 (Luo et al., 2017). First,
Si@mesoporous carbon yolk-shell structure was prepared which
provided extra voids inside coating as shown in Figure 6A.
This novel yolk-shell structure led to enhance rate capability,
cycle life with good specific capacity and uniform stable SEI
film which exhibited good electrochemical performance (Yang
et al., 2015). Second, SiNPs coated with a controllable and
uniform thickness of carbon coating (2–25 nm) to form a core-
shell structure. This coaxial core-shell structure enhanced the
stability of anode and exhibited good specific capacity over 500
cycles as shown in Figure 6B. (Luo et al., 2016b). Third, Si@C
coated with germanium by a simple sol-gel process and formed
Si@C@Ge core-satellite NPs as shown in Figure 6C. Coating of
germanium on Si@C exhibited high electrochemical kinetic and
good structural stability as compared to uncoated Si@C (Luo
et al., 2016a). Fourth, to enhance initial coulombic efficiency,
lithium storage safety, and structure integrity, amorphous TiO2

coated on SiNPs and made core-shell structure by the sol-gel
process. Amorphous TiO2 shell provided high lithium storage
safety by increasing lithium kinetic because of TiO2 showed
a low resistance of Li diffusion during the electrochemical
process as shown in Figure 6D. Amorphous TiO2 shell acted
as an elastic belt on SiNPs to control volume variation during
charging/discharging and stabilized the SEI film by resisting the
contact of electrolyte to active silicon which has led to high cycle
life (Yang et al., 2017). Last, SiNPs coated with double layer of
carbon and TiO2 (Si@C@TiO2) via a two-step sol-gel process.
Si@C@TiO2 composite as anode material handled conductivity,
volume change during lithiation/delithiation and unstable SEI
film. In Si@C@TiO2 composite carbon enhanced electrical
conductivity by providing an electronic path to electron during
the electrochemical process, TiO stabilized structure integrity of
anode by providing mechanical properties and controlled the
SEI film by stopping the direct contact of electrolyte to silicon as
shown in Figure 6E (Luo et al., 2016c).

Sensors
On the basis of the surface, optical and electrical properties,
pSiNPs have been used for detection of different atoms, gas
molecules, pH and polar/non-polar organic solvent (Harraz
et al., 2014; Kashyout et al., 2015; Sarkar et al., 2018). To
improve the fluorescence properties of silicon oxides, these were

coated with dye molecules through different functional groups.
Photoluminescence intensity depends upon concentration and
size of silicon particles. The doping of different particles also
affected by other organic vapors which are under examinaion
(Zhang et al., 2010; Huang et al., 2015; Moret et al., 2016;
Nayef and Khudhair, 2018). On the basis of fluorescence
quenching of pSiNPs with other atoms, pSiNPs have been used
for detection of different ions and molecules (Cu+2, NO2,
Hg2+, NH3, Ag2+, and ethyl carbamate) (Xia et al., 2013;
Luo et al., 2018; Qin et al., 2018a,b). PL immunosensor was
prepared by functionalization of porous silicon with Protein-A
and bovine serum albumin (BSA) for detection of Ochratoxin
A under UV Laser as shown in Figure 7. BSA added to active
sites to blocking adsorption of protein on these sites and
improve sensitivity. Functionalized-pSi immunosenor was tested
under the wide range of concentrations (0.01–5 ng/ml) which
was exhibited high sensitivity and high-speed detection even
at low level of ochratoxin A. It was observed PL-intensity
decreased as concentration of Ochratoxin A increased in sample
(Myndrul et al., 2017). Carbon doped silicon nanoparticles
were prepared by the mild reaction and used for detection
Hg2+, Ag2+, and latent fingerprints. SiNPs showed good sensing
ability for Hg2+ and Ag2+ by highly quenched with Hg2+,
Ag2+ and provided high range wavelength of excitation and
emission. SiNPs also used as fluorescence label to detect a
fingerprint on different non-porous material surfaces. In the
presence of ultraviolet excitation, SiNPs provided excellent
fluorescent images on different surfaces as shown in Figure 8

(Zhu et al., 2018). SiNPs are easy to synthesize and due to
numbers of properties (non-toxicity, wide range fluorescence
spectra, good photoluminescence peak, solubility and large
surface area) remained in great interest to apply in different
fields.

Other Applications
On the basis of the surface, optical, biocompatible and nontoxic
properties, pSiNPs have been used in bio-applications as Nano
carriers, diagnostics and for the treatment of cancer (Vaccari
et al., 2006; Donnorso et al., 2012; Haidary et al., 2012;
Kaasalainen et al., 2012; Tzur-Balter et al., 2013; Yang et al.,
2014b; Min-Dianey et al., 2018). The mSiNPs have great potential
toward drug delivery devices due to their easy functionalization,
good loading/release rate, solubility, tunable porosity and a
large surface area (200–800 m2/g) (Reffitt et al., 1999; Anderson
et al., 2003; Mattei and Valentini, 2003; Horcajada et al., 2004;
Salonen et al., 2005; Anglin et al., 2008; Tabasi et al., 2012;
Ma et al., 2017a). In bio-applications, pSiNPs exhibit good
result in vitro and in vivo conditions (Ferreira et al., 2016).
The pSiNPs were prepared by electrochemical etching and
coated with dextran. The pSiNPs used for theranostics of cancer
on the basis of photoluminescence properties and noted that
excellent uptake of pSiNPs by cancer cell and also suppress
the proliferation of cancer cells in vitro (Wang et al., 2012).
SiNPs have been used for detection of microRNAs which acts
as biomarkers of various diseases. The concentration of miRNAs
was measured by a decrease of SiNPs fluorescence (Ding et al.,
2018). Further, pSiNPs loaded with anticancer drugs and photo
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FIGURE 8 | Latent fingerprint by SiNPs on a different sheet. (a) Sheet of the silicon wafer, (b) sheet of copper, (c) sheet of glass, (d) On patterned coin (Zhu et al.,

2018). Copyright © 2017 Elsevier Ltd. All rights reserved.

