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Abstract: Thin film composite (TFC) membranes is the dominant type of desalination in the field
of membrane technology. Most of the TFC membranes are fabricated via interfacial polymerization
(IP) technique. The ingenious chemistry of reacting acyl chlorides with diamines at the interface
between two immiscible phases was first suggested by Cadotte back in the 1980s, and is still the
main chemistry employed now. Researchers have made incremental improvements by incorporating
various organic and inorganic additives. However, most of the TFC membrane literature are focused
on improving the water desalination performance. Recently, the application spectrum of membrane
technology has been expanding from the aqueous environment to harsh solvent environments,
now commonly known as Organic Solvent Nanofiltration (OSN) technology. In this work, some
of the main additives widely used in the desalination TFC membranes were applied to OSN TFC
membranes. It was found that tributyl phosphate (TBP) can improve the solubility of diamine
monomer in the organic phase, and sodium dodecyl sulfate (SDS) surfactant can effectively stabilize
the IP reaction interface. Employing both TBP and SDS exhibited synergistic effect that improved the
membrane permeance and rejection in solvent environments.

Keywords: organic solvent nanofiltration; interfacial polymerization; thin film composite membranes;
additives; surfactant

1. Introduction

With the escalating global climate crisis, membrane technology has been gaining
considerable attention as a new platform for the energy-efficient separation process. Partic-
ularly, chemical industries consume 10–15% of the total US energy consumption, mostly
on distillation [1]. In comparison, membrane technology can perform high-precision sepa-
rations without phase change while consuming approximately 90% less energy. One of
the major advantages of membrane technology is that it is modular, and can be easily inte-
grated with other separation technologies such as distillation, extraction, chromatography,
recrystallization, and others.

The application spectrum of membrane technology has been expanding from simple
water treatment to gas separations [2], artificial organs [3], and chemical separations in
harsh organic media [4]. Particularly, organic solvent nanofiltration (OSN) technology
has been attracting a lot of interest as it has the potential to perform difficult separation
challenges posed in chemical industries.

Currently, most of the membrane markets employ polymeric membranes, although
ceramic, zeolite, and metal-organic-framework membranes are also being developed ac-
tively. Better polymeric membranes with enhanced separation performance (permeance
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and selectivity) is always preferred. In the field of OSN, most of the early developments
were focused on integrally skinned asymmetric (ISA) membranes, where solvent stability of
base polymers was enhanced by heterogeneous crosslinking reaction. See-Toh et al. [5] first
reported crosslinking of polyimide backbone with diamine to form crosslinked polyamide
membranes. Polyimide is soluble in polar aprotic solvents such as N,N-dimethylformamide
(DMF), N-methylpyrrolidone (NMP), and N,N-dimethylacetamide (DMAc). Polyimide
membrane was first fabricated from DMF via phase inversion method; then, the membrane
was cross-linked in diamine solution in heterogenous reaction. The crosslinked membranes
became stable in harsh organic solvents, including polar aprotic solvents such as DMF,
NMP and DMAc, while maintaining nanofiltration separation performance. This was a big
breakthrough, as it opened new doors for membrane technology to enter fine chemical and
pharmaceutical industries. Nowdays, OSN membranes are widely applied in such indus-
tries to recycle organic solvents [6] and homogeneous catalysts [7]. Valtcheva et al. [8,9] also
reported similar strategy with polybenzimidazole (PBI) polymer, where alkylation chem-
istry was employed with dibromoxylene to fasten two imidazole rings which significantly
improved the polymer solvent stability.

Similar to reverse osmosis (RO) membrane development, the trend in the field of
OSN is shifting from ISA to thin film composite (TFC) membranes [10–12]. A TFC mem-
brane is generally composed of three layers: a nonwoven support as the bottom layer, an
ultrafiltration membrane as the middle layer, and a thin polymeric film on the top layer.
The bottom layer acts as a mechanical support to improve the handleability, the middle
layer acts as another support layer, and the top layer is the selective layer which performs
the actual separation. The key advantage of TFC membranes is that each layer can be
semi-independently optimized, and in particular, many interesting polymer chemistries
can be applied to the top selective layer.

