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Simple Summary: Strategies to enhance the preferential accumulation and activation of Natural
Killer (NK) cells in the tumor microenvironment can be expected to increase the efficacy of NK
cell-based cancer immunotherapy. In this study, we report that a bispecific single domain antibody
(VHH) that targets CD16 (FcRγIII) on NK cells and the epidermal growth factor receptor (EGFR) on
tumor cells can be used to target and enhance cytolysis of cancer cells. The bispecific VHH enhanced
NK cell activation and cytotoxicity in an EGFR- and CD16-dependent and KRAS-independent
manner. Moreover, the bispecific VHH induced stronger activity of cancer patient-derived NK
cells and resulted in tumor control in a co-culture of metastatic colorectal cancer cells and either
autologous peripheral blood mononuclear cells or allogeneic CD16+ NK cells. We believe that this
novel approach could represent a valid therapeutic strategy either alone or in combination with other
NK cell-based therapies.

Abstract: The ability to kill tumor cells while maintaining an acceptable safety profile makes Natural
Killer (NK) cells promising assets for cancer therapy. Strategies to enhance the preferential accu-
mulation and activation of NK cells in the tumor microenvironment can be expected to increase
the efficacy of NK cell-based therapies. In this study, we show binding of a novel bispecific single
domain antibody (VHH) to both CD16 (FcRγIII) on NK cells and the epidermal growth factor receptor
(EGFR) on tumor cells of epithelial origin. The bispecific VHH triggered CD16- and EGFR-dependent
activation of NK cells and subsequent lysis of tumor cells, regardless of the KRAS mutational status
of the tumor. Enhancement of NK cell activation by the bispecific VHH was also observed when
NK cells of colorectal cancer (CRC) patients were co-cultured with EGFR expressing tumor cells.
Finally, higher levels of cytotoxicity were found against patient-derived metastatic CRC cells in the
presence of the bispecific VHH and autologous peripheral blood mononuclear cells or allogeneic
CD16 expressing NK cells. The anticancer activity of CD16-EGFR bispecific VHHs reported here
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merits further exploration to assess its potential therapeutic activity either alone or in combination
with adoptive NK cell-based therapeutic approaches.

Keywords: NK cells; single domain antibodies; bispecific VHH; EGFR; CD16

1. Introduction

Natural Killer (NK) cells are large granular lymphocytes with the innate ability to kill
cells that present a threat to the host, such as cancer and virus-infected cells [1,2]. Human
NK cells represent ~15% of all peripheral blood lymphocytes and are characterized by
the expression of CD56 and the lack of the CD3-T cell receptor complex [3]. Two main
NK cell subsets with distinct functions can be defined based on the expression of CD56
and the Fcγ receptor (FcγR)IIIA (CD16a): the CD56dimCD16+ subset which represents
~90% of human NK cells and is characterized by a more potent cytotoxic activity and
the CD56brightCD16a−/dim subset described to have lower cytotoxic capacity but to be a
stronger producer of immunoregulatory cytokines [3]. NK cell activity is regulated by
a balance of inhibitory and activating receptors present on their surface [4]. The former
comprises the killer cell immunoglobulin-like receptors (KIR)2D and the natural killer
group 2 member (NKG2)A which recognize human leukocyte antigens (HLA), that can
be downregulated by tumor and virus-infected cells to escape T cell recognition, and
non-HLA-recognizing receptors, such as the Lectin-like Transcript-1 (LLT-1), which binds
to NKRP1A. The latter include NKG2D and natural cytotoxicity receptors (NCRs), such as
NKp30/44/46, and the DNAX Accessory Molecule-1 (DNAM-1), which bind to specific
ligands, such as MHC class I polypeptide–related sequence A/B (MICA/B), UL16 binding
protein 1–6 (ULBP1-6), heparan sulfate proteoglycans (HSPG), poliovirus receptor (PVR),
and nectin that are overexpressed by infected or malignant cells [1,4]. When the equilibrium
of the NK cell receptors is skewed towards activation, due to increased expression of
activating ligands or lack of inhibitory signals, NK cells are triggered to release cytotoxic
granules and pro-inflammatory cytokines, such as Interferon (IFN)γ and Tumor Necrosis
Factor (TNF) [4,5]. Moreover, through the expression of CD16a, NK cell activation can
also be triggered by the Fc tail of IgG1 antibodies leading to antibody-dependent cell-
mediated cytotoxicity (ADCC) [6]. In the last years, the transfer of allogeneic NK cells
as a therapeutic cancer strategy has caught the attention of the scientific community
due to the anticancer activity of NK cells and the absence of graft versus host disease
(GvHD) [7–9]. However, preliminary efficacy results are limited, suggesting the need for
combining the transfer of NK cells with NK function-augmenting products to achieve a
maximum antitumor effect [6,10]. Single domain antibodies (VHHs) are small (~15 kDa)
antigen binding fragments derived from heavy chain-only antibodies naturally occurring in
Camelidae (e.g., llama) [11]. VHHs have several advantageous properties, including high
physicochemical stability, high solubility, a small size, that allows the recognition of hidden
antigenic sites and rapid tissue penetration, and low inherent immunogenicity [12,13].
Finally, the production of VHHs has relatively low costs and is time efficient [12,13]. In this
study, we describe the functional characterization of a novel bispecific VHH created by the
fusion of two previously generated monospecific VHHs: C21 directed against the IgG Fc
receptor CD16 and previously shown to trigger NK cell-related IFNγ production [14], and
7D12 which is directed against the epidermal growth factor receptor (EGFR) and interferes
with ligand binding, the sterical EGFR transition into the activating conformation, and
subsequent signaling [15,16]. CD16 exists in two isoforms: CD16a and CD16b. CD16a
can be expressed by NK cells and various T cell subsets, monocytes, and macrophages
while CD16b is expressed by neutrophils. CD16 binds the Fc domain of antibodies (Abs) to
mediate ADCC, phagocytosis, endocytosis, and/or cytokine release [17,18]. The C21 VHH
can recognize and specifically bind both CD16a and CD16b [14]. EGFR is a transmembrane
tyrosine kinase receptor normally expressed by epithelial cells in which it is involved in
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cell proliferation, survival, and motility. Aberrant activation of this receptor, shown in
various epithelial cancers, can be caused by receptor overexpression, gene amplification,
and activating mutations [19]. Currently, four monoclonal antibodies (mAb) targeting
the extracellular domain of EGFR are approved for clinical use against various cancers of
epithelial origin (e.g., colorectal cancer (CRC) and head and neck cancer) [20]. However,
their clinical efficacy is limited by various factors, such as the presence of activating
mutations of the EGFR downstream signaling pathway (e.g., RAS mutations), which result
in the constitutive activation of the pathway regardless of ligand binding [21–23], the
tumor microenvironment (TME), which can restrict antibody penetrance and NK cell
migration into the tumor, and/or the presence of certain modulatory non-coding RNAs
that hamper the negative modulation of the Wnt signaling pathway leading to EGFR-mAb
resistance [20]. In this study, we report the generation of a novel C21/7D12 bispecific VHH
and use in vitro and ex vivo studies using patient PBMC and colorectal cancer samples to
demonstrate that this bispecific VHH can induce a strong NK cell effector response of both
autologous and allogeneic NK cells against EGFR-expressing tumors independent of tumor
RAS mutation status. The anticancer activity of this CD16-EGFR bispecific VHH merits
further exploration to assess its potential therapeutic activity either alone or in combination
with adoptive NK cell-based therapeutic approaches.

