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The Hertz-Sneddon elastic indentation model is widely adopted in the biomechanical investigation 
of living cells and other soft materials using atomic force microscopy despite the explicit 
viscoelastic nature of these materials. In this work, we demonstrate that an exact analytical 
viscoelastic force model for power-law materials, can be interpreted as a time-dependent Hertz-

Sneddon-like model. Characterizing fibroblasts (L929) and osteoblasts (OFCOLII) demonstrates 
the model’s accuracy. Our results show that the difference between Young’s modulus 𝐸𝑌 obtained 
by fitting force curves with the Hertz-Sneddon model and the effective Young’s modulus derived 
from the viscoelastic force model is less than 3%, even when cells are probed at large forces where 
nonlinear deformation effects become significant. We also propose a measurement protocol that 
involves probing samples at different indentation speeds and forces, enabling the construction of 
the average viscoelastic relaxation function of samples by conveniently fitting the force curves 
with the Hertz-Sneddon model.

1. Introduction

Atomic force microscopy (AFM) has become ubiquitous in the rheological characterization of soft matter, particularly in the 
nanomechanics of living cells [1–7]. The success of the AFM is in part due to its high spatial resolution, precise force control up to a 
few nano newtons, and ability to probe cells in liquid, but also because that the measured force curves are easily modeled with the 
well-known Hertz-Sneddon’s (HS) model, that describes the axisymmetric indentation of semi-infinite elastic materials [8].

Although soft materials always exhibit some degree of viscoelasticity, the HS model successfully described qualitatively many 
interesting microscopic phenomena by comparing the mechanical properties of materials with a reference sample measured with 
identical loading conditions. For instance, a large volume of AFM studies reported that individual cancer cells are less rigid than 
their normal counterparts [3,9–12], and the same trend was also observed comparing normal and cancerous tissues of the human 
breast [13]. Beyond cancer, other diseases like osteoarthritis [14,15], tissue fibrosis [16,17] and myocardial infarction [18] exhibit 

* Corresponding author.
Available online 8 May 2024
2405-8440/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license
(http://creativecommons.org/licenses/by-nc/4.0/).

E-mail address: jeanlex@fisica.ufc.br (J.S. de Sousa).

https://doi.org/10.1016/j.heliyon.2024.e30623

Received 6 February 2024; Received in revised form 15 April 2024; Accepted 30 April 2024

http://www.ScienceDirect.com/
http://www.cell.com/heliyon
mailto:jeanlex@fisica.ufc.br
https://doi.org/10.1016/j.heliyon.2024.e30623
https://doi.org/10.1016/j.heliyon.2024.e30623
http://creativecommons.org/licenses/by-nc/4.0/


Heliyon 10 (2024) e30623I.V.M. Lima, A.V.S. Silva, F.D. Sousa et al.

distinguished mechanical signatures, which can be used as an advantageous technique to develop early diagnosis methods. More 
recently, a few works reported the strong role the microenvironment topography plays in cell mechanics. For instance, it was shown 
that kidney cancer cells become stiffer than normal ones when seeded over soft gels [19] and that cells become softer when crawling 
in narrow channels [20]. All those studies fitted AFM force curves with the HS model.

Despite those successful advances in the frontier of cell biophysics, nanomechanics has yet to evolve to become a standard 
metrology-grade characterization because measured data among different studies on the same cells exhibit large dispersion, even 
in the case where studies use nearly the same measurement parameters and techniques. In the particular case of living cells, this 
wide dispersion is often attributed to inhomogeneities in the constitution of a biological specimen, variability of sample thickness, 
differences in sample preparation, and different probing conditions (e.g., maximum applied forces, indentation velocities, indenter 
geometry). Even the contact point detection in the force curve analysis may impact the mechanical data of cells [21,22]. In this regard, 
Pérez-Domínguez et al. [23] proposed the standardized operational protocol (SOP), which allows the detection of the biomechanical 
properties of living cells regardless of the nanoindentation instruments used (AFMs and other indenters) and across laboratories with 
reproducible mechanical characterization of cells.

Measuring the mechanical properties of cells with the AFM requires careful choice of parameters like cantilever stiffness, tip 
geometry, applied forces and measurement speeds [24–27]. Tip geometry is important because it defines the contact area and 
ultimately the spatial resolution of the measurements [24,25]. The maximum applied forces also matter because it is well known 
that cells may respond non-linearly exhibiting either stress softening or stiffening [26,28], and the speed of measurements is relevant 
because of the viscoelastic response of cells [26,27]. Despite all these intricacies, most body of knowledge about cell mechanics has 
been learned within the simple framework of the HS indentation model.

In this work, we show that the HS model can describe force curves of viscoelastic materials, particularly those obeying single 
power-law viscoelastic relaxation (e.g., living cells). In contrast, the time dependence of the elasticity modulus is encoded in the 
loading time of the force curve, and that the underlying viscoelastic relaxation function of cells can be constructed with the HS 
model by simply making several AFM measurements for varying cantilever speeds.

2. Experimentals

Cell culture. The cell lines studied in this work are: L929 (fibroblasts) and OFCOLII (osteoblasts). Cells were grown in high-glucose 
Dulbecco’s Modified Eagle’s Medium (GIBCO, USA) supplemented with 10% fetal bovine serum (GIBCO, USA) and 1% penicillin-

streptomycin, and incubated at 37𝑜 C in 5% CO2. Before AFM measurements, one third of medium was replaced by PBS solution to 
keep pH stable out of the incubator.

AFM measurements. Regular AFM force curves were measured in an Asylum MFP3D-BIO coupled to an inverted optical microscope 
Nikon IX51. We used AFM cantilevers with nominal spring constant of 0.06 N/m with pyramidal tip (PNP-TR-Au, NanoWorld, 
with nominal height of 3.5 μm). The maximum force 𝐹𝑚𝑎𝑥 applied to the cells ranged between 1 nN and 8 nN to assess nonlinear 
viscoelastic regimes. The maximum indentation depths ranged between 0.8 μm and 2.0 μm. A piezo extension range (𝑧𝑟𝑎𝑚𝑝) of 3 μm 
was used in all measurements. The indentation speed is controlled by tuning the vertical frequency 𝑓𝑧 (0.25 Hz − 2.0 Hz), resulting 
in cantilever velocities ranging from 1.5 μm/s to 12 μm/s. The force measurements were performed at room temperature (25𝑜 C) in 
nearly identical conditions. All AFM experiments were performed within two hours after cells were removed from CO2 incubator.

3. Modeling

3.1. HS model

The analysis of AFM force curves is commonly performed with the HS indentation model given by:

𝐹𝑒𝑙 =Ω(𝜆)𝐸𝑌 𝛿
𝜆, (1)

where 𝐹𝑒𝑙 is the force applied by an axisymmetric indenter that produces an indentation depth 𝛿 in an elastic medium with Young’s 
modulus 𝐸𝑌 . The parameters Ω(𝜆) and 𝜆 depend on the indenter geometry as listed in Table 1. The HS model assumes that (i) the 
sample is a purely elastic half-space, (ii) the stress-strain response is linear, and (iii) the elasticity modulus is constant.

Conventional AFM force curves are represented either by a function 𝐹 (𝑧) or 𝑑(𝑧), where 𝑧(𝑡) is the piezo displacement and 𝑑(𝑡) is 
the cantilever deflection. The force 𝐹 (𝑡) on the cantilever is given by 𝐹 (𝑡) = 𝑘𝑐(𝑑(𝑡) − 𝑑0), where 𝑘𝑐 is the cantilever spring constant. 
The indentation depth of the AFM tip in the sample is determined by 𝛿(𝑡) = (𝑧(𝑡) −𝑧0) −(𝑑(𝑡) −𝑑0), where (𝑧0, 𝑑0) is the contact point, 
i.e., the piezo displacement and cantilever deflection at the moment that the AFM tip touches the sample surface. By assuming that 
the AFM tip is in equilibrium during the whole indentation process, one combines the above equations to obtain

𝑘𝑐(𝑑 − 𝑑0) = Ω𝜆𝐸𝑌 [(𝑧− 𝑧0) − (𝑑 − 𝑑0)]𝜆, (2)

where the time dependence in 𝑧(𝑡) and 𝑑(𝑡) was omitted by convenience. This is the most used expression to fit AFM force curves, 
whose fitting parameters are 𝐸𝑌 , 𝑧0 and 𝑑0. It is known that a poor detection of (𝑧0, 𝑑0) may influence the determination of 𝐸𝑌

[21]. In this regard, several strategies to determine the contact point were developed [22,29]. We employed Roy et al. bi-domain 
2

polynomial (BDP) method [30].
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Table 1

Dependence of the parameters 𝜆 and Ω(𝜆) on the 
indenter geometry. Below, 𝜈 represents the Pois-

son ratio, 𝛿 is the indentation depth, 𝑅 is the 
indenter radius of flat cylinder and spherical ge-

ometries, and 𝜃 is the half-opening angle of coni-

cal indenter.