The top selective layer can be formed by several methods, such as solution-coating,
lamination, vapor deposition, and interfacial polymerization (IP). Among different meth-
ods, the IP method is by far the most employed technique, and most of the RO mem-
branes are commercialized with this method. The ingenious IP chemistry was first re-
ported by Cadotte in 1980s [13], where trimesoyl chloride (TMC) was reacted with m-
phenylenediamine (MPD) to form thin crosslinked polyamide films. The reaction proceeds
at an interface between two liquid phases, generally at water-hexane or water-toluene inter-
face. Apart from aforementioned TMC-MPD chemistry by Cadotte, membrane researchers
have tested various types and permutations of chemicals in different compositions and
conditions, for more than 40 years [14]. Remarkably, the TMC-MPD chemistry is still the
most widely used IP pair both in current literature and in industry.

In addition, researchers have tried various additives to enhance reaction efficiency
and membrane performance. Notably, use of acid scavengers and surfactants have shown
positive effects in the membrane performance [15]. More recently, researchers incorporated
nanoparticles to fabricate thin film nanocomposite (TFN) membranes [16], although the
reported performance enhancements are questionable from solution-diffusion model per-
spectives. Every TFC membrane manufacturer has their own undisclosed recipe, and most of
them certainly incorporate more than one additive to control their membrane performance.

It should be stressed that these developments were tailored towards aqueous applica-
tions involving desalination or other forms of water treatment. Many interesting reports
on IP chemistry to prepare TFC membranes have not yet been tested for fabrication of
OSN membranes. Therefore, in this work, some of the most widely employed additives
and techniques to prepare RO membranes were used to fabricate TFC membranes for
OSN applications. Three different additives were tested: tributyl phosphate (TBP) additive
in the organic phase, triethylamine (TEA) additive in the aqueous phase, and sodium
dodecylsulfate (SDS) surfactant in the aqueous phase. The effect of each additive in the
OSN performance was systematically investigated. It was found that appropriate selection
of additives certainly improves the TFC-OSN membrane performance.
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2. Experimental
2.1. Materials

Two different commercial membranes were used as supports for TFC membranes:
JQM-PS-500 membrane (polysulfone, average pore size 0.05 µm, JiaQuan, Guangdong,
China), and M-M2540PS20 membrane (polysulfone, MWCO 20,000 Da, Applied Mem-
branes, Vista, CA, USA). In this work, these two support membranes are annotated as
PSf1 and PSf2, respectively. m-Phenylenediamine (MPD, 98.0%), trimesoyl chloride (TMC,
98.0%), triethylamine (TEA, 99.0%), and sodium dodecyl sulfate (SDS) were purchased
from Sejin CI (South Korea). Potassium carbonate (K2CO3, 99.5%), tributyl phosphate
(TBP, 99.0%), ethanol (EtOH, 99.5%), isopropyl alcohol (IPA, 99.5%), and n-hexane (95.0%)
were purchased from Samchun Chemicals (Seoul, South Korea). Sodium Chloride (NaCl,
99.05%) was purchased from Daejung Chemicals (Goryeong, South Korea) and polypropy-
lene glycol (PPG, 425 Da, 725 Da, 1000 Da) was purchased from Sigma-Aldrich (Seoul,
South Korea).

2.2. Membrane Fabrication

Prior to interfacial polymerization (IP) reaction, the support membranes (PSf1 or PSf2)
were immersed in EtOH for 30 min to remove any pore preservatives, followed by DI water
for 30 min. The washed support membrane was then immersed in the 3 wt% aqueous MPD
solution containing SDS (0–2 wt%) or TEA (0–0.9 wt%) for 5 min. The membrane surface
was wiped off using a rubber roller to remove excess aqueous solution, then it was affixed
with a silicone gasket. An organic TMC solution (0.23 wt%) containing TBP (0–0.6 wt%)
in n-hexane was then poured onto the MPD-impregnated support surface and allowed
to react at room temperature for 3 min. After IP reaction, the membrane was exposed to
different set of post-treatments such as hexane rinse, air dry, and heat treatment (60 ◦C for
1 min). The fabricated TFC membranes were kept in DI water.