2. Material and Methods
2.1. Generation of Two Bispecific Anti-EGFR-Anti-CD16 VHH Constructs

To generate anti-CD16-anti-EGFR bispecific VHHs, genes encoding the anti-CD16
VHH C21 [14] and the anti-EGFR VHH 7D12 [16] were linked by a Gly4Ser-linker and
synthesized (GeneArt, Thermo Fisher Scientific, Waltham, MA, USA) in two orientations
(C-7 and 7-C where the N-terminus of the linker was attached to C21 and 7D12, respec-
tively) and cloned into the pHLsec vector with the addition of C terminal hexaHis tag
(pHLsec-C21-G4S-7D12-hexaHis and pHLsec-7D12-G4S-C21-hexaHis). Bispecific VHH
protein was expressed in HEK293T cells and purified by cobalt affinity, as described previ-
ously [24]. The bispecific VHHs were kept in Phosphate-buffered saline (PBS, Fresenius
Kabi, Bad Homburg vor der Höh, Germany) at 4 ◦C or −20 ◦C for long term storage.
After production, batch quality controls were performed by testing the ability of the newly
produced bispecific VHHs to enhance NK cell cytotoxicity in comparison to the previously
produced batch.

2.2. Cell Lines

A431 (epidermoid carcinoma), HCT116 (CRC), and Colo829 (melanoma) cell lines
were obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA).
A431 and HCT116 were cultured in Dulbecco’s modified medium (DMEM, Gibco, Thermo
Fisher Scientific, Waltham, MA, USA) and Colo829 was cultured in Roswell Park Memorial
Institute medium (RPMI, Gibco, Thermo Fisher Scientific, Waltham, MA, USA). Culture
media were supplemented with 10% Fetal Calf Serum (FCS, Integro, Zaandam, The Nether-
lands), 100 U/mL penicillin, 100 µg/mL streptomycin, 0.3 mg/mL Glutamine (PSG, Gibco,
Thermo Fisher Scientific, Waltham, MA, USA) and 0.05 nM beta-mercaptoethanol (Merck,
Kenilworth, NJ, USA). NK92 Wild Type (WT) cells were obtained from DSMZ (Braun-
schweig, Germany). NK92 CD16+ cells were generated as previously described by inserting
CD16a cDNA (CD16a-176V variant (a.k.a. 158V variant when the amino acid enumeration
does not include the signal sequence)) into a retroviral expression vector pBMN-IRES-EGFP
and subsequently used to stably transduce the cells [25]. Both NK92 cell lines (WT and
CD16+) were cultured in Minimum Essential Medium Eagle—Alpha Modification (Alpha
MEM, Gibco, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with PSG, 12.5%
FCS, 12.5% Horse Serum (HS, Gibco, Thermo Fisher Scientific, Waltham, MA, USA) and
80 U/mL interleukin 2 (IL-2, Novartis, Basel, Switzerland). Cell cultures were passaged
2 or 3 times a week and were maintained in an incubator at 37 ◦C, 95% humidity, 5% CO2.
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2.3. Peripheral Blood Mononuclear Cells and Natural Killer Cell Isolation

Blood samples were obtained from healthy volunteers and patients with CRC under
written informed consent at the Amsterdam UMC (location VU University Medical Center,
Amsterdam), Amstelland Hospital (Amstelveen), and Netherlands Cancer Institute/Antoni
van Leeuwenhoek Hospital (Amsterdam). Patient and healthy donor characteristics are
shown in Supplementary Table S1.

Peripheral blood mononuclear cells (PBMC) were isolated using either LymphoprepTM

(STEMCELL Technologies, Vancouver, BC, Canada) or CPT tubes (BD Biosciences, Franklin
Lakes, NJ, USA) on a density gradient centrifugation. Natural Killer (NK) cells were
isolated from PBMCs through magnetic bead-activated cell sorting using the MACS NK
cell Isolation Kit (Miltenyi Biotec, Bergisch Gladbach, Germany) according to the manu-
facturer’s instructions. NK cell purity was assessed by flow cytometry using CD3 BV711,
CD16 BV768 (both BD Horizon, BD Biosciences, Franklin Lakes, NJ, USA), and CD56 APC-
Vio770 (Miltenyi Biotec, Bergisch Gladbach, Germany). The NK cell purity was on average
83.5% (SEM: 1.71), and the mean NK cell expression of CD16 was 87.5% (SEM: 1.88).

2.4. Flow Cytometry Assessments

To assess binding to EGFR and CD16, both A431 and PBMCs were incubated for
60 min at 4 ◦C with the bispecific VHHs in a 96-well U-bottom plate at the indicated
concentrations. Thereafter, the cells were washed 3 times followed by 30 min of incubation
at 4 ◦C with a FITC labeled anti-llama antibody (Bioke, Leiden, the Netherlands). NK
cells in PBMC were gated as CD56+ (APC-Vio770 or CD510 (BD Horizon, BD Biosciences,
Franklin Lakes, NJ, USA)) and CD3− (BV711 or PE (BD Biosciences, Franklin Lakes, NJ,
USA)). Due to the presence of GFP in CD16+ NK92, we detect bispecific VHH binding
to NK92 (WT or CD16+) by incubating the cells for 60 min at 4 ◦C with the bispecific
VHHs previously biotinylated using NHS-D-biotin (Sigma-Aldrich, Saint Louis, MO, USA)
according to the manufacturer’s instructions. Afterward, the cells were washed 3 times
and stained with streptavidin (APC, Thermo Fisher Scientific, Waltham, MA, USA) for
30 min at 4 ◦C. Tumor cell lines were analyzed for the expression of multiple ligands of
both activating and inhibitory NK cell receptors. Moreover, the expression of EGFR was
assessed on tumor cell lines, Epcam+CD45− cells in dissociated CRC peritoneal metastatic
samples, and on EpcamdimCD45− epithelial cells in dissociated normal (non-malignant)
peritoneal tissue of the same CRC patients. The following mAbs, conjugated with the listed
fluorochromes, were used for cell staining: HLA-E (eBioscience, Thermo Fisher Scientific,
Waltham, MA, USA), HLA-G, PVR, MICA/B, (all from Biolegend, San Diego, CA, USA),
ULBP2/5/6, ULBP1, ULBP3 (all from R&D systems, Minneapolis, MN, USA), HLA-ABC
(Thermo Fisher Scientific, Waltham, MA, USA) all conjugated to PE, and EGFR BV421
(Biolegend, San Diego, CA, USA). Next, the distribution of CD16 on immune cells was
analyzed in both PBMC from patients with metastatic CRC and dissociated CRC peritoneal
metastatic lesions of patients. For cell staining, the following fluorochrome-conjugated
mAbs were used: CD56 APC-Vio770, CD3 BV711, CD16 BV786, CD14 PE-CF594 (BD
Biosciences, Franklin Lakes, NJ, USA), γδ TCR BV421 (BD Pharmingen, BD Biosciences,
Franklin Lakes, NJ, USA), and CD11b APC (BD Biosciences, Franklin Lakes, NJ, USA).
Details on the antibodies’ catalog and clone numbers are shown in Supplementary Table
S2. Flow-cytometric measurements were performed using LSRFortessa™ (BD Biosciences,
Franklin Lakes, NJ, USA), and the analyses were executed with Kaluza 1.3 (Beckman
Coulter, Brea, CA, USA).