Geometry 𝜆 Ω(𝜆) contact radius

flat cylinder 1.0
2𝑅

(1−𝜈2)
𝑅

spherical 1.5
4
3

√
𝑅

(1−𝜈2)

√
𝑅𝛿

conical 2.0
2
𝜋

tan𝜃
(1−𝜈2 )

𝛿 tan𝜃

3.2. Viscoelastic force model

Many nanoindentation force models have been developed in the last decade to study the viscoelastic properties of soft materials 
with the AFM, with particular emphasis on materials exhibiting power-law relaxation [5,7,26,31–33]. In contrast, different research 
groups independently developed similar models departing from fractional calculus [34] and the functional method of Lee and Radok 
[35].

The force-indentation relationship in time domain depends on the indentation history 𝛿(𝑡), as well as on intrinsic properties of 
the sample and can be described by the following expression [36]

𝐹 (𝑡) = Ω(𝜆)

𝑡

∫
0

𝐸(𝑡− 𝑡′)𝑑𝛿
𝜆(𝑡′)
𝑑𝑡′

𝑑𝑡′, (3)

where 𝐸(𝑡) is the time-dependent relaxation function of the material. Recent studies have demonstrated that a linear indentation 
history accurately approximates a standard force curve’s loading and unloading phases, closely mirroring experimental conditions 
[32,36]. This approximation is considered physically robust, as follows:

𝛿(𝑡) = 𝛿𝑚𝑎𝑥

{
𝑡∕𝑡𝑙 0 ≤ 𝑡 ≤ 𝑡𝑙,[
(𝑡𝑙 + 𝑡𝑢) − 𝑡

]
∕𝑡𝑢 𝑡𝑙 < 𝑡 ≤ 𝑡𝑙 + 𝑡𝑢,

(4)

where 𝑡𝑙 is loading time, and 𝑡𝑢 is the unloading time.

The viscoelastic relaxation of living cells is most usually described as a single PL in the time domain [26,37]

𝐸(𝑡) =𝐸𝑟𝑒𝑓

(
𝑡

𝑡𝑟𝑒𝑓

)−𝛽
, (5)

where 𝐸𝑟𝑒𝑓 = 𝐸(𝑡𝑟𝑒𝑓 ) is a reference value of the elasticity modulus at an arbitrary scaling time, 𝑡 = 𝑡𝑟𝑒𝑓 , and 𝛽 is the relaxation 
exponent that lies in the range 0 ≤ 𝛽 ≤ 1, where 𝛽 = 0 indicates a perfectly elastic sample, and 𝛽 = 1 represents a Newtonian viscous 
fluid. Intermediate values of 𝛽 hold both solid and fluid behaviors and hence are characteristic of power-law viscoelastic materials. 
The elasticity modulus at any given time 𝑡 can be obtained with the scaling rule 𝐸(𝑡)𝑡𝛽 = 𝐸(𝑡𝑟𝑒𝑓 )𝑡

𝛽

𝑟𝑒𝑓
. In particular, we assume 

𝑡𝑟𝑒𝑓 = 𝑡𝑙 .

In a conventional AFM force curve, the load (l) and unload (u) curves are, respectively, given by

𝐹𝑙(𝑡) = 𝜆Ω(𝜆)𝐵(𝜆,1 − 𝛽)𝐸(𝑡𝑙)𝛿𝜆𝑚𝑎𝑥

(
𝑡

𝑡𝑙

)𝜆−𝛽
, (6)

𝐹𝑢(𝑡) = 𝜆Ω(𝜆)𝐸(𝑡𝑙)𝛿𝜆𝑚𝑎𝑥

[
𝐵(𝜏𝑙∕𝑡, 𝜆,1 − 𝛽)

(
𝑡

𝑡𝑙

)𝜆−𝛽
−

𝑡
𝛽

𝑙

𝑡
𝛽
𝑢

(
1

1 + 𝛽

)(
𝑡− 𝑡𝑙

𝑡𝑢

)1−𝛽

2𝐹1

(
1,1 − 𝜆,2 + 𝛽;

𝑡− 𝑡𝑙

𝑡𝑢

)]
. (7)

𝐵(𝑥; 𝑛, 𝑚) is the incomplete Beta function that obeys 𝐵(𝑛, 𝑚) = 𝐵(1; 𝑛, 𝑚), and 𝐼(𝑥; 𝑛, 𝑚) = 𝐵(𝑥; 𝑛, 𝑚)∕𝐵(𝑛, 𝑚) is the incomplete regu-

larized Beta function, 2𝐹1(𝑎, 𝑏, 𝑐; 𝑥) is the Gauss hypergeometric function. Since all viscoelastic parameters are present in both loading 
and unloading parts, we focus our analysis in the loading curves because of its mathematical simplicity. Besides, one should notice 
that Eq. (6) can be written in different forms, revealing alternative ways to interpret it.

Method 1: In time domain, Eq. (6) can be written as

𝐹𝑙(𝑡) = 𝐹𝑚𝑎𝑥

(
𝑡

𝑡𝑙

)𝜆−𝛽
, (8)

𝐹𝑚𝑎𝑥 = 𝜆Ω(𝜆)𝐵(𝜆,1 − 𝛽)𝐸(𝑡𝑙)𝛿𝜆𝑚𝑎𝑥 (9)

where 𝐹𝑚𝑎𝑥 is the maximum cantilever force in the end of the loading curve, which can be controlled by imposing a trigger force 
3

in the measurements. 𝐹𝑚𝑎𝑥 depends on the indenter geometry, maximum indentation depth and loading time, and on the material 
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Table 2

Comparison of data extracted from the force curves shown in Figs. 2(a) and 2(d). The curves were fitted with HS 
and PL models. The parameter 𝑣𝛿 = 𝛿𝑚𝑎𝑥∕𝑡𝑙 indicates the average indentation speed.

𝐹𝑚𝑎𝑥 𝑓𝑧 𝑡𝑙 𝛿𝑚𝑎𝑥 𝑣𝛿 𝐸𝑌 𝑟2
𝐻𝑆

𝐸(𝑡𝑙) 𝛽 𝑟2
𝑃𝐿

𝐸𝑌 −𝐸′
𝑌

(nN) (Hz) (s) ( μm) ( μm/s) (kPa) (kPa) (kPa)

2 0.25 0.746 1.43 1.91 1.47 0.9446 1.04 0.198 0.9986 0.023

2 0.5 0.314 1.20 3.82 2.02 0.9935 1.50 0.176 0.9987 0.024

2 1.0 0.131 1.17 8.93 2.09 0.9984 1.55 0.175 0.9994 0.034

2 2.0 0.072 1.09 15.14 2.45 0.9980 1.70 0.208 0.9991 0.052

1 0.5 0.252 1.09 4.32 1.00 0.9799 0.77 0.152 0.9986 0.016

2 0.5 0.300 1.16 3.87 1.53 0.9938 0.87 0.303 0.9990 0.050

4 0.5 0.390 1.36 3.49 2.06 0.9985 1.42 0.210 0.9993 0.048

8 0.5 0.521 1.72 3.30 2.54 0.9883 1.77 0.207 0.9994 0.051

properties. In a log-log plot, the loading force curve obeys a power-law whose exponent directly shows the viscoelastic relaxation 
exponent, even if materials exhibit double PL relaxation [5].

Method 2: Combining Eqs. (4), (5) and (6) makes it possible to write the loading force in an HS-like form with a time-dependent 
Young’s modulus 𝐸𝑌 (𝑡).

𝐹𝑙[𝛿(𝑡)] = Ω(𝜆)𝐸𝑌 (𝑡)𝛿𝜆(𝑡), (10)

𝐸𝑌 (𝑡) = 𝜆𝐵(𝜆,1 − 𝛽)𝐸(𝑡). (11)

In the case of 𝛽 = 0 the above equations recover the HS model for elastic materials, i.e., 𝐸(𝑡) is time-dependent. Equation (10) reveals 
an important detail which is normally overlooked when using HS model to study soft materials: the fitted value of 𝐸𝑌 will depend 
on the fitted range of the loading curve. Moreover, the Young’s modulus is geometry-dependent and larger than the actual elasticity 
modulus by a factor of 𝐸𝑌 (𝑡)∕𝐸(𝑡) = 𝜆𝐵(𝜆, 1 − 𝛽). Since living cells are well represented by 𝛽 ≈ 0.2, this correction factor takes values 
of 1.39, 1.33 and 1.25 for conical, spherical and flat indenter geometries, respectively. Therefore, 𝐸𝑌 values measured with conical 
indenter must be 4.5% and 11% larger than the ones measured with spherical and flat indenters for the same material, while 𝐸𝑌

values measured with spherical indenters must be larger 6.5% than the ones measured with flat ones. Finally, due to the explicit 
time-dependence of 𝐸𝑌 (𝑡) in Eq. (10), the approximate relaxation function can be directly obtained from a single loading force curve 
by making

𝐸(𝑡) = 𝐹 (𝑡)
𝜆Ω(𝜆)𝐵(𝜆,1 − 𝛽)𝛿𝜆(𝑡)

. (12)

Apart from the factor 𝐵(𝜆, 1 − 𝛽), the local viscoelastic relaxation can be directly obtained from the loading part of the AFM force 
curve.