2.3. Membrane Characterization

The morphologies of TFC membranes were analyzed using FE-SEM (field emission
scanning electron microscopy, JSM-7800F, Japan). The chemical nature of the membranes
were characterized using ATR-FTIR (attenuated total reflectance—fourier transform in-
frared spectroscopy, IR Tracer-100, Shimadzu, Kyoto, Japan)

2.4. Membrane Performance Evaluation

The permeance and rejection performance of the membranes were characterized using
both dead-end cell and in-house crossflow system, as shown in Figure 1.
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Figure 1. Schematics of (a) dead-end cell apparatus, and (b) in-house cross-flow system with
8 membrane cells in parallel configuration.

The membrane permeance was calculated using the following equation.

Permeance =
V

A t ∆P
≡

[
L

m2 h bar

]
(1)
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The membranes with effective surface area of 16.6 cm2 each were tested in EtOH and
IPA solvent containing 2 g·L−1 PPG oligomers (MW range between 350–1200 Da). The
solution was circulated in crossflow at 30 bar using a high-pressure diaphragm pump
(G03, HydraCell, Wanner Engineering Inc, Minneapolis, MN, USA) at 150 L·h−1. The
solution temperature was maintained at 30 ◦C using a double-jacketed feed tank and a
chiller. Permeate samples were collected after 6 h to condition and stabilize the membrane
performance. The samples were analyzed using an HPLC (high performance liquid chro-
matography, YL9100 Plus, YoungIn Chromass Inc, Anyang, South Korea) equipped with
an ELSD (evaporative light scattering detector). The mobile phase was a mixture of water
and acetonitrile (gradient), and the stationary phase was a C18 column (4.6 mm × 150 mm,
5 µm). The column separates PPG oligomer based on the MW, and relative concentration
of each solute of permeate and retentate can be calculated from the calibration data. The
observed rejection value of each solute MW can be calculated using the following equation.

Rejection, R (%) =

(
1−

Cp

CR

)
×100% (2)

3. Results and Discussion

It has been reported many times that the surface morphology and the chemical
nature of the support membrane affects the IP reaction significantly [17–20]. In this work,
two different commercial polysulfone membranes (PSf1, PSf2) were used as supports
for IP reaction. According to the manufacturer specifications, PSf1 membranes have
average pore size of 0.05 µm, whereas PSf2 membranes have molecular weight cut off
(MWCO) value of 20,000 Da. Note that the MWCO is the molecular weight of a solute
that is 90% rejected by the membrane; hence, lower the MWCO, the smaller the pore size.
Generally, microfiltration membranes are characterized using the average pore size value,
and ultrafiltration membranes are described using the concept of MWCO.

It can be seen in Figure 2 that PSf1 membrane has lower water permeance than that
of PSf2. On the other hand, the surface pores are clearly visible in PSf1, whereas there
are no micro-scale pores in PSf2. Hence, clearly, the pore size alone cannot be the sole
factor to estimate the permeance. In this particular case, PSf2 may exhibit very high
pore connectivity beneath the surface, but it is difficult to conclude from the SEM images.
Apart from the membrane permeance, PSf1 membrane is expected to exhibit higher surface
roughness, which can have an adverse effect during IP reaction. Therefore, PSf2 membranes
were used as supports for IP reaction to fabricate thin film composite (TFC) membranes.

Polymers 2021, 13, x FOR PEER REVIEW 4 of 10 
 

 

The membrane permeance was calculated using the following equation. 