2.5. Collection and Dissociation of Patient-Derived Tissue Samples

Tissue samples from patients with metastatic CRC undergoing cytoreductive surgery
(CRS) and Hyperthermic Intraperitoneal Chemotherapy (HIPEC) were collected from
patients during surgery before HIPEC under written informed consent at the Amsterdam
UMC (location VU University Medical Center, Amsterdam). Both cancer and normal
(non-malignant) tissue were dissociated within 2 h after collection from the patient into
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a single-cell suspension using a dissociation medium consisting of RPMI, supplemented
with 0.1% DNase I (Roche, Basel, Switzerland), 0.14% Collagenase A (Roche, Basel, Switzer-
land), 5% FCS, and PSG. The specimens were incubated at 37 ◦C for one to three 45-min
dissociation rounds. Thereafter, the cell suspension was run through a 100-µm cell strainer
(Corning, NY, USA), erythrocytes were lysed using a shock buffer containing NH4Cl
(Merck, Kenilworth, NJ, USA), KHCO3 (Merck, Kenilworth, NJ, USA), and EDTA (Titriplex
III, Merck, Kenilworth, NJ, USA), and the cells were counted. Cells were either used
immediately or cryopreserved in liquid nitrogen until further use. Patient characteristics
are shown in Supplementary Table S1.

2.6. Functional Assays

To explore the functionality of the bispecific VHHs, degranulation and cytotoxicity
assays were performed by culturing various cancer cell lines (A431, HCT116, and Colo829)
with purified NK cells from healthy donors, either cultured in medium overnight (resting
NK cells) or after overnight activation with 1000 U/mL IL-2 (Novartis, Basel, Switzer-
land) and 10 ng/mL IL-15 (eBioscience, Thermo Fisher Scientific, Waltham, MA, USA),
as previously described [26,27] (activated NK cells), or with WT or CD16+ NK92 cells.
Cultures were performed at 37 ◦C in a total volume of 200 µL RPMI in a 96-well plate.
Supplementation with 80 U/mL IL-2 was applied to the NK92 assays. An effector to
target ratio of 1:1 was used. Both bispecific VHHs were used in a concentration of 100 nM
unless otherwise indicated. Degranulation was evaluated after 4 h, and it was based on the
percentage of CD107a+ (PE, eBioscience, Thermo Fisher Scientific, Waltham, MA, USA) NK
cells defined as CD45+ (AF700, Biolegend, San Diego, CA, USA), CD56+ (APC-Vio770), and
CD3− (BV711) for peripheral blood NK cells, and as CD56+ for NK92. Cytotoxicity was
assessed after 24 h, and it was based on the percentage of living tumor cells relative to the
tumor-alone control quantified with counting beads (123count eBeads, Invitrogen, Thermo
Fisher Scientific, Waltham, MA, USA). Living tumor cells were gated as Epcam+ (Biolegend,
San Diego, CA, USA), CD45− (AF700), and 7AAD− (Sigma Aldrich, Saint Louis, MO, USA)
for A431 and HCT116 or just as CD45− and 7AAD− for Colo829, due to the non-epithelial
nature of this cell line.

Assessment of the ability of the C-7 bispecific VHH to activate patient-derived NK
cells was performed by degranulation and cytotoxicity assays using overnight-activated
monocyte-depleted (through a 2-h plastic adhesion step to eliminate the possibility of
a (non-classical/intermediate) monocyte-related effect) PBMC from patients with CRC
and the A431 cell line at an effector to target ratio of 4:1. The ability of C-7 to induce
NK cell mediated-killing of patient-derived cancer cells was assessed by co-culturing
dissociated CRC peritoneal metastatic lesions or normal (non-malignant) peritoneal tissue
with autologous PBMC. The cells were co-cultured in a PBMC to tissue cell ratio of 5:1
in a total volume of 200 µL RPMI in a 96-well plate. For the tumor samples, the readout
was performed after 1, 3, and 7 days, while, for the healthy tissue, it was performed just at
days 1 and 3 due to the loss of healthy epithelial cells upon prolonged in vitro culturing.
The readout was based on the absolute numbers of living tumor cells defined as Epcam+

(FITC), CD45− (AF700), and 7AAD− or living non-malignant epithelial cells defined as
Epcamdim (FITC), CD45− (AF700), and 7AAD− both quantified with counting beads. To
assess the possible effects of PBMC-derived CD16+ non-classical/intermediate monocytes
in our model, similar assays were performed by co-culturing dissociated CRC peritoneal
metastatic lesions with autologous PBMC that were depleted of monocytes by magnetic
bead-activated cell sorting using CD14 MicroBeads (Miltenyi Biotec, Bergisch Gladbach,
Germany) according to manufacturer’s instructions. NK92 CD16+ cells were co-cultured
with dissociated CRC peritoneal metastatic lesions at an effector to tissue cell ratio of
1:1, 1:5, or 1:10 in a total volume of 200 µL RPMI (without IL-2 supplementation) in a
96-well plate in the presence or absence of C-7. The readout was performed after 1, 3, and
7 days and it was based on the absolute number of living tumor cells defined as Epcam+
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(FITC), CD45− (AF700), and 7AAD− quantified with counting beads. For all the patient
material-related assays, C-7 was used at a concentration of 100 nM.

2.7. Cytometric Bead Array

A cytometric bead array (CBA) was performed on supernatants collected after 4 h
from co-cultures of overnight-activated healthy donor-derived NK cells and A431 tumor
cells in the presence or absence of either 100 nM C-7 or 5 µg/mL cetuximab [28]. The
CD8/NK LEGENDplex™ (Biolegend, San Diego, CA, USA) kit containing the following
analytes was used according to the manufacturer’s instructions: TNF, sFasL, Granzyme A,
Granzyme B, Perforin, Granulysin.

Moreover, a CBA was also performed on the supernatants collected after 24 h from
the co-culture of dissociated CRC peritoneal metastatic lesions and autologous PBMC. The
IFNγ, TNF, IL-10, IL-6, and CXCL10 Flex Set Kits (BD Biosciences) were used according to
the manufacturer’s instructions.

2.8. Statistical Analysis

Statistical analyses were performed with GraphPad version 9.1.0 (GraphPad Software,
San Diego, CA, USA). The data distribution was tested for normality and guided the
selection of the appropriate statistical tests used for analyses. Binding assays over a range
of VHH concentrations were analyzed with two-way ANOVA and nonlinear regression
analysis to compute the apparent equilibrium dissociation constant (Kd). Differences
in CD16 binding between the bispecific VHHs and the CD16 mAb were assessed with
two-tailed paired t-tests. For 24-h cytotoxicity assays, 4-h degranulation assays, and CBA
(of supernatants from co-cultures of healthy donor NK cells and A431 tumor cells), the
p-values were calculated with two-tailed paired t-test or, when multiple bispecific VHH
concentrations were tested, with a two-way ANOVA analysis, followed by Bonferroni’s
multiple comparison analysis and nonlinear regression analysis to assess the EC50 values.
The Mann–Whitney test was applied to compare the EGFR expression on tumor and
epithelial cells. Two-way ANOVA with Dunnett’s multiple comparisons analysis was
used to analyze differences for the 3-day survival assay with normal (non-malignant)
peritoneal tissue and all the 7-day survival assays, apart from the monocyte-depleted
PBMC test for which Tukey’s multiple comparisons test was used. Finally, one-way
ANOVA with Dunnett’s multiple comparison test was used to analyze the CBA performed
on supernatants of co-cultures of patient tumor and autologous PBMC samples. Due to
the non-normal distribution of some of the CBA results, Friedman’s ANOVA with Dunn’s
multiple comparison analysis was also performed. Findings were considered significant
when p-values were <0.05.