4. Results

4.1. Simulated force curves

AFM force curves can be simulated departing from Eqs. (2) and (11). In regular force curves, the piezo actuator extends and 
retracts up to a maximum distance 𝑧𝑟𝑎𝑚𝑝 according to 𝑧(𝑡) = 𝑧𝑖 ∓ 𝑣𝑧𝑡, where 𝑧𝑖 is the initial piezo position, and the signal ∓ indicates 
whether the piezo is approaching to or moving away from the sample surface. The piezo extension rate 𝑣𝑧 is related to the vertical 
scanning frequency 𝑓𝑧 as 𝑣𝑧 = 2𝑧𝑟𝑎𝑚𝑝𝑓𝑧. When reaching an extension 𝑧0 the AFM tip touches the sample surface (without deforming 
it, i.e., 𝛿 = 0) while exhibiting a deflection 𝑑0. For larger extensions (𝑧 > 𝑧0), the AFM cantilever deflects upwards (𝑑 > 𝑑0) as 
it indents the sample (𝛿 > 0). The piezo continues this movement until it reaches an extension (𝑧𝑚𝑎𝑥) that produces a maximum 
cantilever deflection (Δ𝑑𝑚𝑎𝑥 = 𝑑𝑚𝑎𝑥 − 𝑑0) corresponding to a maximum force applied 𝐹𝑚𝑎𝑥 = 𝑘𝑐Δ𝑑𝑚𝑎𝑥. From this point, the piezo is 
retracted and the cantilever deflection is reduces until the AFM tip looses contact with the sample. This whole process is depicted in 
Fig. 1(a). The resulting simulated force curve is obtained by solving Eq. (2) to determine 𝑑(𝑡) for each 𝑡. As the parameters 𝑧𝑟𝑎𝑚𝑝, 𝑓𝑧
and 𝐹𝑚𝑎𝑥 are configured prior to measurements in the AFM software, in our simulations they also become input parameters.

Figs. 1(b) and 1(c) show simulated AFM force curves with different frequencies 𝑓𝑧 and indenter geometries, subjected to 𝐹𝑚𝑎𝑥 = 2
nN. The curves 𝐹 (𝑧) clearly show that both 𝑓𝑧 and tip geometry strongly affect the apparent Young’s modulus of the samples. For a 
fixed 𝑓𝑧, the curve of the conical indenter yields the smallest Young’s modulus, while measurements made with a flat cylinder the 
largest. This is in general justified in terms of contact area, which is smallest for the conical shape, and largest for the flat cylinder 
[24]. Besides, it has been shown analytically and numerically that conical indenters are less susceptible to finite thickness effects 
than other shapes [38]. A simple analysis of the HS model (Eq. (2)) shows that, for a fixed force, the larger is the contact area the 
smaller becomes the indentation depth, thereby yielding larger Young’s modulus. This simple analysis is accurate for perfectly elastic 
samples. However, soft materials are intrinsically viscoelastic and the loading time becomes crucial. Fig. 1(d) shows that loading 
4

times of the force curves vary drastically for different 𝑓𝑧, and different indenter geometries. Thus, when probing viscoelastic materials 
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Fig. 1. (a) Schematics of the cantilever movement and deflection during a conventional AFM force curve. (b-c) Simulated AFM force curves of a power-law material 
(𝐸𝑟𝑒𝑓 = 1 kPa, 𝑡𝑟𝑒𝑓 = 1 s, 𝛽 = 0.2) measured with different 𝑓𝑧 frequencies and indenter geometries as a function of the piezo displacement and time, respectively. The 
parameters used to generate these curves are 𝑘𝑐 = 0.06 N/m, 𝑧𝑟𝑎𝑚𝑝 = 3 μm, 𝑅 = 2.5 μm (flat cylinder and spherical indenters), 𝜃 = 38𝑜 (conical indenter). All force 
curves are subjected to a maximum trigger force of 2 nN. (d) Relationship between the loading time 𝑡𝑙 of simulated force curves as a function 𝑓𝑧 . (e) Comparison of 
the fitted (solid symbols) and corrected (open symbols) Young’s moduli with the actual underlying power-law relaxation curve.

Fig. 2. AFM force curves of OFCOLII cells in two different loading conditions: (i) fixed 𝐹𝑚𝑎𝑥 and varying 𝑓𝑧 (panels a-c), and (ii) fixed 𝑓𝑧 and varying 𝐹𝑚𝑎𝑥 (panels 
d-f). For each loading condition, the curves were measured at the same site. The force curves are presented in 𝐹 (𝑧) form in panels (a) and (d), and in the 𝐹 (𝑡) form in 
panels (b) and (e). Curves are shifted vertically for better visualization and fitted with HS (dashed lines) and PL (dotted lines) models. The obtained parameters are 
listed in Table 2. Panels (c) and (f) represent the time-dependent Young’s moduli given by 𝐸𝑌 (𝑡) = 𝐹 (𝑡)∕[Ω(𝜆)𝛿𝜆(𝑡)]. The horizontal dashed lines represent the fitted 
5

Young’s moduli obtained with the HS model.
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Fig. 3. Viscoelastic parameters of L929 and OFCOLII cells for 𝐹𝑚𝑎𝑥 = 2 nN and varying 𝑓𝑧 = 0.25, 0.5, 1.0 and 2.0 Hz, corresponding to piezo extension velocities of 
1.5, 3.0, 6.0 and 12 μm/s, respectively. For each dataset, a total of 𝑛𝐿929 = 13 and 𝑛𝑂𝐹𝐶𝑂𝐿𝐼𝐼 = 16 cells were probed, whereas 16 force curves per cell were measured. 
The quantity Δ = (𝐸𝑌 −𝐸′

𝑌
)∕𝐸𝑌 describes the difference between HS and PL models.

Fig. 4. Viscoelastic parameters of L929 and OFCOLII cells for 𝑓𝑧‘ = 0.5 Hz, corresponding to a piezo extension velocity of 3 μm/s, and varying forces 𝐹𝑚𝑎𝑥 = 1, 2, 4 and 
8 nN. For each dataset, a total of 𝑛𝐿929 = 15 and 𝑛𝑂𝐹𝐶𝑂𝐿𝐼𝐼 = 16 cells were probed, whereas 16 force curves per cell were measured. The quantity Δ = (𝐸𝑌 −𝐸′

𝑌
)∕𝐸𝑌

describes the difference between HS and PL models.

with the AFM, even when standardizing 𝐹𝑚𝑎𝑥, we are in fact probing not only different indentation depths, but also different loading 
times.

By varying 𝑓𝑧, while keeping a maximum force of 2 nN, we obtain loading times (𝑡𝑙) ranging within two orders of magnitude (few 
ms to few seconds). Such a range is wide enough to reveal the relaxation properties of many types of soft samples. Furthermore, the 
curve 𝐸𝑌 (𝑡𝑙) differs from the actual relaxation function by a fixed factor such that 𝐸𝑌 (𝑡𝑙) = 𝜆𝐵(𝜆, 1 − 𝛽)𝐸(𝑡𝑙), as shown in Fig. 1(e). 
Such a behavior is very robust and independent on the type indenter geometry. Finally, despite of the assumption of HS model to 
be valid only for purely elastic materials, by probing samples with wide enough range of 𝑓𝑧 frequencies, we can reconstruct the 
underlying relaxation function of the samples.