Permeance =
V

A t DP
≡ �

L

m2 h bar
� (1) 

The membranes with effective surface area of 16.6 cm2 each were tested in EtOH and 

IPA solvent containing 2 g·L−1 PPG oligomers (MW range between 350–1200 Da). The so-

lution was circulated in crossflow at 30 bar using a high-pressure diaphragm pump (G03, 

HydraCell, Wanner Engineering Inc, Minneapolis, MN, USA) at 150 L·h−1. The solution 

temperature was maintained at 30 °C using a double-jacketed feed tank and a chiller. Per-

meate samples were collected after 6 h to condition and stabilize the membrane perfor-

mance. The samples were analyzed using an HPLC (high performance liquid chromatog-

raphy, YL9100 Plus, YoungIn Chromass Inc, Anyang, South Korea) equipped with an 

ELSD (evaporative light scattering detector). The mobile phase was a mixture of water 

and acetonitrile (gradient), and the stationary phase was a C18 column (4.6 mm × 150 mm, 

5 μm). The column separates PPG oligomer based on the MW, and relative concentration 

of each solute of permeate and retentate can be calculated from the calibration data. The 

observed rejection value of each solute MW can be calculated using the following equa-

tion. 

Rejection, R (%)= �1 - 
Cp

CR
�  ´ 100% (2) 

3. Results and Discussion 

It has been reported many times that the surface morphology and the chemical nature 

of the support membrane affects the IP reaction significantly [17–20]. In this work, two 

different commercial polysulfone membranes (PSf1, PSf2) were used as supports for IP 

reaction. According to the manufacturer specifications, PSf1 membranes have average 

pore size of 0.05 μm, whereas PSf2 membranes have molecular weight cut off (MWCO) 

value of 20,000 Da. Note that the MWCO is the molecular weight of a solute that is 90% 

rejected by the membrane; hence, lower the MWCO, the smaller the pore size. Generally, 

microfiltration membranes are characterized using the average pore size value, and ultra-

filtration membranes are described using the concept of MWCO. 

It can be seen in Figure 2 that PSf1 membrane has lower water permeance than that 

of PSf2. On the other hand, the surface pores are clearly visible in PSf1, whereas there are 

no micro-scale pores in PSf2. Hence, clearly, the pore size alone cannot be the sole factor 

to estimate the permeance. In this particular case, PSf2 may exhibit very high pore con-

nectivity beneath the surface, but it is difficult to conclude from the SEM images. Apart 

from the membrane permeance, PSf1 membrane is expected to exhibit higher surface 

roughness, which can have an adverse effect during IP reaction. Therefore, PSf2 mem-

branes were used as supports for IP reaction to fabricate thin film composite (TFC) mem-

branes. 

 

Figure 2. Polysulfone support membrane characterization and effect of post interfacial polymeriza-
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Figure 2. Polysulfone support membrane characterization and effect of post interfacial polymeriza-
tion treatment. (a–d) surface and cross-sectional SEM images of PSf1 and PSf2, respectively; (e) pure
water permeance of PSf1 and PSf2; (f–h) effects of air dry, hexane rinse, and heat treatment on TFC
membrane water permeance and NaCl rejection, respectively. The membranes were tested with
dead-end cell apparatus.

The density of the synthesized thin polymer film (e.g., polyamide) is also highly
dependent on the post-reaction treatments [21–25]. The effects of three different post-IP
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treatments are summarized in Figure 2f–h. It was determined that with the IP condition
employed in this work (3 wt% MPD for 5 min, 0.23 wt% TMC for 3 min), both air dry
and heat treatment did not affect the membrane performance. In comparison, rinsing
the membrane with hexane to remove unreacted monomers improved the NaCl rejection.
It should be noted that the effects of these post-treatments vary among the reported
literature [21,25], indicating that IP reaction is highly sensitive to other conditions such as
support membrane morphology. In this work, only the hexane rinsing step was employed
for preparation of TFC membranes.

Many additives have been reported by literatures to improve the performance of
TFC membranes for desalination (reverse osmosis, RO). Researchers have tested various
permutations of monomer compositions and additives, but their effects have not been
explicitly tested in solvent filtrations. We have tested three well-known additives in the IP
literature: TBP in the organic phase, each TEA and SDS surfactant in the aqueous phase.
The exact mechanism and purpose of each additive are different.