3. Results
3.1. Comparison of N- and C-Terminal Positioning of the Individual VHHs in the CD16-EGFR
Bispecific VHH

Bispecific VHHs targeting both CD16 and EGFR were generated by recombinant
fusing of the CD16-specific VHH C21 to the EGFR-specific VHH 7D12 using a Gly4Ser-
linker [14,15]. The effect of N- and C-terminal positioning of the individual VHHs in the
bispecific VHH was assessed by producing two bispecific VHHs: C21-7D12 (C-7) and
7D12-C21 (7-C) (Figure 1A).
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Figure 1. Binding characteristics of C-7 and 7-C bispecific VHHs to CD16 and EGFR. (A) Graphical representation of the
bispecific VHHs. (B) Percentage of bispecific VHH+ cells (at 100 nM) and CD16+ cells among CD56+CD3− cells in PBMC,
n = 6. (C) Median Fluorescence Intensity (MFI) of bound bispecific VHH on CD56+CD3− cells in PBMC at 100 nM, n = 6.
(D) MFI of bound bispecific VHH on CD56+CD3− cells in PBMC n = 3. (E) MFI of bound bispecific VHH to CD16+ NK92
n = 3. (F) MFI of bound bispecific VHH to A431 (EGFR++) n = 8; (G) MFI of bound bispecific VHH to CD16−EGFR− NK92
WT, n = 3. The data are presented as mean ± SEM. Significance is presented as p < 0.05 *, <0.01 **, <0.001 ***. p-values
were determined by two-tailed paired t-test (B,C) or two-way ANOVA (D,G). Abbreviations: PBMC = peripheral blood
mononuclear cells, C-7 = C21-7D12 bispecific VHH, 7-C = 7D12-C21 bispecific VHH.

First, we assessed whether C-7 and 7-C could be used to identify CD16 expression on
CD56+CD3− NK cells in PBMC. For this, the binding of both bispecific VHHs at 100 nM,
detected with FITC-labeled anti-llama polyclonal antibodies, was compared to the binding
of a commercially available CD16 mouse anti-human mAb labeled with BV786 (clone
3G8, BD Horizon, BD Biosciences, Franklin Lakes, NJ, USA). No statistically significant
differences in the percentage of positive cells between C-7 and 7-C were found compared
to the CD16 BV786 staining (p = 0.83 and p = 0.33, respectively) (Figure 1B and Figure S1),
indicating that the bispecific VHHs, similarly to a commercially available CD16 mAb, can
reliably be used to detect CD16 on NK cells. However, 7-C showed significantly lower
median fluorescence intensity (MFI) (p = 0.004, Figure 1C) compared to C-7, indicating a
lower binding capacity of 7-C to CD16. The apparent affinity of the two bispecific VHHs to
CD16, expressed by either healthy donor PBMC-derived CD56+CD3− NK cells or by the
NK92 cell line transfected to express CD16, and to EGFR expressed by the EGFR++ A431
cell line, was assessed using a concentration range of the constructs. Both orientations
of the bispecific VHH were able to bind to both CD16 and EGFR. C-7 was found to have
significantly higher binding affinity to CD16 as assessed using both CD56+CD3− PBMC
(p = 0.034) and CD16+ NK92 (p = 0.0004) (Figure 1D,E). In contrast, 7-C was found to have
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significantly higher binding affinity to EGFR (p = 0.002) (Figure 1F). Details on the apparent
Kd can be found in Table 1. Binding specificity was also tested by analyzing binding to the
CD16−EGFR− NK92 WT cell line. No binding was found, confirming the specificity of the
bispecific VHHs to both EGFR and CD16 (Figure 1G).

Table 1. Apparent Kd of C-7 and 7-C towards CD16 and EGFR.

Cell Type C-7
Apparent Kd (95% CI)

7-C
Apparent Kd (95% CI)

CD56+CD3− 0.84 nM (0.32;2.00) 3.00 nM (1.10;7.48)

NK92 CD16+ 6.80 nM (4.98;9.19) 77.60 nM (48.14; 121.70)

A431 196.1 nM (86.38;460.2) 29.56 nM (11.92;79.69)

Apparent equilibrium dissociation constant (Kd) of C-7 and 7-D binding to both CD16
on CD56+CD3− NK cells or NK16+ NK92 and EGFR on the A431 tumor cell line. The Kds
were calculated using nonlinear regression analysis.

3.2. CD16-EGFR Bispecific VHHs Trigger Equivalent NK Cell Degranulation and Cytotoxicity
against EGFR Expressing Targets

Next, the ability of both bispecific VHHs to induce NK cell degranulation, assessed
as percentage of CD107a+ cells in CD56+CD3− NK cells, and to trigger tumor cell killing,
determined as the percentage of living tumor cells relative to the tumor-alone condition,
was investigated by co-culturing healthy donor-derived NK cells, purified using magnetic
bead-activated cell sorting, with tumor cell lines with different levels of EGFR expression
and either wild-type or mutant for KRAS: A431 (EGFR++), HCT116 (EGFR+KRASmut),
Colo829 (EGFR−) (Supplementary Figure S2A) in the presence or absence of 100 nM of
either of the bispecific VHHs. The NK cells used for these experiments were either cultured
in medium overnight (resting NK cells) or pre-activated overnight using IL-2 and IL-15
(activated NK cells). In co-cultures with EGFR+ tumor cell lines, the levels of degranulation
of resting healthy donor-derived NK cells were significantly higher in the presence of either
of the bispecific VHHs (C-7 p = 0.016; 7-C p = 0.025 when using A431 as target cells; or C-7
p < 0.0001; 7-C p < 0.0001 when using HCT116 as target cells) (Figure 2A). Similarly, the
bispecific VHHs triggered stronger degranulation of activated healthy donor-derived NK
cells co-cultured in the presence of A431 (C-7 p = 0.002; 7-C p = 0.001) and HCT116 (C-7
p = 0.004; 7-C p = 0.006) (Figure 2B).

Although the bispecific VHHs did not trigger tumor cell cytotoxicity when resting
healthy donor-derived NK cells were co-cultured with A431 tumor cells (C-7 p = 0.13; 7-C
p = 0.34) (Figure 3A), both bispecific VHHs did enhance cytotoxicity of A431 tumor cells
by activated healthy donor-derived NK cells (C-7 p = 0.049; 7-C p = 0.020) (Figure 3B).
This difference is possibly due to a certain level of resistance of A431 to NK cell-mediated
killing which is overcome when NK cells are activated using IL-2 and IL-15. Both bispecific
VHHs did trigger cytolysis of HCT116, a KRASmut cell line, by either resting (C-7 p = 0.015;
7-C p = 0.042) or activated (C-7 p = 0.022; 7-C p = 0.046) healthy donor-derived NK cells
(Figure 3A,B), indicating that the presence of a KRAS mutation does not hamper the activity
of the bispecific VHHs. As expected, when NK cells (either resting or activated) were
co-cultured with the EGFR− Colo829 tumor cell line, no NK cell degranulation nor tumor
cell cytotoxicity was induced by the bispecific VHHs (p > 0.05) (Figures 2 and 3). Of
note, while the bispecific VHH induced more pronounced tumor cell lysis when overnight
activated NK cells were used, this also increased the “spontaneous” (i.e., in the absence
of the bispecific VHH) cytolysis of tumor cells and likely reflects the enhanced NK cell
activation state reached after cytokine stimulation. To explore whether the difference in
sensitivity to NK cell-mediated killing of the cell lines A431 and HCT116 was related to
differences in the expression of various ligands to NK cell activating (NKG2D, DNAM1)
or inhibitory (KIR2D, NKG2A) receptors, expression levels of these ligands was assessed
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on both tumor cell lines (Supplementary Figure S2B). No clear relation between the NK
cell receptors and their respective ligands on the tumor cell lines was found, suggesting
that other factors determine the observed difference in sensitivity to NK cell lysis between
these tumor cell lines.