4.2. Experimental force curves

Fig. 2(a) shows force curves measured in the same location of an OFCOLII osteoblast with fixed 𝐹𝑚𝑎𝑥 and varying 𝑓𝑧. The 
6

hysteresis in the curves clearly shows the viscoelastic response of the cell. The fitted data in Table 2 show that, for a maximum 
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applied force of 𝐹𝑚𝑎𝑥 = 2 nN, the increase of 𝑓𝑧 from 0.25 Hz to 2 Hz reduces the loading times from 0.746 s to 0.072 s, and 
reduces the 𝛿𝑚𝑎𝑥 from 1.43 μm to 1.09 μm. In this range, the Young’s moduli 𝐸𝑌 increased from 1.47 kPa to 2.45 kPa. The analysis 
with the PL model shows the increase of 𝐸(𝑡𝑙) from 1.04 kPa to 1.70 kPa, while the relaxation exponent fluctuates around 𝛽 ≈ 0.2, 
exhibiting little dependence on 𝑓𝑧. For all curves, the comparison between 𝐸𝑌 (from the HS model) with the effective Young’s 
modulus 𝐸′

𝑌
= 𝜆𝐵(𝜆, 1 − 𝛽)𝐸(𝑡𝑙) of the PL model shows a maximum difference of only 52 Pa. This is a strong experimental evidence 

of the connection between the time-dependent PL force and HS models.

Despite the good agreement between HS and PL models for fixed 𝐹𝑚𝑎𝑥, cells are known to exhibit nonlinear mechanical responses 
when subjected to increasing forces [28]. This makes one wonder whether this agreement is still valid for nonlinear deformation 
regimes. In this regard, Fig. 2(d) shows force curves measured with fixed 𝑓𝑧 = 0.5 Hz and varying maximum forces from 1 nN to 8 
nN. For such loading conditions, both 𝑡𝑙 and 𝛿𝑚𝑎𝑥 increase with 𝐹𝑚𝑎𝑥, displaying an opposite trend with respect to the measurements 
with fixed 𝐹𝑚𝑎𝑥. The elasticity moduli 𝐸𝑌 and 𝐸(𝑡𝑙) also strongly increase with 𝐹𝑚𝑎𝑥, while 𝛽 exhibits a slight increase tendency. 
Here, the comparison between models also exhibits a maximum difference of the order of 50 Pa, indicating that the agreement 
between models is also valid under nonlinear responses of the cells.

4.3. Intra- and inter-cell variability

The mechanical properties are very inhomogeneous over the cell surface. We performed AFM measurements in several cells of 
two different cell lines to address this issue. For each cell, we measured 16 force curves over a squared area of 4 ×4 μm2, where each 
curve is fitted with both HS and PL models. The data for fixed 𝐹𝑚𝑎𝑥 and varying 𝑓𝑧 are shown in Fig. 3, and the data for fixed 𝑓𝑧 and 
varying 𝐹𝑚𝑎𝑥 in Fig. 4.

The increase of 𝑓𝑧, for fixed 𝐹𝑚𝑎𝑥 = 2 nN, effectively increases the indentation velocity by reducing the loading times 𝑡𝑙 . For the 
L929 cells, the frequencies of 𝑓𝑧 = 0.25, 0.5, 1.0, 2.0 Hz yield average loading times of 𝑡𝑙 = 0.8, 0.4, 0.2, 0.1 s. For the OFCOLII cells, 
the loading times are 25% smaller than the values obtained for the L929 cells. These measurement parameters result in approximate 
maximum indentation depths of 𝛿𝑚𝑎𝑥 = 1.5 μm and 𝛿𝑚𝑎𝑥 = 1.1 μm for L929 and OFCOLII cells, respectively. On average, the OFCOLII 
cells are roughly 30% stiffer than L929 ones. 𝐸𝑌 and 𝐸(𝑡𝑙) moduli exhibit a slight increase with 𝑓𝑧 for both cell lines, while the 
relaxation exponents remain nearly constant. In both cell lines, the values of 𝐸(𝑡𝑙) are consistently smaller than 𝐸𝑌 , in agreement 
with Eq. (11). The exponents of OFCOLII cells are lower than of L929 cells, indicating that L929 cells exhibit an increased fluid 
character compared to OFCOLII cells. The comparison of 𝐸𝑌 with the effective Young’s modulus 𝐸′

𝑌
shows that both models differ 

by less than 5% for both cell lines. Finally, the boxplots of Fig. 3 exhibit dispersion in all measured parameters. For example, Young’s 
moduli show a dispersion of the order of 1 kPa between the 1st and 3rd quartile for the curves measured with 𝑓𝑧 = 1 Hz. This is 
caused by the variability of stiffness of over the cell surface and between cells [31].

Concerning the response of the cells for increasing forces, 𝑡𝑙 and 𝛿𝑚𝑎𝑥 increase in both cell lines. Forces of 8 nN produce maximum 
indentation depths of 2.1 μm and 1.7 μm in L929 and OFCOLII cells, respectively. Consequently, OFCOLII cells are stiffer than L929 
cells for larger external forces. Interestingly, both 𝐸𝑌 and 𝐸(𝑡𝑙) moduli increase non-linearly with 𝐹𝑚𝑎𝑥. This varying elasticity 
modulus is due to the nonlinear mechanical stiffening of the cells [28]. On the other hand, the trends of the relaxation exponents 
𝛽 seem to be cell-dependent, exhibiting a slight reduction for L929 cells, and increase for OFCOLII cells. Finally, the comparison of 
the effective 𝐸′

𝑌
and actual 𝐸𝑌 Young’s moduli shows that these quantities differ, on average, by up to 5% even when the cells are 

subjected to nonlinear deformation responses.

We also performed the data analysis above, fixing 𝛿𝑚𝑎𝑥 = 0.5 μm for varying 𝑓𝑧 for both cells (See Supplementary Material). For 
shallow indentation depths, which are just a bit larger than the thickness of the cell cortex, the average values of 𝑡𝑙 are much shorter 
than the ones of Fig. 3, resulting in larger values of 𝐸(𝑡𝑙) and 𝐸𝑌 . Again, we obtained differences between 𝐸′

𝑌
and actual 𝐸𝑌 of 

approximately 70 Pa, confirming that our effective Young’s modulus obtained from the PL model is also valid for fixed 𝛿𝑚𝑎𝑥 .

4.4. Determining 𝐸(𝑡) from a single force curve

Equation (11) shows that fitting a force curve 𝐹 (𝑡) versus 𝛿(𝑡) using the HS model provides a sort of time-dependent 𝐸𝑌 (𝑡) where 𝑡 is 
the time duration that the AFM tip takes, departing from the contact point, to achieve an indentation depth of 𝛿(𝑡). Such an approach 
has been previously employed to obtain a depth-dependent 𝐸𝑌 (𝛿) without formal proof, as the one provided in our study. The same 
approach has also been proposed as a mechanical tomography method to probe the interior of cells [39]. The time-dependent Young’s 
modulus 𝐸𝑌 (𝑡) of the force curves measured in Figs. 2(a) and 2(d) are shown in Figs. 2(c) and 2(f), respectively. The constructed 
𝐸𝑌 (𝑡) curves for different 𝑓𝑧 are very similar exhibiting two relaxation regimes, a fast relaxation regime (up to 200 ms) with exponent 
𝛽𝑓𝑎𝑠𝑡, and a slow relaxation regime for larger observation times with exponent 𝛽𝑠𝑙𝑜𝑤 (𝛽𝑓𝑎𝑠𝑡 > 𝛽𝑠𝑙𝑜𝑤). These two relaxation regimes 
have been observed in many reports in both time and frequency domains [5,40–42]. Evidence of the fast relaxation regime was also 
found in the analysis for fixed 𝛿𝑚𝑎𝑥 = 0.5 μm (see Supplementary Material). The measured values of 𝑡𝑙 are roughly a few tens of 
milliseconds, depending on 𝑓𝑧, thereby within the fast relaxation timescales. The fitting of the loading force curves for such shallow 
indentations resulted in relaxation exponents more than 50% larger than those obtained for force curves with 𝛿𝑚𝑎𝑥 > 1 μm (see 
7

Fig. 3).
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Fig. 5. Construction of the relaxation function 𝐸(𝑡) for a single cell by performing multiple measurements over an area of 16 μm2 with varying 𝑓𝑧 frequencies. Each 
curve is fitted with HS model to obtain ⟨𝐸𝑌 ⟩ versus ⟨𝑡𝑙⟩ data points, which can be fitted with ⟨𝐸𝑌 ⟩ =𝐴⟨𝑡𝑙⟩−𝛽′ , where 𝛽′ is the average relaxation exponent of the cell, 
and 𝐴 = 𝜆𝐵(𝜆, 1 − 𝛽′)𝐸(1), where 𝐸(1) is the actual elasticity modulus of the cell at 𝑡 = 1 s.

4.5. Determining 𝐸(𝑡) with HS model

With the connection between the Young’s modulus of the HS model with the time-dependent PL force model of cells proved, 
the natural question that arises is how to determine the actual viscoelastic relaxation function 𝐸(𝑡) using only HS model, given the

mechanical inhomogeneities over a whole cell and their nonlinear mechanical response.

