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Abstract: In today’s developing aircraft and automotive industry, extremely durable and wear-
resistant materials, especially in high temperatures, are applied. Due to this practical approach,
conventional materials have been superseded by composite materials. In recent years, the application
of metal matrix composites has become evident in industry 4.0. A study has been performed to
analyze the surface roughness of aluminum matrix composites named Duralcan® during end milling.
Two roughness surface parameters have been selected: arithmetical mean roughness value Ra and
mean roughness depth Rz regarding the variable cutting speed. Due to the classification of aluminum
matrix composites as hard-to-cut materials concerning excessive tool wear, this paper describes the
possibility of surface roughness prediction using machine learning algorithms. In order to find the
best algorithm, Classification and Regression Tree (CART) and pattern recognition models based
on artificial neural networks (ANN) have been compared. By following the obtained models, the
experiment shows the effectiveness of roughness prediction based on verification models. Based on
experimental research, the authors obtained the coefficient R2 for the CART model 0.91 and the mean
square error for the model ANN 0.11.

Keywords: metal matrix composites; surface roughness; CART; ANN

1. Introduction

Nowadays, composites materials are used extensively by the automotive and aircraft
industries because of their specific mechanical properties. One of the popular construction
materials is metal matrix composites (MMCs), which offer higher hardness and wear re-
sistance than conventional monolithic materials. These multiphase materials containing
matrix and reinforcement are characterized by specific strength and good wear resis-
tance. Moreover, these reinforcing phases efficiently increase the modulus due to MMCs’
load-bearing capability during mechanical loading [1,2]. One type of MMCs is particles
reinforced metal matrix composites (PRMMCs), including various kinds of particles added
into the metal matrices such as carbides, oxides, or nitrides. Compared to the other form
of reinforcement such as whiskers, short fibers, and continuous fiber, the particles give
better isentropic properties to distribute uniformly in the matrix phase. In addition, the
reinforcement in the form of particles bears a higher load than the matrix, which strength-
ens it effectively (called the load transfer effect). Unfortunately, if the load on the particle
strength is exceeded, the particle will crack. Therefore, PRMMCs are exposed to early
fracture, and strength and ductility reduction. Thus, during the design and fabrication of
composites with particles reinforcement, it is essential to consider particle size, aspect ratio,
and matrix strength to reduce particle damage [3].
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One of the most used industrial applications is aluminum matrix composites (AMCs),
which consist of pure aluminum or aluminum alloy as a matrix. Aluminum alloys are one
of the most common nonferrous metals used in commercial production, and these alloys,
with reinforcement, can offer outstanding mechanical and tribological properties. The
principal advantages of reinforcement in AMCs are the improvements in hardness, tensile
strength, impact strength, compressive strength, and wear resistance [4]. These types of
composites are produced by in situ fabrication, rheocasting, and spray deposition in semi-
solid matrix conditions, but the most popular is solid- and liquid-state processing [5]. The
most commercially used technique in liquid-state processing is stir casting, which is more
cost-effective than solid-state methods. This method provides a relatively homogenous
dispersion of reinforcements in a matrix [6]. One typical reinforcement used in the aviation
and manufacturing industry is silicon carbide (SiC) owing to its thermal characteristics
and tribological properties. S. Sivananthan et al. [7] successfully adopted stir casting to
fabricate AA 6061 alloy with 0–4 wt.% of SiC particulates. The SiC composite acquired
better properties than AA 6061 alloy, and just four wt.% of SiC improved hardness by 25%
and tensile strength by 25.6% compared to AA 6061 alloy. The enhancement of mechanical
properties was also observed by J. Jebeen Moses et al. [8], who produced AMC with SiC
particulates of 5, 10, and 15 wt.%. They reported that AA 6061 alloy with 15% volume fraction
improved microhardness by 133.33% and ultimate shear by 65.2% compared to AA 6061
alloy. Moreover, such an approach allows homogenously distributing SiC particulates in the
aluminum alloy matrix and limiting the risk of SiC segregation along the grain boundaries.