Figure 2. CD16-EGFR bispecific VHHs induce degranulation of NK cells in the presence of EGFR-expressing tumor cells.
Degranulation of healthy donor-derived NK cells after a 4-h co-culture ±100 nM bispecific VHHs ± tumor cell lines
expressing different levels of EGFR: A431 (EGFR++), HCT116 (EGFR+RASmut), Colo829 (EGFR−). (A) Resting NK cells
were used as effectors; (B) NK cells were pre-activated overnight with IL-2 and IL-15. Degranulation was determined by
assessing the percentage of CD107a+ cells. E:T ratio: 1:1. The bars represent mean ± SEM. Significance is presented as
p < 0.05 *, <0.01 **, <0.0001 ****. A431 n = 5 (A,B); HCT116 n = 4 (A,B); Colo829 n = 3 (A,B). p-values were determined by
two-tailed paired t-test. Abbreviations: C-7 = C21-7D12 bispecific VHH, 7-C = 7D12-C21 bispecific VHH.

To further confirm that the activity of the bispecific VHHs depended on binding to
both CD16 and EGFR the A431, HCT116, and Colo829 cell lines were co-cultured with the
WT (CD16−) or CD16-transfected NK cell line NK92. The bispecific VHHs only induced
statistically significant degranulation of NK cells and lysis of tumor cells when tumor cells
expressed EGFR and NK92 cells expressed CD16 (Figure 4A,B). Although the ability of
the bispecific VHHs to induce NK92 CD16+ degranulation against the EGFR++ A431 cell
lines was very similar, C-7 was found to trigger stronger NK cell degranulation at lower
concentrations (p < 0.0001, at 10 nM; p < 0.0001 at 1 nM) compared to 7-C leading to a lower
EC50 (C-7: 1.15 nM (95%CI 0.66;2.03); 7-C: 5.20 nM (95%CI 2.34;11.16)) (Figure 4C). For this
reason and because of its superior binding affinity to CD16, C-7 was chosen for further
experimental testing.

3.3. The Bispecific C-7 VHH and the Anti-EGFR mAb Cetuximab Trigger Similar NK Cell
Secretion of Cytotoxic Mediators

To assess whether C-7 would trigger NK cells to release molecules involved in the
cytotoxic pathways reported for NK cells, overnight-activated healthy donor-derived NK
cells, purified using magnetic bead-activated cell sorting, were co-cultured with the EGFR++
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A431 cell line in the presence or absence of either 100 nM C-7 or 5 µg/mL cetuximab.
C-7 and cetuximab similarly triggered the release of perforin (C-7 p = 0.011, cetuximab
p = 0.035), granzyme A (C-7 p = 0.005, cetuximab p = 0.012), and soluble Fas ligand (sFasL, C-
7 p = 0.008, cetuximab p = 0.034) (Figure 5). Moreover, although not statistically significant,
higher levels of granzyme B (C-7 p = 0.123, cetuximab p = 0.080), granulysin (C-7 p = 0.050,
cetuximab p = 0.085), and TNF (C-7 p = 0.101, cetuximab p = 0.170) (Figure 5) were found
in the presence of both C-7 and cetuximab. The pattern of secretion of cytotoxic and
inflammatory molecules were strikingly similar between C-7 and cetuximab, thereby
suggesting that the C-7 bispecific VHH triggers the same major NK cell cytotoxic pathways
as those involved in IgG1-mediated ADCC.

Figure 3. CD16-EGFR bispecific VHHs induce lysis of EGFR expressing tumor cells in the presence of NK cells. Cytotoxicity
exerted by healthy donor-derived NK cells after a 24-h co-culture ±100 nM bispecific VHHs ± tumor cell lines expressing
different levels of EGFR: A431 (EGFR++), HCT116 (EGFR+RASmut), Colo829 (EGFR−). (A) Resting NK cells were used
as effectors; (B) NK cells were pre-activated overnight with IL-2 and IL-15. Cytotoxicity was determined by assessing
the relative percentage of living tumor cells compared to the tumor-alone condition. E:T ratio: 1:1. The bars represent
mean ± SEM. Significance is presented as p < 0.05 *. A431 n = 6 (A,B); HCT116 n = 5 (A) and n = 4 (B); Colo829 n = 3 (A,B).
p-values were determined by a two-tailed paired t-test. Abbreviations: C-7 = C21-7D12 bispecific VHH, 7-C = 7D12-C21
bispecific VHH.
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Figure 4. CD16-EGFR bispecific VHHs induce degranulation of CD16+ NK92 cells and cytotoxicity against EGFR-expressing
tumor cells. Degranulation (A) and cytotoxicity (B) of NK92 WT and NK92 CD16+ co-cultured ±100 nM bispecific VHHs
± tumor cell lines expressing different levels of EGFR: A431 (EGFR++), HCT116 (EGFR+RASmut), Colo829 (EGFR−).
Degranulation was determined after 4 h by assessing the percentage of CD107a+ cells. Cytotoxicity was determined after
24 h by assessing the relative percentage of living tumor cells compared to the tumor-alone condition. E:T ratio: 1:1. The
bars represent mean ± SEM. A431 n = 3 (A,B); HCT116 n = 3 (A) and n = 4 (B); Colo829 n = 3 (A,B). (C) Degranulation of
NK92 CD16+ after 4-h co-culture with A431 ± concentration range of the bispecific VHHs. Degranulation was assessed by
determining the percentage of CD107a+ cells. E:T ratio: 1:1. The data are presented as mean ± SEM. n = 4. Significance
is presented as p < 0.05 *, <0.01 **, <0.001 ***, <0.0001 ****. p-values were determined by two-tailed paired t-test (A,B) or
with two-way ANOVA with Bonferroni multiple comparison analysis (C). Abbreviations: C-7 = C21-7D12 bispecific VHH,
7-C = 7D12-C21 bispecific VHH.
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Figure 5. The C-7 bispecific VHH and cetuximab trigger NK cell secretion of pro-inflammatory and cytotoxic mediators.
Cytometry Bead Array performed on supernatant of overnight-activated healthy donor-derived NK cells ± A431 ± 100 nM
bispecific VHHs ±5 µg/mL cetuximab. E:T ratio 1:1. n = 4. The data are presented as mean ± SEM. Significance is indicated
or presented as p < 0.05 *, <0.01 **. p-values are determined by two-tailed paired t-test. Abbreviations: C-7 = C21-7D12
bispecific VHH, CET = cetuximab.