Due to the linear relationship between 𝐸𝑌 and 𝐸(𝑡) (Eq. (11)), one can construct 𝐸(𝑡) for a single (or a collection of cells) by 
measuring those cells with the largest possible range of 𝑓𝑧. According to Fig. 3, keeping 𝐹𝑚𝑎𝑥 constant, we can explore the mechanical 
properties of cells at different times 𝑡𝑙 that may approximately range from 10−2 s to 100 s by changing 𝑓𝑧 from 0.25 Hz to 2 Hz. This 
range can be enlarged from 0.1 Hz to 10 Hz in most AFM setups, providing the possibility of exploring the relaxation properties of 
cells over two orders of magnitude in time (from tens of milliseconds to a few seconds).

We measured 16 force curves over a squared area of 4 × 4 μm2 of side of a single cell of each cell line. Each curve is fitted with 
the HS model, and the data points of 𝐸𝑌 (𝑡𝑙), depicted in Fig. 5, clearly shows the dispersion of 𝐸𝑌 and 𝑡𝑙 , due to the inhomogeneous 
properties of different sites of the cell surface. The dependence of the average ⟨𝐸𝑌 ⟩ with the average ⟨𝑡𝑙⟩, represented by the large 
black squares, exhibits a power-law-like behavior which, according to Eq. (11), should exhibit the same time dependence of the 
viscoelastic relaxation function 𝐸(𝑡) given by Eq. (5). Fitting those data points with ⟨𝐸𝑌 ⟩ = 𝐴⟨𝑡𝑙⟩−𝛽′ , resulted in 𝛽′ = 0.14 and 
𝐴 = 1.6 for the OFCOLII cell. A direct comparison of this fitting function with Eqs. (5) and (11) shows that (i) the exponent 𝛽′ can 
be regarded as an average relaxation exponent of the measured cell, (b) the parameter 𝐴 = 𝜆𝐵(𝜆, 1 − 𝛽′)𝐸(1) is proportional to the 
average cell elasticity modulus 𝐸(1) at 𝑡𝑟𝑒𝑓 = 1 s, whereas the whole cell is considered an homogeneous viscoelastic body.

4.6. Validity of the linear indentation profile

Our viscoelastic force model departed from a linear indentation profile assumption in the loading/unloading curves. We tested 
the validity of this assumption in our measurements by modeling the experimental indentation curves as 𝛿(𝑡) = 𝛿𝑚𝑎𝑥(𝑡∕𝑡𝑙)𝑛, where 
deviations from 𝑛 = 1 represent nonlinear indentation profiles. These data are shown in the Supplementary Material. For small forces 
of 2 nN, we obtain average values ranging between 𝑛 = 0.98 and 𝑛 = 1.0 for both L929 and OFCOLII cells, despite of the cantilever 
speed (𝑓𝑧). For increasing forces up to 8 nN, the average values range between 𝑛 = 0.97 and 𝑛 = 0.99, with the OFCOLII cells 
exhibiting a slightly larger nonlinearity than the L929 cells. Such tiny reductions in the exponent 𝑛 do not represent a significant 
deviation from the linear indentation assumption of Eq. (4). These results are in line with the analytical solution of the indentation 
profile for power-law materials of Brückner et al. [32], which shows that for moderate combination of cantilever speeds and spring 
constant, the linear indentation profile is a good approximation. Moreover, as shown in the Supplementary Material, the nonlinear 
form of the indentation profile keeps the analytical form of Eq. (11) and, consequently the relationship between HS and our power-

law force model. The only difference is a slight change in Young’s modulus that becomes 𝐸𝑌 (𝑡) = 𝑛𝜆𝐵(𝑛𝜆, 1 − 𝛽)𝐸(𝑡).

4.7. Indenter geometry effects

Several studies reported large variations in the Young’s moduli of cells measured with different indenter geometries [24,25,43–

45]. Among those, the works of Kulkarni et al. [24] and Chiou et al. [25] stand out because they studied the effect of three different 
geometries (conical/pyramidal, spherical and flat) at different loading conditions. All those studies found the same trend, i. e., 
𝐸𝑐𝑜𝑛𝑒
𝑌

> 𝐸
𝑠𝑝ℎ𝑒𝑟𝑒

𝑌
> 𝐸

𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

𝑌
for the same cell type. This comparative trend agrees qualitatively, but not quantitatively, with our model. 
8

For instance, Chiou et al. found that 𝐸𝑐𝑜𝑛𝑒
𝑌

∕𝐸𝑠𝑝ℎ𝑒𝑟𝑒

𝑌
≈ 2, 𝐸𝑐𝑜𝑛𝑒

𝑌
∕𝐸𝑓𝑙𝑎𝑡

𝑌
≈ 2 and 𝐸𝑠𝑝ℎ𝑒𝑟𝑒

𝑌
∕𝐸𝑓𝑙𝑎𝑡

𝑌
≈ 1. Similar ratios were also found by the 
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Fig. 6. Diagram showing how the measurement parameters 𝑓𝑧 ∝ 𝑡−1
𝑙

and 𝐹𝑚𝑎𝑥 influence the fitted Young’s modulus 𝐸𝑌 in PL viscoelastic materials. The solid lines 
represent the time-dependent Young’s modulus (𝐸𝑌 (𝑡) ∝ 𝐸(𝑡)), while the points represent the fitted Young’s modulus for a specific combination of parameters 𝑓𝑧 and 
𝐹𝑚𝑎𝑥 .

other mentioned works. Comparatively, Eq. (11) predicts that 𝐸𝑐𝑜𝑛𝑒
𝑌

∕𝐸𝑠𝑝ℎ𝑒𝑟𝑒

𝑌
= 1.045, 𝐸𝑐𝑜𝑛𝑒

𝑌
∕𝐸𝑓𝑙𝑎𝑡

𝑌
= 1.11 and 𝐸𝑠𝑝ℎ𝑒𝑟𝑒

𝑌
∕𝐸𝑓𝑙𝑎𝑡

𝑌
= 1.065, 

assuming 𝛽 = 0.2 and given that 𝐸𝑌 is measured with different geometries and identical timescales.

The variation of the Young’s modulus measured with different indenter geometries is often justified only in terms of the different 
contact radius (see Table 1) that leads to non-uniform contact pressure distribution below the indenter. According to Kulkarni et al., 
it is preferable to compare the mechanical properties of cells at comparable average pressure. Since this is very hard to achieve, they 
standardized a maximum indentation depth of 𝛿𝑚𝑎𝑥 = 0.4 μm to compare 𝐸𝑌 measured with different geometries. Differently from 
Kulkarni, Chiou standardized 𝐹𝑚𝑎𝑥 to compare data.

Although none of the above works included time in their analyzes, time is implicitly embedded in the measurements. We have 
simulated force curves in a cell using the measurement parameters (indenter geometry, cantilever speed and spring constant) from 
Chious’s work (see Supplementary Material). We found that standardizing 𝐹𝑚𝑎𝑥 does not lead to standardization of 𝑡𝑙 . Fixing 𝐹𝑚𝑎𝑥 =
1𝑛𝑁 , we obtained 𝑡𝑐𝑜𝑛𝑒

𝑙
> 𝑡

𝑠𝑝ℎ𝑒𝑟𝑒

𝑙
> 𝑡

𝑓𝑙𝑎𝑡

𝑙
where 𝑡𝑐𝑜𝑛𝑒

𝑙
∕𝑡𝑠𝑝ℎ𝑒𝑟𝑒

𝑙
≈ 4.6 and 𝑡𝑐𝑜𝑛𝑒

𝑙
∕𝑡𝑓𝑙𝑎𝑡

𝑙
≈ 14.5. Consequently, comparing 𝐸𝑌 measured with 

different indenters in the same cell is equivalent to compare the mechanical properties of the cell at different relaxation timescales. 
Thereby, it is reasonable that the ratios of 𝐸𝑌 be different from the predictions of our model. On the other hand, standardizing 
𝛿𝑚𝑎𝑥 = 0.4 μm nearly leads to the standardization of 𝑡𝑙 . We obtained 𝑡𝑐𝑜𝑛𝑒

𝑙
< 𝑡

𝑠𝑝ℎ𝑒𝑟𝑒

𝑙
< 𝑡

𝑓𝑙𝑎𝑡

𝑙
, where 𝑡𝑐𝑜𝑛𝑒

𝑙
∕𝑡𝑠𝑝ℎ𝑒𝑟𝑒

𝑙
≈ 0.87, 𝑡𝑐𝑜𝑛𝑒

𝑙
∕𝑡𝑠𝑝ℎ𝑒𝑟𝑒

𝑙
≈ 0.75

and 𝑡𝑠𝑝ℎ𝑒𝑟𝑒
𝑙

∕𝑡𝑓𝑙𝑎𝑡
𝑙

≈ 0.87. For such a condition, the ratio 𝐸𝑐𝑜𝑛𝑒
𝑌

∕𝐸𝑠𝑝ℎ𝑒𝑟𝑒

𝑌
is raised to 1.074, as compared to 1.045 predicted by our model. 