Nevertheless, aluminum-based silicon carbide composite (SiCp/Al) is also a hard-to-
cut material because of its high-hardness reinforcing particles, which could cause excessive
tool wear and deterioration of surface roughness. For high precision engineering applica-
tions, material removal rate, tool life, and workpiece surface roughness are necessary for
machinability assessment. Nowadays, most researchers focus on the influence of various
SiCp/Al composite parameters on its machinability. For example, P. Zhang et al. [9] ana-
lyzed the size particle effect on cutting force, cutting temperature, and chip shape under
different cutting parameters. The results show that cutting force is positively correlated to
feed rate and particle size. When the particles are between 10 and 30 µm and the cutting
speed increases, the main cutting force decreases. On the other hand, when particle size
increases to 40 µm, the cutting force firstly decreases and then increases. Moreover, the
bending radius and length of the chip decrease as particle size increases. Other studies are
focused on the machining condition effect on surface roughness, especially examining the
influence of the cutting parameters [10,11]. Attention is focused on the surface roughness
to obtain a good fatigue life of machined parts. PRMMCs’ surface roughness is complex
because of voids, microcracks, pits, protuberances, grooves, or matrix tearing on the ma-
chined surface. Additionally, the irregular surface texture is observed due to particles in
the matrix, and particle fracture affects the surface roughness [12–14]. Khare et al. [15]
investigated the influence of cutting parameters and wt.% Al2O3/Gr on surface roughness
during the end milling of Al/Al2O3/Gr composite. This study shows a significant feed rate,
cutting speed, and wt.% Al2O3/Gr on surface roughness. In addition to cutting parameter
influence, the optimization of machining conditions in the machining of MMCs is general
in today’s studies [16,17]. The optimization of machining conditions in MMCs milling
was studied by S. Karabulut et al. [18] to achieve a better surface finish. In this study, the
machining parameter was optimized by Taguchi’s L18 (21 × 32), and an artificial neural
network (ANN) model was used to estimate Ra’s arithmetical mean roughness value.
Results show the best optimal parametric combination for AA7039/SiC and AA7039/B4C
milling (cutting speed 488 m/min and feed rate 0.1 mm/tooth) and the most significant
cutting speed impact on surface finish. Due to the poor machinability of MMCs and high
processing costs, soft computing techniques and unconventional machining [19] have
become a significant interest for researchers to determine performance prediction and
optimization. Some of the soft techniques applied by researchers due to analyzing the
machining of MMCs are ANN, response surface methodology (RSM), genetic algorithm
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(GA), Taguchi method, or finite computational element [20,21]. These techniques are rela-
tively cost-effective and could be applied in numerical and experimental approaches for
modeling or simulating MMCs’ manufacturing and machining [22]. A numerical model for
analyzing the effects of PMMCs particulate size on damage mechanisms was developed by
S. Gad et al. [23]. This paper’s computational finite element (FE) model was proposed to
determine the elastoplastic behavior of A359/SiC particulate composite. They concluded
that increasing SiC volume fracture (from 2 to 20%) leads to the increased modulus of
elasticity, yield strength, and tensile strength. In addition, raising the particulate size in
the matrix reduces the yield strength, ultimate tensile strength, and failure strain. These
kinds of models could be helpful in the optimization of reinforcement parameters during
the design phase. One of the new approaches to support decision making in MMCs casting
was proposed by R. Sika et al. [24]. They designed Open Atlas of Casting Defects (OACD)
to identify various defects of casting. Such a classification of defects in MMCs castings
could be an appropriate tool to eliminate these defects using a support expert program.
Soft techniques are also used to optimize surface roughness [25,26]. S. Karabulut [27]
applied the Taguchi method to optimize cutting parameters, and ANN to predict surface
roughness during milling of AA7039/Al2O3 metal matrix composites. Their experiments
showed that the best cutting parameters for superior surface roughness were observed for
a cutting speed of 488 m/min, feed rate of 0.1 mm/tooth, and axial depth of cut of 1 mm.
They also developed an effective ANN prediction model for surface roughness achieving
determination coefficient R2 = 97.75%. G. Zhou et al. [28] proposed an ANN roughness
prediction model for Al/SiC particulate composite material milling. They developed a
learning method to solve the MMCs milling problems effectively, and a successfully trained
ANN model that could predict surface roughness with a 2.08% mean relative error.

Most past studies focus on optimizing cutting parameters and analyzing cutting
forces, surface roughness, and tool wear in MMCs machining. Optimization and prediction
techniques are mostly used by the Taguchi method, ANN, or analysis of variance (ANOVA)
to machining aluminum particulate composites. The scope of this paper involves the
application of Classification and Regression Tree (CART) and pattern recognition models
based on ANN to predict surface roughness in Al/SiC particulate composites with 10%
volume fracture. Adaptation of these kinds of soft techniques aims to understand the
machinability problem of hard-to-cut composites. In addition, analyzing surface roughness
could be valuable for future researchers.

2. Materials and Methods

The end milling investigation was carried out using SiC particle-reinforced aluminum
alloy composites called DuralcanTM. This material is manufactured by mixing the ceramic
powder into molten aluminum, using a patented process. Then, the melt is poured into the
foundry ingot, and products are formed using high-pressure die-casting. In this paper, the
F3S.10S (AA359/SiC/10p) was applied to experimental studies. The range of mechanical
and physical properties are shown in Table 1; Table 2. These composites have many uses in
manufacturing in the automotive industry, such as brake rotors, brake calipers, brackets,
and brake drums, etc.