3.4. NK Cells in PBMC of Metastatic Colorectal Cancer Patients Can Be Activated to Lyse Tumor
Cells by the Bispecific C-7 VHH

NK cells from patients with cancer can be functionally impaired and as a result can
lack tumor cell killing ability [29,30]. Because of this, the ability of C-7 to enhance the
function of patient-derived NK cells was tested using PBMC from patients with stage II/III
CRC cultured in the presence of the EGFR++ A431 cell line. Details on patient characteristics
can be found in Supplementary Table S1. PBMC used for these experiments were pre-
activated overnight with IL-2 and IL-15, to facilitate detection of a bispecific VHH mediated
effect, and depleted of (CD16+) non-classical/intermediate monocytes through an adhesion
step to allow for a more specific assessment of the cytotoxic potential of CD16+ NK cells
in patient PBMC. Though some degranulation of NK cells, defined as the percentage of
CD107a+ cells in CD56+CD3− cells, was observed after a 4-h co-culture of PBMC and
A431 tumor cells alone, NK cell degranulation was significantly increased when C-7 was
added to these cultures (p = 0.026) (Figure 6A). As expected, C-7 did not trigger NK cell
degranulation in the absence of EGFR expressing tumor target cells. In line with these data,
although the addition of monocyte-depleted PBMC to A431 tumor cells already resulted
in a decrease in viable tumor cells after 24 h, this cytolytic effect was potentiated by C-7
(p = 0.031) (Figure 6B). In the timeframe of this experiment no increase in degranulation of
CD3+ T cells was observed (p = 0.221; Supplementary Figure S3). These results indicate
that C-7 is able to induce activation (degranulation) and enhance the cytolytic activity of
NK cells in PBMC of colorectal cancer patients.
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Figure 6. Activity of the bispecific C-7 VHH using metastatic CRC patient-derived PBMC and dissociated tumor samples.
(A) Degranulation of NK cells (defined as CD45+CD56+CD3− cells) and (B) cytotoxicity of A431 tumor cells after a 4-h
(degranulation) and 24-h (cytotoxicity) co-culture of monocyte-depleted PBMC derived from patients with stage II/III
CRC pre-activated overnight with IL-2 and IL-15 ± A431 (EGFR++) ±100 nM C-7. E:T ratio 4:1. Degranulation was
determined by assessing the percentage of NK cells expressing CD107a+. Cytotoxicity was determined by assessing the
relative percentage of living tumor cells compared to the tumor-alone control. n = 5 (A), n = 4 (B). (C) EGFR MFI of
Epcam+CD45− tumor cells in dissociated CRC peritoneal metastatic lesions (n = 15) and EpcamdimCD45− epithelial cells,
in (non-malignant) peritoneal tissue (n = 3). CD56+CD3− (D) and CD16+CD56+CD3− (E) percentage of CD45+ cells in
dissociated CRC peritoneal metastatic lesions, n = 6. (F) Absolute number of Epcam+CD45− tumor cells from dissociated
CRC peritoneal metastatic lesions cultured ± autologous PBMC (E:T ratio 5:1) ±100 nM C-7 for 1, 3, and 7 days. n = 8. The
significance level refers to the conditions: “T+PBMC” versus “T+PBMC+C-7”. (G) Absolute number of EpcamdimCD45−

cells from dissociated normal (non-malignant) peritoneal tissue of patients with metastatic CRC ± autologous PBMC
(E:T ratio 5:1) ±100 nM C-7, incubated for 1 and 3 days. n = 3. (H) Cytometry Bead Array performed on supernatant of
dissociated CRC peritoneal metastases cultured for 24 h ± autologous PBMC (E:T ratio 5:1) ± 100 nM C-7. n = 9. The data
are presented as mean ± SEM. Significance is presented as p < 0.05 *, <0.01 **, <0.001 ***. No p-values are mentioned in
case p > 0.05. p-values are determined by two-tailed paired t-test (A,B); Mann–Whitney test (C); two-way ANOVA with
Dunnett’s multiple comparison test (F,G); one-way ANOVA with Dunnett’s multiple comparison test (H: IL-6); Friedman
test with Dunn’s multiple comparison test (H: IFNγ, TNF, CXCL10, IL-10). Abbreviations: T = tumor, C-7 = C21-7D12
bispecific VHH, PBMC = peripheral blood mononuclear cells.
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3.5. The Bispecific C-7 VHH Triggers Cytokine and Chemokine Production and Controls Tumor
Growth in Co-Cultures of Patient-Derived Metastatic CRC Single-Cell Suspensions and
Autologous PBMC

Next, we assessed the NK cell activity enhancing effect of the bispecific C-7 VHH
using enzymatically dissociated tumor samples derived from patients with peritoneal
CRC metastases scheduled for cytoreductive surgery (CRS) and HIPEC. Details on patient
characteristics can be found in Supplementary Table S1. Patient CRC cells, defined as
Epcam+CD45− cells, expressed variable levels of EGFR (Figure 6C). As the intratumoral
frequency of NK cells in metastatic CRC tissue was reported to be significantly lower
than in healthy tissue [31], the presence of NK cells, particularly CD16+ NK cells, was
analyzed in these dissociated tumor samples. Because the frequency of NK cells, defined
as CD45+CD56+CD3− cells, and CD16+ NK cells was indeed low (0.80% (SEM 0.03) and
0.19% (SEM: 0.06) of total CD45+ leukocytes, respectively) (Figure 6D,E), we tested the
activity of C-7 not only in 7-day cultures of patient-derived dissociated CRC tumor cells
(not selected for specific EGFR expression levels) alone but also in co-cultures of CRC
tumor cells and autologous patient-derived PBMC. An example of the gating strategy
used to analyze the cytotoxicity assays can be found in Supplementary Figure S4. Tumor
growth control was not observed when C-7 was added to 7 day-cultures of dissociated
CRC tumor samples alone; however, when C-7 was added to co-cultures of dissociated
CRC samples and autologous PBMC, significant tumor growth inhibition was observed
(p = 0.002) (Figure 6F). Interestingly, no C-7 induced lysis of epithelial cells, defined as
EpcamdimCD45−, was observed when patient-derived normal (non-malignant) peritoneal
tissue samples were cultured for up to 3 days with C-7, regardless of the addition of autol-
ogous PBMC, demonstrating the tumor-specific nature of the NK cell response (p > 0.05)
(Figure 6G). Of note, the level of EGFR expressed by epithelial cells was not statistically
significantly different compared to that expressed by tumor cells (p = 0.51) (Figure 6C),
suggesting additional factors to be involved in modulating NK cell cytolytic activity.

The impact of C-7 on the levels of various cytokines (IFNγ, TNF, IL-6, and IL-10)
and the chemokine CXCL10 was assessed in 1-day co-culture supernatants of dissociated
CRC tumor cells and autologous PBMC (Figure 6H). Higher levels of IFNγ and TNF, two
cytokines produced by activated NK and T cells [5,32–34], were found in the presence
of both C-7 and autologous PBMC, suggesting predominant production by peripheral
blood NK cell and/or (CD16+ or indirectly CD16−) T cells. Of interest, in the absence of
PBMC, C-7 also increased TNF levels, although this did not meet statistical significance.
As macrophages (defined as CD14+CD11b+) constitute a major TNF-producing cell sub-
population [32,35] and were the dominant CD16+ cell subset (Supplementary Figure S5) in
the CRC tumor suspensions, the observed increase in TNF levels could be macrophage-
derived. Enhanced production of CXCL10, an important inducer of immune effector cell
migration [36–38], was also observed when both PBMC and C-7 were co-cultured with
dissociated CRC samples. IL-10 and IL-6 are highly pleiotropic cytokines that are mostly
known for their pro-tumorigenic and immune-suppressive effects [39,40], but they can
also contribute to T and NK cell activation [39–41]. In the presence of both C-7 and autolo-
gous PBMC, increased levels of IL-10 and IL-6 were found compared to the tumor alone
(p = 0.002 and p = 0.004, respectively) and the “tumor + C-7” conditions (p = 0.032 and
p = 0.025, respectively). Interestingly, relatively high levels of IL-6 were already present in
the tumor control conditions and were further enhanced by the combination of C-7 and
autologous PBMC, which might be related to either an increased release from tumor cells
upon their lysis and/or Fc-dependent macrophage activation [42].