However, this ratio still is much below the measurements of Kulkarni et al. who also found 𝐸𝑐𝑜𝑛𝑒
𝑌

∕𝐸𝑠𝑝ℎ𝑒𝑟𝑒

𝑌
≈ 2.

One of the possible reasons for such a increased ratio is that sharp conical/pyramidal tips are very sensitive to small scale 
cytoskeleton fibers (e.g. actin bundles and microtubules) whose stiffness is of the order of GPa as compared to the average stiffness 
of the cell body of few kPa [28]. On the other hand, indenters with large radii (spherical/flat) are much less sensitive to small scale 
stiffer areas and only feel an averaged mechanical response of the cytoskeleton components and cytoplasm [24]. Other factor that 
may affect the measurements of 𝐸𝑌 with different geometries is that indenters with large contact radius are more susceptible to finite 
thickness effects, such that indentation depths larger that 10% of the sample thickness should be avoided, or properly treated with a 
viscoelastic force model that takes into account the finite thickness effects [38,46].

5. Discussion

As a general rule, the fitting of the force curves with the HS model exhibits slightly worse goodness-of-fit parameters 𝑟2 when 
compared to the PL force model because a constant value of 𝐸𝑌 cannot account for the time-dependent relaxation of the elasticity 
modulus during the loading curve. However, this poor fitting can be mitigated by performing faster force curves (increasing 𝑓𝑧), for 
which the relaxation amplitude is smaller than for slow force curves, as shown in Table 2 for fixed 𝐹𝑚𝑎𝑥. On the other hand, one 
cannot increase 𝑓𝑧 too much because the drag resistance on the cantilever increases. In this case, the fluid drag must be considered 
in the force model. For instance, reference [31] shows a method to remove the drag contribution to the force curve, but it requires 
additional calibration steps to the measurements workflow. Alternatively, Efremov et al. developed a numerical postprocessing 
protocol to remove the drag contribution that can be applied to extremely fast force curves like the ones in fast force mapping and 
Peakforce Tapping AFM modes [45].

The use of HS model results in Young’s moduli strongly dependent on the parameters adopted in the measurement, namely 
the vertical frequency 𝑓𝑧 and maximum trigger force 𝐹𝑚𝑎𝑥. Both parameters determine the duration 𝑡𝑙 of the loading curve, which 
is the timescale for the underlying viscoelastic processes. In fact, the PL force model shows that 𝐸𝑌 is proportional to the actual 
elasticity modulus 𝐸(𝑡) at 𝑡 = 𝑡𝑙 (see Eq. (11)). Therefore, one can construct the approximate relaxation function 𝐸(𝑡) by exploring 
the inter-dependence of 𝑡𝑙 , 𝑓𝑧 and 𝐹𝑚𝑎𝑥 in multiple force curves.

The values of 𝐸𝑌 for different measurement parameters must qualitatively represent the behavior of the underlying relaxation 
function. For instance, the increase of 𝐸𝑌 with 𝑓𝑧 for fixed 𝐹𝑚𝑎𝑥 reflects the high elasticity moduli of materials at very short 
9

timescales, while measurements with large 𝑓𝑧 reflect the lower elasticity moduli at large timescales. This qualitative model to 
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Table 3

Comparison between our model and Efremov’s model calculated 
by Eq. (15).

𝜙 𝛽 = 0 𝛽 = 0.1 𝛽 = 0.2 𝛽 = 0.4 𝛽 = 0.6

𝛾 = 2 (𝑡𝑢 = 𝑡𝑙)

𝜆 = 1 1 0.933 0.871 0.758 0.660

𝜆 = 1.5 1 0.960 0.924 0.860 0.809

𝜆 = 2 1 0.928 0.967 0.947 0.942

𝛾 = 1.8 (𝑡𝑢 = 0.8𝑡𝑙)

𝜆 = 1 1 0.923 0.852 0.727 0.619

𝜆 = 1.5 1 0.950 0.905 0.825 0.759

𝜆 = 2 1 0.972 0.947 0.908 0.885

describe how the AFM measurement parameters affect the fitted elasticity modulus is schematically shown in Fig. 6. Since 𝑓𝑧 is 
inversely proportional to both 𝑡𝑙 and 𝛿𝑚𝑎𝑥, such a behavior is predicted by Eq. (9), which can be used for quick estimates of 𝐸(𝑡𝑙). 
Moreover, HS model is also able to study the nonlinear response of the cells when subjected to increasing forces.

The proposed method to construct the viscoelastic relaxation function departing from several measurements of 𝐸𝑌 at different 
timescales 𝑡𝑙 can be extended to more challenging scenarios, like (i) using blunted cone indenter model to describe pyramidal tips 
more realistically [43,47], and (ii) for large indentation depths using either flat or spherical indenters, which are very susceptible to 
finite thickness effects [38,48], and the force curves must be fitted with a thickness-corrected elastic model [46].

Efremov et al. have previously investigated the relationship between 𝐸𝑌 and 𝐸(𝑡) [33]. They have numerically shown that the 
apparent 𝐸𝑌 , determined in the whole indentation cycle duration 𝑇𝑐𝑦𝑐𝑙𝑒 = 𝑡𝑙 + 𝑡𝑢, is close to the time-averaged value of the 𝐸(𝑡)
within the limits of the indentation cycle regardless of the indenter geometry and relaxation function, i.e.,

𝐸𝑌 ≈ ⟨𝐸⟩ = 1
0.25𝑇𝑐𝑦𝑐𝑙𝑒

0.25𝑇𝑐𝑦𝑐𝑙𝑒

∫
0

𝐸(𝑡)𝑑𝑡. (13)

For elastic samples, one has 𝑡𝑢 = 𝑡𝑙 , and for viscoelastic samples 𝑡𝑢 < 𝑡𝑙 . Thus, we can write 𝑇𝑐𝑦𝑐𝑙𝑒 = 𝛾𝑡𝑙 (1 ≤ 𝛾 ≤ 2) to represent elastic 
(𝛾 = 2) and viscoelastic materials (1 ≤ 𝛾 < 2). Solving this integral using Eq. (5), we obtain:

�̄�𝑌 ≈ ⟨𝐸⟩ = (0.25𝛾)−𝛽

(1 − 𝛽)
𝐸(𝑡𝑙). (14)

We can compare our model with Efremov’s by calculating the ratio

𝜙 =
𝐸𝑌 (𝑡𝑙)
�̄�𝑌

= 𝜆𝐵(𝜆,1 − 𝛽)(1 − 𝛽)(0.25𝛾)𝛽 , (15)

whose results are shown in Table 3. The data show that Efremov’s model is similar to our model in the two cases: (i) low viscoelastic 
exponents, regardless the indenter geometry, and (ii) for conical indenters, regardless the viscoelastic exponent.

6. Conclusions

In this work, we demonstrated how fitting AFM force curves with the Hertz-Sneddon (HS) model can be used to study the 
viscoelastic response of power-law viscoelastic soft materials. More specifically, we showed how to quantify the viscoelastic properties 
of living cells, which obey complex power-law relaxation, obtained from the widely adopted framework of the HS model. This data 
analysis protocol can be rapidly incorporated into the routine biomechanical characterization of cells and other soft materials, and it 
can be easily adapted to study materials that obey other types of viscoelastic relaxation. By incorporating the viscoelastic nature of 
samples and the other standardization protocol proposed by Perez-Dominguez et al. [23], we finally established the pathway to turn 
biomechanics into a metrology-graded method for biomedical engineering applications.

CRediT authorship contribution statement

I.V.M. Lima: Writing – original draft, Methodology, Formal analysis, Conceptualization. A.V.S. Silva: Methodology, Data cu-

ration. F.D. Sousa: Validation, Methodology. W.P. Ferreira: Methodology, Formal analysis. R.S. Freire: Methodology. C.L.N. 
de Oliveira: Writing – original draft, Conceptualization. J.S. de Sousa: Validation, Methodology.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
10

influence the work reported in this paper.



Heliyon 10 (2024) e30623I.V.M. Lima, A.V.S. Silva, F.D. Sousa et al.

Data availability

All data that support the findings of this study are included within the article and in the supplementary material.

Acknowledgements

This work was supported by the Brazilian agencies CNPq, CAPES and FUNCAP, and by Fundação Edson Queiroz.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .heliyon .2024 .e30623.

References

[1] C. Rotsch, M. Radmacher, Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study, Biophys. J. 78 (Jan. 
2000) 520–535.