Table 1. Typical physical properties of DuralcanTM F3S.10S.

Density (g/cm3) Electrical Conductivity (%IACS) Specific Heat (cal/g·K) Average Coefficient of
Thermal Expansion (10−6/K)

2.71 34.2 0.21 20.7
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Table 2. Mechanical properties of F3S.10S composite.

Ultimate Strength
(MPa)

Yield Strength
(MPa)

Elongation
(%)

Elastic Modulus
(GPa)

221 165 2.6 98.6

The scanning electron microscopy (SEM) integrated with energy dispersive spec-
troscopy (TESCAN MIRA3 FEG SEM, Brno, Czech Republic) was applied to evaluate the
morphology of AA359/SiC/10p composite. The metallographic microsections end EDM
micrographs of AMC are shown in Figure 1.

Figure 1. Metallographic microsections of F3S.10S composite and EDS micrographs of SiC powder.

The dry end milling experiments were conducted on a DECKEL-MAHO DMC70 V
(Pfronten, Bayern, Germany) machining center integrated with a piezoelectric force sensor.
Furthermore, diamond-coated end mills were chosen to carry out research (diameter of
cutting-edge d = 10 mm, number of edges z = 3). In Table 3, the research plan with one
variable is presented.

Table 3. Parameters of research plan.

Cutting Speed vc
(m/min)

Spindle Speed n
(rev/min)

Feed Per Tooth fz
(mm/tooth)

Axial Infeed Depth ap
(mm)

Radial Infeed Depth ae
(mm)

300 9544

0.035 8 0.2500 15,923

900 28,662

Three repetitions for each cutting speed were carried out. After each five milling pass,
the cutting force components were measured in three directions (Fp for the axial direction,
FfN for normal feed direction, and Ff for feed direction). One of the stages of the research
was also the measurement of roughness parameters Ra (arithmetic mean roughness) and Rz
(surface roughness depth), and tool corner wear VBC. For this purpose, the Hommel Tester
T500 (JENOPTIK Industrial Metrology, Villingen-Schwenningen, Germany) profilometer
measured length ln = 4 mm, and the elementary segment lr = 0.08 mm was applied to assess
the topography of the machined surface. Figure 2 shows the scheme of the experimental
end milling process.
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Figure 2. Schematic of the experimental set up.

3. Results
3.1. Analysis of Surface Roughness

The analysis of Ra and Rz parameters was investigated in various cutting speeds to
determine the relations between the surface roughness and cutting forces. MMC machined
surfaces at different cutting speeds are given in Figures 3–5.

Figure 3. Machined surface profile of the AA359/SiC/10p, vc = 300 m/min, tc = 3.65 min.
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Figure 4. Machined surface profile of the AA359/SiC/10p, vc = 500 m/min, tc = 1.82 min.

Figure 5. Machined surface profile of the AA359/SiC/10p, vc = 900 m/min, tc = 1.22 min.

To present the measured value of surface roughness during the end milling of DuralcanTM,
the Ra and Rz parameters in cutting time function are shown in Figures 6 and 7. The uneven
rise of surface roughness could be caused by the unbalanced distribution of SiC particles
in the matrix. As a result, the SiC particles are tearing from the matrix, and the machined
surface quality is not satisfactory. Moreover, excessive tool wear causes microcracks and
pits on the AMC surface. The relationship between the surface roughness, cutting speed,
and tool corner wear (VBC) is presented in Figure 8.

Figure 6. The Ra parameter in function of cutting time.
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Figure 7. The Rz parameter in function of cutting time.

Figure 8. Three dimensional surface plot, (a) Ra dependence on VBC and vc, (b) Rz dependence on
VBC and vc.

3.2. Analysis of Cutting Forces

Analysis of the cutting force’s components in the time domain and the frequency
domain was conducted to recognize the correlation between surface roughness parameters
and measured signals. During the tests, root mean square values (RMS) based on the time
domain were selected. Additionally, tool revolution frequency (Ffr) was identified in the
frequency domain. The tool’s revolution frequency was calculated for three cutting speeds

f r =
n
60

·z (1)

where n is the spindle speed (rev/min) and z is the number of edges.
An exemplary relation between the Ra and diagnostic measures at various cutting

speed is presented in Figure 9.
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Figure 9. Three dimensional surface plot, (a) Ra dependence on Fpfr and FfNfr, (b) Ra dependence on FpRMS and FfRMS,
(c) Rz dependence on FfNRMS and FpRMS, (d) Rz dependence on FpRMS and FfRMS.