Effects of TBP in the organic phase on TFC membrane morphology and performance
are summarized in Figure 3. The use of TBP in the IP reaction was first proposed by
Kim et al. [26]. The idea for using the TBP additive during an IP reaction is to improve
the solubility of both TMC and MPD in the organic phase. The IP reaction proceeds in
the organic-aqueous interface, but it mostly occurs in the organic layer, as MPD diffuses
into the organic layer and reacts with the TMC (TMC is not soluble in water). The IP
reaction self-terminates as the film grows thicker and hinders further MPD diffusion into
the organic phase.
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Figure 3. Effect of TBP additives in the organic phase on (a,b) surface SEM images, (c,d) cross-sectional SEM images,
(e) FTIR spectra (f) solvent permeance, (g) PPG rejection profile in EtOH, and (h) PPG rejection profile in IPA.

As shown in Figure 3a–d, incorporating TBP (0–0.6 wt%) in the organic phase re-
sulted in a drastic difference in the membrane morphology. Compared to the typical
ridge-and-valley surface morphology of the TFC membrane, employing TBP additive
resulted in thicker film and the surface structure became more distinct. FTIR analysis
shown in Figure 3d clearly show a qualitative trend towards thicker films. Four charac-
teristic polyamide peaks can be observed at 1487 cm−1 (C–C stretching of benzene ring),
1543 cm−1 (N–H in-plane bending), 1608 cm−1 (H-bonded C=O stretching), and 1670 cm−1

(C=O stretching of the amide bond), confirming that polyamide films were formed by
the IP reaction. Importantly, the peak intensity progressively became bigger with higher
TBP content, indicating the TFC layer accordingly became thicker. Hence, as expected,
TBP promotes IP reaction by improving the solubility of MPD in the organic phase and
stabilizing the reaction surface.
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On the other hand, the addition of TBP did not affect the OSN performance in EtOH
and IPA. There was a slight improvement in EtOH permeance with the addition of 0.3 wt%
TBP, but the results were not statistically significant. Interestingly, as the TBP content
increased to 0.6 wt%, a noticeable drop in the membrane rejection of PPG oligomer was
observed for both EtOH and IPA solvent. As TBP is also soluble in the aqueous phase,
higher TBP content can destabilize the aqueous-organic phase interface, leading to loose
TFC layer or defects.

Also, it can be seen that the PPG rejection curve in IPA is generally lower than those
of EtOH. This is due to the fact that the permeation proceeds by the solution-diffusion
mechanism. The rejection is determined by the relative permeance of solvent and PPG
solute. The permeance of IPA solvent is generally lower than that of EtOH, as IPA is larger,
more hydrophobic, and more viscous. These factors lower the diffusivity of IPA compared
to that of EtOH. Therefore, in accordance with the solution-diffusion mode, the solute
rejection profile in IPA is lower than EtOH for TFC membranes.

Aqueous-soluble base compound is an important class of additive used for IP reaction
via TMC-MPD chemistry. The byproduct of TMC-MPD reaction is HCl acid, and the
solution progressively becomes more acidic [27], known to adversely affect the efficiency
of IP reaction. Hence, addition of TEA as a mild base can neutralize the formed acids to
maintain constant solution pH. Many works have been reported that show the positive
effect of TEA [21,28].

The data for TFC membranes fabricated using TEA additive are summarized in
Figure 4. Compared to the TBP results, there was no noticeable difference in the surface
and cross-sectional morphology of TFC membranes. There was also no difference in the
membrane thickness nor the chemistry, as indicated by the FTIR data. As for the permeance
and rejection trend, no statistically significant difference was observed for both EtOH and
IPA, except a slight drop in the EtOH permeance with 0.3 wt% TEA addition.
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The SDS surfactant is another common additive used during an IP reaction. As water
aqueous phase and hexane organic phase are immiscible, a slight perturbation in the
interface can destabilize the reaction interface, leading to undesired defects. This is one
of the main reasons why the reproducibility of IP reaction in laboratory, particularly for
unexperienced researchers, is low. To overcome this, addition of surfactant (e.g., SDS) can
enlarge and effectively stabilize the reaction interface, improving the reproducibility of IP
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reaction quite significantly. Particularly, the use of SDS has been reported many times with
positive effects [28–30].