[2] B. Fabry, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farré, D. Navajas, Microrheology of human lung epithelial cells measured by atomic force microscopy, 
Biophys. J. 84 (2003) 2071.

[3] L.M. Rebelo, J.S. de Sousa, J. Mendes Filho, M. Radmacher, Comparison of the viscoelastic properties of cells from different kidney cancer phenotypes measured 
with atomic force microscopy, Nanotechnology 24 (2012) 055102.

[4] B. Han, H.T. Nia, C. Wang, P. Chandrasekaran, Q. Li, D.R. Chery, H. Li, A.J. Grodzinsky, L. Han, Afm-nanomechanical test: an interdisciplinary tool that links the 
understanding of cartilage and meniscus biomechanics, osteoarthritis degeneration, and tissue engineering, ACS Biomater. Sci. Eng. 3 (Aug. 2017) 2033–2049.

[5] J.S. de Sousa, F.R.S.F.D. Sousa, M. Radmacher, A.F.B. Silva, M.V. Ramos, A.C.O. Monteiro-Moreira, F.P. Mesquita, M.E.A. Moraes, R.C. Montenegro, C.L.N. 
Oliveira, Double power-law viscoelastic relaxation of living cells encodes motility trends, Sci. Rep. 10 (2020) 4749.

[6] R. Garcia, Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications, Chem. Soc. Rev. 49 (2020) 5850.

[7] P.D. Garcia, C.R. Guerrero, R. Garcia, Nanorheology of living cells measured by afm-based force–distance curves, Nanoscale 12 (2020) 9133.

[8] I. Sneddon, The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci. 3 (1965) 47.

[9] S.E. Cross, Y.-S. Jin, J. Tondre, R. Wong, J. Rao, J.K. Gimzewski, Afm-based analysis of human metastatic cancer cells, Nanotechnology 19 (Aug. 2008) 384003.

[10] A. Stylianou, T. Stylianopoulos, Atomic force microscopy probing of cancer cells and tumor microenvironment components, BioNanoScience 6 (Dec. 2015) 
33–46.

[11] M. Lekka, Discrimination between normal and cancerous cells using afm, BioNanoScience 6 (2016) 65.

[12] A. Stylianou, M. Lekka, T. Stylianopoulos, Afm assessing of nanomechanical fingerprints for cancer early diagnosis and classification: from single cell to tissue 
level, Nanoscale 10 (45) (2018) 20930–20945.

[13] M. Plodinec, M. Loparic, C.A. Monnier, E.C. Obermann, R. Zanetti-Dallenbach, P. Oertle, J.T. Hyotyla, U. Aebi, M. Bentires-Alj, R.Y.H. Lim, C.-A. Schoenenberger, 
The nanomechanical signature of breast cancer, Nat. Nanotechnol. 7 (2012) 757.

[14] E. Darling, S. Zauscher, F. Guilak, Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy, Osteoarthr. Cartil. 14 (June 
2006) 571–579.

[15] M. Stolz, R. Gottardi, R. Raiteri, S. Miot, I. Martin, R. Imer, U. Staufer, A. Raducanu, M. Düggelin, W. Baschong, A.U. Daniels, N.F. Friederich, A. Aszodi, U. Aebi, 
Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy, Nat. Nanotechnol. 4 (Feb. 2009) 186–192.

[16] Z. Chang, L. Zhang, J.-T. Hang, W. Liu, G.-K. Xu, Viscoelastic multiscale mechanical indexes for assessing liver fibrosis and treatment outcomes, Nano Lett. 23 
(Oct. 2023) 9618–9625.

[17] S. Pérez-Domínguez, J. López-Alonso, F. Lafont, M. Radmacher, Comparison of rheological properties of healthy versus dupuytren fibroblasts when treated with 
a cell contraction inhibitor by atomic force microscope, Int. J. Mol. Sci. 24 (Jan. 2023) 2043.

[18] Z. Chang, J. Zhang, Y. Liu, H. Gao, G.-K. Xu, New mechanical markers for tracking the progression of myocardial infarction, Nano Lett. 23 (Aug. 2023) 
7350–7357.

[19] C. Rianna, M. Radmacher, Influence of microenvironment topography and stiffness on the mechanics and motility of normal and cancer renal cells, Nanoscale 9 
(2017) 11222.

[20] C. Rianna, M. Radmacher, S. Kumar, Direct evidence that tumor cells soften when navigating confined spaces, Mol. Biol. Cell 31 (July 2020) 1726–1734.

[21] D. Rudoy, S.G. Yuen, R.D. Howe, P.J. Wolfe, Bayesian change-point analysis for atomic force microscopy and soft material indentation, J. R. Stat. Soc., Ser. C, 
Appl. Stat. 59 (June 2010) 573–593.

[22] N. Gavara, Combined strategies for optimal detection of the contact point in afm force-indentation curves obtained on thin samples and adherent cells, Sci. Rep. 
6 (2016) 21267.

[23] S. Pérez-Domínguez, S.G. Kulkarni, J. Pabijan, K. Gnanachandran, H. Holuigue, M. Eroles, E. Lorenc, M. Berardi, N. Antonovaite, M.L. Marini, J. Lopez Alonso, 
L. Redonto-Morata, V. Dupres, S. Janel, S. Acharya, J. Otero, D. Navajas, K. Bielawski, H. Schillers, F. Lafont, F. Rico, A. Podestà, M. Radmacher, M. Lekka, 
Reliable, standardized measurements for cell mechanical properties, Nanoscale 15 (40) (2023) 16371–16380.

[24] S.G. Kulkarni, S. Pérez-Domínguez, M. Radmacher, Influence of cantilever tip geometry and contact model on AFM elasticity measurement of cells, J. Mol. 
Recognit. 36 (7) (2023) e3018.

[25] Y.-W. Chiou, H.-K. Lin, M.-J. Tang, H.-H. Lin, M.-L. Yeh, The influence of physical and physiological cues on atomic force microscopy-based cell stiffness 
assessment, PLoS ONE 8 (Oct. 2013) e77384.

[26] V.G. Gisbert, F.M. Espinosa, J.G. Sanchez, M.C. Serrano, R. Garcia, Nanorheology and nanoindentation revealed a softening and an increased viscous fluidity of 
adherent mammalian cells upon increasing the frequency, Small (Sept. 2023).

[27] M.A. Caporizzo, C.M. Roco, M.C.C. Ferrer, M.E. Grady, E. Parrish, D.M. Eckmann, R.J. Composto, Strain-rate dependence of elastic modulus reveals silver 
nanoparticle induced cytotoxicity, Nanobiomedicine 2 (Jan. 2015) 9.

[28] P. Kollmannsberger, B. Fabry, Linear and nonlinear rheology of living cells, Annu. Rev. Mater. Res. 41 (2011) 75.

[29] R. Benítez, S. Moreno-flores, V.J. Bolós, J.L. Toca-Herrera, A new automatic contact point detection algorithm for AFM force curves, Microsc. Res. Tech. 76 
(June 2013) 870–876.

[30] R. Roy, J.P. Desai, Determination of mechanical properties of spatially heterogeneous breast tissue specimens using contact mode atomic force microscopy (afm), 
Ann. Biomed. Eng. 42 (2014) 1806.

[31] F.M. Hecht, J. Rheinlaender, N. Schierbaum, W.H. Goldmann, B. Fabry, T.E. Schäffer, Imaging viscoelastic properties of live cells by afm: power-law rheology 
on the nanoscale, Soft Matter 11 (2015) 4584.