3.6. Non-Classical/Intermediate Monocytes Do Not Affect Bispecific C-7 VHH Mediated Tumor
Growth Control in Co-Cultures of Metastatic CRC Single-Cell Suspensions and
Autologous PBMC

To further confirm that the bispecific C-7 VHH-mediated tumor control that was
observed in co-cultures of dissociated CRC samples and autologous PBMC was mediated
predominantly by CD16+ NK cells, we assessed the distribution of CD16 expressing im-
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mune cell subsets present in PBMC of patients with peritoneal CRC metastasis. Of all CD16+

cells in PBMC, NK cells (CD56+CD3−) represented the largest CD16+ PBMC population
(69.3% (SEM 6.30)), while non-classical/intermediate monocytes (CD14+CD16+) made up
the second-largest CD16+ PBMC fraction (17.8% (SEM 6.05)), followed by several relatively
low-frequency CD16 expressing T cell subsets (Figure 7A). As non-classical/intermediate
monocytes represented the predominant CD16+ cell population after NK cells in PBMC,
we determined whether depletion of monocytes from PBMC using a negative CD14
magnetic bead-mediated selection impacted tumor growth inhibition. In the presence
of C-7, similar tumor growth control inhibition was observed when dissociated CRC
samples were co-cultured with either monocyte-depleted or non-monocyte-depleted au-
tologous PBMC (p = 0.997), indicating that the activity of C-7 is not dependent on non-
classical/intermediate monocytes (Figure 7B). Of note, the CD14 magnetic bead-mediated
depletion resulted in efficient depletion of both (CD14dimCD16high) non-classical and
(CD14highCD16dim) intermediate monocytes (Supplementary Figure S6) [43] with an over-
all efficiency of 96.3% (SEM 1.07).

Figure 7. Tumor growth control mediated by the bispecific C-7 VHH in co-cultures of metastatic
CRC cells and autologous PBMC is independent of effects on non-classical/intermediate monocytes.
(A) Distribution of CD16+ cells in PBMC from patients with peritoneal CRC metastasis. n = 7.
(B) Dissociated CRC peritoneal metastatic lesions ±100 nM C-7 ± autologous PBMC or monocyte
depleted autologous PBMC. E:T ratio: 5:1. n = 4. Incubated for 1, 3, and 7 days. Data are presented
as mean ± SEM. Significance is presented as p < 0.01 **. p-values were determined by two-way
ANOVA with Tukey’s multiple comparison test (B). Abbreviations: T = tumor, C-7 = C21-7D12
bispecific VHH.

3.7. The Bispecific C-7 VHH Enhances Antitumor Activity of CD16+ NK92 Cells against Patient
Metastatic CRC Cells

Despite the known impairment of NK cell functionality in cancer patient PBMC [29,30],
the bispecific C-7 VHH was able to activate them and simultaneously control tumor growth.
As allogeneic NK cells were reported to have superior antitumor activity compared to
autologous NK cells [6], we explored whether the bispecific C-7 VHH could also enhance
the antitumor efficacy of allogeneic NK cells. To test this, CD16+ NK92 cells were cultured
for 1, 3, and 7 days with dissociated patient CRC cells, derived from peritoneal metastases,
in the presence or absence of C-7. Multiple CD16+ NK92 to tumor cell ratios were tested
(Figure 8). In the absence of the bispecific VHH, CD16+ NK92 cells could limit tumor
growth only at the relatively high 1:1 E:T ratio (Figure 8, left panel). Stronger tumor growth
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control was noted in the presence of C-7 resulting in statistically significant tumor growth
inhibition at E:T ratios as low as 1:10 (p: ratio 1:1 = 0.048, ratio 1:5 = 0.023, ratio 1:10 = 0.007)
(Figure 8).

Figure 8. The bispecific C-7 VHH triggers CD16+ NK92 cells to control tumor growth using patient metastatic CRC cells.
Dissociated CRC peritoneal metastatic samples ± NK92 CD16+ ±100 nM C-7 were cultured for 1, 3, and 7 days at multiple
E:T ratios, i.e., 1:1 n = 6, 1:5 n = 5, 1:10 n = 5. The significance levels refer to the conditions: “T+NK92 CD16+” versus
“T+NK92 CD16++C-7”. Data are presented as mean ± SEM. Significance is presented as p < 0.05 *, <0.01 **. p-values were
determined by two-way ANOVA with Dunnett’s multiple comparison analysis. Abbreviations: T = tumor, C-7 = C21-7D12
bispecific VHH.

4. Discussion

NK cells are innate lymphocytes with the ability to recognize and kill cancer cells [1,2].
They can play a role in the immune response against cancer and patients with activated
NK cells were found to have a better prognosis [44,45]. However, NK cell activity can
be compromised by cancer, as well as cancer therapies, increasing the need for strategies
to enhance NK cell functions [6,46]. Here, we report the generation and the functional
characterization of a novel EGFR-CD16 bispecific VHH that, in in vitro and ex vivo studies,
enhances NK cell function to improve tumor control through simultaneous targeting of
CD16 on effector NK cells and EGFR on epithelial cancers. n- and C-terminal positioning
of the VHHs were compared for binding affinity and function. Both bispecific VHHs
induced EGFR specific activation of CD16+ NK cells and tumor cell lysis regardless of
KRAS tumor mutation status. However, due to its more potent induction of NK cell
degranulation (i.e., lower EC50) and stronger binding to CD16, the bispecific C-7 VHH
(with the CD16-specific VHH C21 at the N-terminal and the EGFR-specific VHH 7D12 at
the C-terminal position) was selected for further experiments. The bispecific C-7 VHH
enhanced the activity of patient-derived NK cells and controlled tumor growth in co-
cultures of single-cell suspensions derived from peritoneal CRC metastases and autologous
PBMC. Although the bispecific C-7 VHH could also potentially trigger the activity of CD16+