FIGURE 9 | Schematic diagram of pSiNPs based composite and process of the pathway of DOX into nuclei of MDR cancer cell with pSiNPs and without pSiNPs and

with pSiNPs and dye. In pathway I, free DOX without pSiNPs carriers injected in to MDR cancer cell and efflux of DOX molecules from cell was maximum. In pathway

II, DOX with pSiNPs carriers into MDR cancer cell. DOX with pSiNPs killed the cancer cell under effect of NIR Laser and efflux of DOX molecules from cell is minimum.

In pathway III, DOX with dye and pSiNPs entered to MDR cancer cell and killed the cancer cells completely under effect of NIR Laser without any efflux of DOX

molecules (Xia et al., 2018). Copyright © 2018 Elsevier B.V. All rights reserved.

Frontiers in Chemistry | www.frontiersin.org 9 November 2018 | Volume 6 | Article 539

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Manj et al. Porous Silicon Nanomaterials

FIGURE 10 | Schematic diagram of synthesis process of multifunctional mesoporous as nanocarrier. iRGD Peptide covalently attached with pSiNPs to achieve and

suppress target cancer cell. Alexa flour 488 dye bonded covalently to pSiNPs, to monitoring distribution particles in cancer cell and DOTA introduced on pSiNPs to

increase hydrophilic moieties (Wang et al., 2015). Copyright © 2015 Elsevier Ltd. All rights reserved.

thermal agent by electrostatic assembly technique to treat the
multidrug resistant cancer cells as shown in Figure 9. It is
observed that pSiNPs leave the anticancer medicines 88.1%
under different conditions and kill the multidrug resistant
cancer cell. The pSiNPs as Nano carriers increased the efficiency
of photo thermal therapy and chemotherapy (Xia et al.,
2018). Furthermore, multifunctional pSiNPs were prepared by
SPAAS click chemistry as shown in Figure 10. Multifunctional
pSiNPs improved the rate of dissolution and cancer therapy.
Uptake of multifunctional pSiNPs by tumors was enhanced
due to the presence of iRGD peptide on the surface of
pSiNPs and retained in tumors which suppressed tumors to
further growth. Multifunctional pSiNPs exhibited well in vivo
behavior and highest efficiency of drug delivery (Wang et al.,
2015).

CONCLUSION AND OUTLOOK

In this review, we focus on the importance of pSiNPs with
different structures in various fields. Silicon has much attractive
material as an anode in LIBs due to their theoretical capacity

(4,200mA h g−1), intercalated and electrical properties but after

some cycles of charging/discharging volume of silicon changes.
Continuous volume changes in silicon anode lead to fractures

and affect the electrochemical properties. Solid electrolyte
interphase developed on the particle by an electrolyte which

leads to electrical contact loss. These challenges pulverization,
electrical loss and stable SEI film by mesoporous silicon have
been elaborated. It is observed that SiNPs play an important role
to control volume changes in Si-anode as compare to silicon
bulk. To control pulverization in Si anode further structure
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of silicon particles has been modified to mesoporous, 3D and
hollow spheres. By structural modification of SiNPs, a significant
enhancement of electrochemical properties have been noted.
Furthermore, to control volume change and improve electrical
contact loss and stabilization of SEI film, SiNPs were coated
with different materials (carbon, polymers other metals). Coating
of different materials on SiNPs has significantly improved
electrochemical properties and stabilize SEI films on particles. It
is noted that the double coating of different material on particles
enhanced electronic conductivity, capacity and control SEI film
by stopping direct contact of electrolyte to particles. For future
work, silicon anode material for commercial use still needs to
be improved in volume change, stabilization of SEI film, high
capacity, long cycle life, initial Coulombic efficiency and rate
capability.

In biosensors and gas sensors, on the basis of optical and
surface properties of pSiNPs have been used and exhibited good
results. In sensors, porous silicon provides a number of void
spaces to adsorption of different molecules, gases, drugs, and
biomolecules. Structural dependent properties (optical, electrical
and electrical properties) varies after adsorption of different
molecules on the surface of porous silicon. This variation in
properties are used to detect different materials. Further pSiNPs
can be used to detect different compounds and biomarkers of
different diseases which are still undetected.

Mesoporous structure of silicon provides a large surface
area (200–800 m2 g−1), tunable optical properties and

void spaces which act as good drug carriers. MSiNPs have
been used as drug carriers, for therapy and detection
of cancer cells due to their unique properties optical,
non-toxicity, biocompatibility and surface properties.
Detection and treatment of cancer tissues, tumors, and
some biomarkers have been observed successfully by use of
pSiNPs.
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