[32] B.R. Brückner, H. Nöding, A. Janshoff, Viscoelastic properties of confluent mdck ii cells obtained from force cycle experiments, Biophys. J. 112 (Feb. 2017) 
11

724–735.

https://doi.org/10.1016/j.heliyon.2024.e30623
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibFEE63DA22B717745A2C8A2A7F901A2A6s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibFEE63DA22B717745A2C8A2A7F901A2A6s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib031659C165CAB32B75B43AD703DF9EA1s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib031659C165CAB32B75B43AD703DF9EA1s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibD2F905014B85FE5C1310D69DC896EC32s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibD2F905014B85FE5C1310D69DC896EC32s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib135F7E60A903E9F093F541BE4656E02Bs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib135F7E60A903E9F093F541BE4656E02Bs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibDC38C09756903B8E535EA0037133EE18s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibDC38C09756903B8E535EA0037133EE18s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib9DDF89E61A65AD48865E40B37ED1F420s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib2BD80BD7305AF190D17D2BEFBE0F7317s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibA35FCF0926CFFD12BE3BB232ED08BA8As1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib074FDBCCA0CA13EABDC68D1F313BE67Ds1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib0FB5E065961B343D1D297D5F4FACF241s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib0FB5E065961B343D1D297D5F4FACF241s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibFE479B5C306E785F8FE9A7996F8CD79Bs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib16C3CC112EC09F0AB249D0BA509974DEs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib16C3CC112EC09F0AB249D0BA509974DEs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibBFAEEF841B8C399B75EAFC1C0F5C8AA2s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibBFAEEF841B8C399B75EAFC1C0F5C8AA2s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibEFDC5B087AD68412B5C2BBC972497713s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibEFDC5B087AD68412B5C2BBC972497713s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib09D81E172F61641E2AC96131CD6C471Ds1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib09D81E172F61641E2AC96131CD6C471Ds1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibAA158BB1166B47D8416FFBFB43B1EE7Fs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibAA158BB1166B47D8416FFBFB43B1EE7Fs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibC88C70A022C2CA214D806D126D300DD7s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibC88C70A022C2CA214D806D126D300DD7s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibB4CD26EEF5620F56706CE981BC30B1F9s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibB4CD26EEF5620F56706CE981BC30B1F9s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib9A6549492C45D24CF798B0EF90A5EF8Ds1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib9A6549492C45D24CF798B0EF90A5EF8Ds1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib562022917F4A41CEC6360A318F1B1CDCs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib8589B7CDA365F37B9B2D75066E08C814s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib8589B7CDA365F37B9B2D75066E08C814s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibED8ACE58A17BB4392C0E5AB808BC0BCBs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibED8ACE58A17BB4392C0E5AB808BC0BCBs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibCB976A694D8125D240CCA10838151DA3s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibCB976A694D8125D240CCA10838151DA3s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibCB976A694D8125D240CCA10838151DA3s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib20A379F2C8C45C9AE139242B43F70B67s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib20A379F2C8C45C9AE139242B43F70B67s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibFB0A6932B11EC94E8DE95972084CEAA5s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibFB0A6932B11EC94E8DE95972084CEAA5s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibE721306DD25D8F04AC57817384F196EDs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibE721306DD25D8F04AC57817384F196EDs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib26EAC7D7818F232FEA4C1549584D52CDs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib26EAC7D7818F232FEA4C1549584D52CDs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib411821C94C56BD8507149F244C2AE593s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib8E27111BDA6D7BFC47BBD0DD57BF6D0Es1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib8E27111BDA6D7BFC47BBD0DD57BF6D0Es1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibEFB6EFA69040267C4464299377E3B373s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibEFB6EFA69040267C4464299377E3B373s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib686973E43F15AD44B4E9F47A84A6DFDFs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib686973E43F15AD44B4E9F47A84A6DFDFs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib2430427E7D500113D9EADE9115791E36s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib2430427E7D500113D9EADE9115791E36s1


Heliyon 10 (2024) e30623I.V.M. Lima, A.V.S. Silva, F.D. Sousa et al.

[33] Y.M. Efremov, S.L. Kotova, P.S. Timashev, Viscoelasticity in simple indentation-cycle experiments: a computational study, Sci. Rep. 10 (Aug. 2020) 13302.

[34] A. Jaishankar, G.H. McKinley, Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations, Proc. R. Soc. A 469 
(2012) 20120284.

[35] E.H. Lee, J.R.M. Radok, The contact problem for viscoelastic bodies, J. Appl. Mech. 27 (Sept. 1960) 438–444.

[36] J.S. de Sousa, J.A.C. Santos, E.B. Barros, L.M.R. Alencar, W.T. Cruz, M.V. Ramos, J.M. Filho, Analytical model of atomic-force-microscopy force curves in 
viscoelastic materials exhibiting power law relaxation, J. Appl. Phys. 121 (2017) 034901.

[37] A.L.D. Moura, W.V. Santos, F.D. Sousa, R.S. Freire, C.L.N. de Oliveira, J.S. de Sousa, Viscoelastic relaxation of fibroblasts over stiff polyacrylamide gels by atomic 
force microscopy, Nano Express 4 (Sept. 2023) 035008.

[38] D.F.S. Costa, J.L.B. de Araújo, C.L.N. Oliveira, J.S. de Sousa, Nanoindentation in finite thickness viscoelastic materials, J. Appl. Phys. 132 (Dec. 2022) 214701.

[39] C. Roduit, S. Sekatski, G. Dietler, S. Catsicas, F. Lafont, S. Kasas, Stiffness tomography by atomic force microscopy, Biophys. J. 97 (July 2009) 674–677.

[40] L. Deng, X. Trepat, J.P. Butler, E. Millet, K.G. Morgan, D.A. Weitz, J.J. Fredberg, Fast and slow dynamics of the cytoskeleton, Nat. Mater. 5 (2006) 636.

[41] B.D. Hoffman, G. Massiera, K.M. Van Citters, J.C. Crocker, The consensus mechanics of cultured mammalian cells, Proc. Natl. Acad. Sci. USA 103 (2006) 10259.

[42] B.D. Hoffman, J.C. Crocker, Scaling cell mechanics: dissecting the physical responses of cells to force, Annu. Rev. Biomed. Eng. 11 (2009) 259.

[43] F. Rico, P. Roca-Cusachs, N. Gavara, R. Farré, M. Rotger, D. Navajas, Probing mechanical properties of living cells by atomic force microscopy with blunted 
pyramidal cantilever tips, Phys. Rev. E 72 (Aug. 2005).

[44] P. Carl, H. Schillers, Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing, Pflügers Arch. Eur. J. Physiol. 457 
(May 2008) 551–559.

[45] Y.M. Efremov, A.I. Shpichka, S.L. Kotova, P.S. Timashev, Viscoelastic mapping of cells based on fast force volume and peakforce tapping, Soft Matter 15 (27) 
(2019) 5455–5463.

[46] P.D. Garcia, R. Garcia, Determination of the elastic moduli of a single cell cultured on a rigid support by force microscopy, Biophys. J. 114 (June 2018) 
2923–2932.

[47] S. Kontomaris, A. Malamou, A. Stylianou, The hertzian theory in afm nanoindentation experiments regarding biological samples: overcoming limitations in data 
processing, Micron 155 (Apr. 2022) 103228.

[48] S.V. Kontomaris, A. Malamou, A novel approximate method to calculate the force applied on an elastic half space by a rigid sphere, Eur. J. Phys. 42 (Feb. 2021) 
12

025010.

http://refhub.elsevier.com/S2405-8440(24)06654-4/bib7C5ADBDF815854AB4A18E3CDEC0AA9FCs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibBFE89889DE93B11E4F39B0DB64513234s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibBFE89889DE93B11E4F39B0DB64513234s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib5CF6C888B63EE7BCDE06D73D2154314As1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib9F0D00165E9C5EA91D42CEB0DED1CE01s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib9F0D00165E9C5EA91D42CEB0DED1CE01s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibE1E7961CFDB35B5BF80B65F8275D17ACs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibE1E7961CFDB35B5BF80B65F8275D17ACs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib56798A945360BF2440A32AF59AD81653s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib697E789D03DFC9A11F23D237C6601446s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib01A12EEF5ABFB83D981897417546DDFAs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibC398935602A8C3B6E5938AB991F00231s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibD961EE8033F9E2CBBF2F0F8E5DBCB6B5s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib777C17DBAB640367372CA1B9CB20F6B9s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib777C17DBAB640367372CA1B9CB20F6B9s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibD4D1CC95667EDC1BAA585777D30BA33As1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibD4D1CC95667EDC1BAA585777D30BA33As1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibF43CA0C7DB039EC37DA19E84C2D614EEs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibF43CA0C7DB039EC37DA19E84C2D614EEs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibE6069F52210560FA71BCAB2AF8010548s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibE6069F52210560FA71BCAB2AF8010548s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibAB2FCCA496C721863FE0D545E424B632s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bibAB2FCCA496C721863FE0D545E424B632s1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib86CAD9EE8048D8FAF02D80A8B877540Fs1
http://refhub.elsevier.com/S2405-8440(24)06654-4/bib86CAD9EE8048D8FAF02D80A8B877540Fs1

	Measuring the viscoelastic relaxation function of cells with a time-dependent interpretation of the Hertz-Sneddon indentati...
	1 Introduction
	2 Experimentals
	3 Modeling
	3.1 HS model
	3.2 Viscoelastic force model

	4 Results
	4.1 Simulated force curves
	4.2 Experimental force curves
	4.3 Intra- and inter-cell variability
	4.4 Determining E(t) from a single force curve
	4.5 Determining E(t) with HS model
	4.6 Validity of the linear indentation profile
	4.7 Indenter geometry effects

	5 Discussion
	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References