The R2 coefficient determines the matching of mathematical function to the results of
the test.

Figure 10 presents an exemplary correlation between the selected cutting compo-
nents (diagnostic measures) and surface roughness. The low coefficient R2 indicates the
possibility of using more complex models than regression.
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Figure 10. Surface roughness parameter as a function of cutting force measures (a) time domain, FfRMS, (b) frequency
domain Fpfr.

3.3. Diagnostic Model Based on Classification and Regression Tree (CART)

One of the classifications and predictive methods is CART, which creates the possibility
of representing the knowledge after the learning process. This kind of method is easy
to implement in the diagnostic procedures to develop an independent expert system. In
this paper, the CART and Chi-squared Automatic Interaction Detector (CHAID) Tree was
proposed to predict the surface roughness based on cutting forces. The structure of the
CHAID tree with three interior nodes and four final nodes for Ra prediction is presented in
Figure 11.

Figure 11. Structure of CHAID tree for parameter Ra.

The CHAID method consists of trees where each node contains a split condition, and
its purpose is optimal prediction, especially in regression problems. The cutting speed,
cutting forces, and tool wear were entered as inputs. Based on the selected input data, the
validity analysis was carried out. The study shows that the FfNRMS diagnostic measure
has the most significant impact on surface roughness Ra (Figure 12). The data set was
divided into two subsets: training and testing. The test subset aims to assess the model’s
generalizability and accounts for 30% of the input data. To check the effectiveness of the
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predicted model, the measured and indicated value was compared. A spread graph of this
value is presented in Figure 13.

Figure 12. Validity of input parameters on surface roughness (CHAID).

Figure 13. CHAID validation model.

Different types of models were carried out to select the best predictive model with the
most significant efficiency. Another analysis was developed using CART with four interior
nodes and five final nodes. The model consists of many simple models built on subsamples
drawn from the training set for CART trees. Earlier, the case weights were determined that
increased the probability of being drawn to the next set of these cases that generated the
most significant error. The structure of CART is presented in Figure 14.
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Figure 14. Structure of CART.

The effectiveness of the prediction model was checked, similarly to CHAID analysis,
and the comparison of the predicted and observed values of Ra is shown in Figure 15.
The mean square error (MSE) was estimated to compare measured and expected surface
roughness based on the new experimental data. For this CART model, MSE for the
verification model is 0.026.

Figure 15. CART validation model.

3.4. Diagnostic Model Based on Artificial Neural Network (ANN)

With a view to select the best surface roughness predictive model, a Multilayer Per-
ceptron (MLP) was also developed. For this analysis, the number of random samples
was assumed at 70% for the training set, 15% for the test, and 15% for the validation set.
The input data were cutting force components, cutting speed, and tool wear, the same as
in CART models. In Table 4, the characteristic parameters of the MLP model are shown.
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In this model, ten hidden layers were assumed. In this case, the validity analysis was
performed and showed that the FpRMS diagnostic measure has the most significant impact
on surface roughness Ra (Figure 16). Based on the new experimental data, the MSE is 0.11,
and the comparison of predicted and observed values of Ra is shown in Figure 17.

Table 4. Structure of MLP model.

Educational
Quality Testing Quality Validation

Quality
Validation Error

(Sum of Squares)

Activation
Function in

Hidden Layer

Activation
Function in

Output Layer

0.91 0.89 0.94 0.005 logistic logistic

Figure 16. Validity of input parameters on surface roughness (ANN).

Figure 17. ANN validation model.

4. Conclusions

The results of surface roughness studies on AA359/SiC/10p composites during end
milling were presented. The possibility of implementing the computing techniques to
predict the surface roughness parameter during the machining of hard-to-cut composites
are observed, and the following conclusions have been drawn:
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1. The prediction of surface roughness based on the cutting forces is conceivable. Still, it
is necessary to implement another type of model rather than regression because of
the low determination coefficients (R2

Ra = 0.67, and R2
Rz = 0.32) due to excessive tool

wear and pits on the Duralcan™ surface.
2. The application of ANNs to predict surface roughness gives a satisfactory effect and

the possibility to achieve a diagnostic system based on cutting force’s measures. The
mean square error for the verification model is 0.11.

3. The decision tree method is a basic predictive model, which might be achieved in milling
metal matrix composites. The applied CART model gives better results than MLP,
whereby the best effect was observed for the CART verification model (R2 = 0.91).

4. In summary, computing techniques such as machine learning or artificial intelligence
are straightforward methods that could be used to predict surface roughness during
the machining of particle-reinforced aluminum alloy composites.
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