non-NK cells, such as non-classical/intermediate monocytes that constituted the second-
largest CD16+ immune cell subset in metastatic CRC patient PBMC, we found that the
dominant antitumor effect was mediated via the activation of CD16+ NK cells as depletion
of non-classical/intermediate monocytes did not affect the tumor growth control triggered
by C-7. In the presence of C-7 increased levels of the pro-inflammatory cytokines, IFNy and
TNF were detected in supernatants of co-cultures of dissociated patient-derived metastatic
CRC samples and autologous PBMC, likely produced by activated CD16+ NK cells [5], with
a potential contribution of CD16+ γδ-T and CD8+ T cells [33,34]. Simultaneously we found
increased levels of CXCL10, a strong inducer of CD8+ T and NK cell migration [36–38],
which was most likely related to this NK or type-1 T cell activation. Indeed, the increase
in CXCL10 correlated closely to the levels of IFNγ (Pearson r: 0.84, p < 0.0001), which is
in line with previous studies showing CXCL10 production to be IFNγ-induced [47,48].
The increased release of CXCL10 at the tumor site upon C-7-mediated NK cell activation
may lead to further attraction of immune effector cells to the tumor microenvironment
and might, thus, potentiate other immunotherapeutic interventions, e.g., through immune
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checkpoint blockade. Increased levels of the anti-inflammatory cytokines IL-6 and IL-10
were also noted in co-cultures of single-cell tumor suspensions with PBMC and C-7. While
we did not determine the cellular source, it is known that these cytokines can be produced
by a variety of cells [39,40], including activated NK cells [49,50], and, perhaps more likely
in our experiments, CD16+ monocytes and macrophages that constituted the second most
frequent population of CD16+ cells in patient PBMC and the dominant fraction in the
patient peritoneal CRC metastases [42,51,52]. Although both IL-10 and IL-6 are mostly
known for their pro-tumorigenic and immune-suppressive activity, they can also promote
immune function via, e.g., the recruitment of effector T cells and enhancement of NK cell
cytotoxic activity [39,40].

As NK cells from patients with cancer can be functionally impaired [29,30], various
approaches to overcome this hurdle are currently explored. Of those, adoptive transfer
of allogeneic NK cells represents an attractive strategy due to its potential to kill tumor
cells without the restriction of patient tumor HLA expression [53,54] in the absence of
GvHD [7–9]. However, allogeneic NK cell transfer was found to be relatively ineffective in
solid tumors [6], and strategies to enhance targeted NK cell activity might, therefore, be
beneficial. Here, we explored whether tumor growth inhibition could be enhanced by the
combined administration of the NK92 cell line, currently in clinical development [55–57],
transduced to express CD16 and the bispecific C-7 VHH in co-cultures with single-cell
suspensions derived from peritoneal metastatic CRC. While administration of CD16+ NK92
cells alone controlled tumor growth of metastatic CRC cells at effector to target cell ratios
of 1:1, antitumor activity was further enhanced by C-7. At lower effector to target ratios,
where no statistically significant tumor growth inhibition was noted from the addition
of CD16+ NK92 cells alone, C-7 resulted in a strong enhancement of antitumor activity,
suggesting that the combination of transfer of allogeneic NK cells and NK cell engaging
bispecific antibodies could be of interest and could facilitate recruitment of NK cells to
the tumor microenvironment directly, as well as via the production of CXCL10. Moreover,
the latter might serve to attract T cells, further facilitating (for instance) effective immune
checkpoint blockade, suggesting a further possibility for combination therapies.

Although, the C-7 bispecific VHH and cetuximab triggered a similar release pattern
of TNF and cytotoxic molecules by NK cells, the use of a CD16 specific VHH provides
several advantages compared to ADCC mediated through binding of the Fc domain of a
therapeutic tumor-targeting antibody to CD16. First, CD16 polymorphisms, in particular
the presence of a phenylalanine (F) instead of a valine (V) in position 176, can influence
the ability of conventional IgG1 to induce NK cell-mediated ADCC [58–60]. As the C21
VHH has a different CD16 binding site than IgG1 antibodies, these polymorphisms will
not impact the activity of the bispecific C-7 VHH [14]. Second, conventional IgG1-based
antibodies will also potentially bind to inhibitory Fc receptors, such as CD32b, expressed
by B cells and myeloid cells, which may negatively modulate ADCC mediated through
CD16 [17,61], thereby hampering the therapeutic effect of IgG1-based antibodies [14,61].
Third, targeting specifically CD16 using our bispecific VHH limits neutrophil activation,
as this requires the co-engagement of CD32a and CD16b [62,63]. This leads to a more NK
cell-specific effect and minimizes the chances of neutrophil activation, which, in tumor-
conditioned microenvironments, would most often exert immune suppressive effects [64].
Of note, although neutrophil activation by C-7 is unlikely, neutrophils might still limit C-7
in vivo activity by behaving as peripheral sink. Finally, VHHs can be produced in a highly
cost- and time-efficient manner and, due to their smaller size, have more rapid and more
homogeneous tissue penetration compared to conventional antibodies [12].

In addition to the C-7 bispecific VHH, various other EGFR-CD16 bispecific antibodies
have recently been reported. These include a similarly structured bispecific VHH, that
triggered NK cell degranulation and IFN-γ release but has not yet formally demonstrated
actual tumor cell lysis [65], an anti-EGFR x anti-CD16 bispecific VHH cyclobody (Ex16),
where both the N and C termini of the VHHs are linked through split-intein circular ligation
to protect the compound from proteolysis, but which also negatively impacts its cytotoxic
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potential [66], and AFM24, an IgG1-scFv fusion antibody [67], that, due to its relatively large
size (~200 kD versus ~30 kD for the C-7 bispecific VHH), may have reduced potential to
deeply penetrate tumor tissue. In this study, we focused on the development of a bispecific
antibody approach to target NK cells to EGFR expressing colorectal cancer. The potential
future clinical applicability of the outlined NK cell engaging approach could be much
broader. On the one hand, the use of the EGFR-CD16 bispecific VHH could be extended
to other EGFR expressing tumor types. On the other hand, by fusing the CD16-specific
VHH to VHHs against other tumor targets of interest, tumors negative for EGFR could also
be targeted. For example, carcinoembryonic antigen (CEA) could represent an interesting
tumor target due to its high expression by multiple epithelial tumors (e.g., colon, gastric,
pancreatic, breast, and lung cancer) [68]. The human epidermal growth factor receptor 2
(HER2) constitutes another target of interest. It can be expressed by several tumor types,
including breast and gastroesophageal cancers [69], but also by a small proportion of
KRAS-BRAF-wild type CRC, where it was identified as a mechanism of resistance for
EGFR antibody therapies [70]. Bispecific VHHs targeting CD16 and either CEA [71] or
HER2 [65] are currently in pre-clinical development. Of interest is also the development
of a bispecific antibody targeting both CD16 and CD133, a stem cell marker expressed by
various tumor types, including CRC [72]. In this study, we mostly focused on the direct
effect of C-7 on NK cell activation and cytotoxicity. However, proinflammatory cytokines
produced by activated NK cells could also beneficially impact the antitumor properties of
other immune cells in the tumor microenvironment, including CD8+ cytotoxic T cells.

In conclusion, the CD16-EGFR bispecific VHH reported here can trigger efficient lysis
of EGFR expressing tumor cell lines and patient metastatic colorectal cancer cells and
could represent a valid therapeutic strategy either alone or in combination with other
NK cell-based therapeutic approaches, such as the anti-NKG2A monoclonal antibody
monalizumab [73], or the adoptive transfer of expanded autologous or allogeneic NK cells.

5. Conclusions

In this study, we describe the generation and the functional characterization of a
bispecific VHH targeting CD16 and EGFR. This bispecific VHH was shown to trigger
activation of CD16+ NK cells, resulting in enhanced cytotoxicity of EGFR+ tumor cell lines
and EGFR+ patient CRC specimens in both an autologous and allogeneic setting. Based on
these results, this novel CD16-EGFR bispecific engager might represent a useful tool either
alone or in combination with other NK cell-based therapies.
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