The effects of SDS in TFC membrane fabrication are summarized in Figure 5. It can be
seen that, similar to TBP additive, the surface morphology become more distinct with the
addition of SDS. This is due to the fact that the reaction interface is stabilized with surfactant.
Naturally, the polyamide thin film progressively thickens with SDS concentration. FTIR
analysis confirms the presence of polyamide layer and the thickness. Such trend was
similar to that of TBP additive.
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In contrast to the TBP additive, interestingly, a drastic improvement in solvent per-
meance was observed with SDS additive. Notably, the EtOH permeance improved nearly
by 6-fold when 0.2 wt% SDS was added to the aqueous layer. There was also statistically
significant impact on the PPG rejection trend. Particularly, two opposing trends can be
deduced. With the addition of SDS, the solvent permeance was enhanced, which generally
leads to higher rejection (relative permeance of solvent to solute increases, leading to higher
observed rejection). However, as the SDS content becomes excessive (>0.2 wt%), the film
becomes too loose and the film selectivity deteriorates. It can be seen that the rejection goes
down for both EtOH and IPA with 0.2 wt% SDS content.

Since TBP in the organic phase and SDS additive in the aqueous phase both affected
the membrane morphology and performance, two additives were used in tandem to
investigate the synergistic effect during the IP reaction. The results are summarized in
Figure 6. TBP content was fixed at 0.3 wt% and SDS content was varied from 0 wt% to
0.2 wt%. As expected, the film thickness increased accordingly, and the surface morphology
became distinct. FTIR analysis confirmed the thickening effect as well as the successful
formation of the polyamide layer.

As for the membrane performance, there was a significant improvement in both
permeance and rejection profile. The permeance improved as expected from Figure 5
data. Interestingly, the membrane rejection increased significantly for both EtOH and
IPA solvent, reaching near 100% even for small molecular weight PPG oligomers. Such
simultaneously improvement can be attributed to two effects. Addition of TBP increases
the MPD solubility, and addition of SDS stabilizes the reaction surface. Therefore, dense
polaymide film was able to form under relatively stable reaction environment. Hence, there
was a clear synergistic effect by employing both TBP and SDS simultaneously.
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4. Conclusions

Various types of additives were employed during preparation of thin film composite
membranes via IP reaction for OSN applications. It was found that employing TBP additive
in the organic phase enhances the MPD solubility and results in thicker membranes. Al-
though noticeable difference was observed in the film morphology, there was no significant
change in the membrane performance in organic solvents. Since TBP is also soluble with the
aqueous phase, increasing the TBP content above certain threshold (>0.6 wt%) resulted in
deterioration of the membrane selectivity. TEA additive was employed as the neutralizing
agent to scavenge the acid compounds that form during the IP reaction. Contrary to other
literature reports where TEA showed positive effects in desalination applications, there was
no observable improvement in membrane performance in solvent environments. On the
other hand, employing SDS surfactant as an additive resulted in significant improvement in
membrane permeance. It was found that the use of SDS stabilizes the reaction interface by
enlarging it, resulting in reproducible results with thicker films. Interestingly, employing
both TBP and SDS simultaneously improved both membrane permeance and rejection
in tandem. The permeance improved by near 6-fold, and the rejection of PPG oligomer
reached near 100% across all molecular weight range. Such synergistic effect was induced
as TBP enhances the MPD solubility while SDS stabilizes the reaction interface. Hence,
employing both TBP and SDS during IP can reproducibly enhance the performance of
TFC-OSN membranes. Additionally, several post-treatments were tested in this work,
and found that rinsing the formed membrane with hexane removed unreacted monomers
and improved the film density. Apart from these additives employed in this work, there
are still many unique additives and combination of additives developed for desalination
membranes, yet to be tested for OSN applications.
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