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Abstract: Carbon-ions are charged particles with a high linear energy transfer, and

therefore, they make a better dose distribution with greater biological effects on the

tumors compared with photons and protons. Since prostate cancer, renal cell

carcinoma, and retroperitoneal sarcomas such as liposarcoma and leiomyosarcoma are

known to be radioresistant tumors, carbon-ion radiotherapy, which provides the

advantageous radiobiological properties such as an increasing relative biological

effectiveness toward the Bragg peak, a reduced oxygen enhancement ratio, and a

reduced dependence on fractionation and cell-cycle stage, has been tested for these

urological tumors at the National Institute for Radiological Sciences since 1994. To

promote carbon-ion radiotherapy as a standard cancer therapy, the Japan Carbon-ion

Radiation Oncology Study Group was established in 2015 to create a registry of all

treated patients and conduct multi-institutional prospective studies in cooperation with

all the Japanese institutes. Based on accumulating evidence of the efficacy and feasibility

of carbon-ion therapy for prostate cancer and retroperitoneal sarcoma, it is now covered

by the Japanese health insurance system. On the other hand, carbon-ion radiotherapy

for renal cell cancer is not still covered by the insurance system, although the two

previous studies showed the efficacy. In this review, we introduce the characteristics,

clinical outcomes, and perspectives of carbon-ion radiotherapy and our efforts to

disseminate the use of this new technology worldwide.

Key words: carbon-ion radiotherapy, local control, prostate cancer, renal cell

carcinoma, toxicity.

INTRODUCTION

CIRT has unique biological and physical properties among the different RTs, and it has been
used to treat prostate cancer since 19951 and RCC since 19972 at the NIRS (currently QST).
Both diseases are known as radioresistant to RT using a conventional fractionation due to the
low alpha-beta ratio of the cancer cells based on the linear-quadratic model.3,4 RPSs is also
known to be radioresistant tumors, and CIRT was applied to them since 1997.5 To overcome
resistance to RT, high-dose irradiation with a hypofractionation using carbon-ion beams seems
to be a reasonable approach because these beams can deliver high doses to the tumors while
sparing the surrounding organs at risk, such as the GI tracts. According to long-term and care-
ful follow-up studies of CIRT, the feasibility and efficacy of CIRT using reduced fraction
numbers have been tested in these cancers step by step.6–8

Beam delivery and treatment planning techniques for CIRT are improving; the size of
CIRT accelerators is decreasing to reduce the cost, and the number of facilities practicing
CIRT has been recently increased. At the present, 14 institutes have implemented CIRT
worldwide, seven of which are in Japan (Figure 1). The J-CROS was established in 2014 to
create a registry of all treated patients and to conduct multi-institutional prospective studies in
cooperation with all CIRT-practicing Japanese institutes, with the aim of establishing cover-
age of CIRT by the national health insurance system. CIRT is a treatment covered by the
health insurance for prostate cancer and RPS but is only used as an advanced medical
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treatment for many other types of cancers including RCC.
Thus, the working group of the JASTRO has been prospec-
tively investigating the collected data and systematically
reviewing the clinical outcomes of individual cases obtained
from published data.

In this review, we summarize the history and biological
and physical characteristics of CIRT, as well as the clinical
outcomes of CIRT for urological malignancies and describe
our perspectives.

HISTORY AND CHARACTERISTICS OF
CARBON-ION THERAPY

History of carbon-ion radiotherapy

CIRT is regarded as an innovative technology in oncology.
Although the number of centers performing this treatment is
still limited, major paradigm shifts in RT for a variety of can-
cers including urological malignancies have steadily pro-
gressed.

The basic concept of the charged particle therapy was
advocated by Robert Wilson in 1946.9 He proposed that
accelerated protons are the most practical particle for medical
purposes in terms of beam range in that era. He also claimed
that heavier particles, such as alpha particles or energetic car-
bon atoms, which have less straggling and angular spread,
will be the most desirable and will eventually become thera-
peutically practical. PBT was first implemented at the LBNL
in 1954 and treatment with helium ions was initiated in 1957,
although it was limited to the superficial lesions.10 Clinical
studies using heavier ions, such as silicon, neon or carbon
were also begun at the LBNL in 1974, and the favorable

outcomes were obtained in certain cases.11 However, the cost
of developing and delivering heavy ions could not be justi-
fied in the limited patients’ experience, and the studies were
terminated in 1992.

In Japan, Umegaki proposed fast neutron therapy, which
has high radiological effects on tumor cells, and it was imple-
mented at the NIRS in 1971.12 Favorable results were
obtained in salivary gland tumors, Pancoast tumors, and some
sarcomas, but severe adverse events due to insufficient dose
concentration of the fast neutron beams occurred.12 There-
fore, heavy-ion therapy, which has both a high biological
effect and localized dose distribution, was desired, and the
construction of a dedicated facility was achieved in 1984.
The HIMAC was completed in 1994, and phase I/II clinical
studies using carbon-ion beams were begun. Of the several
types of ion species, carbon ions were selected because they
have optimal properties in terms of the most effective dose-
localization in the body, both physically and biologically.13

In clinical studies at the QST, the treatment efficacy of
CIRT was investigated in a variety of tumors, and conse-
quently, effective and safe treatment techniques were estab-
lished for most indications. Particularly, several tumors
including locally advanced tumors of the histologically non-
squamous cell type, such as adenocarcinoma, adenoid cystic
carcinoma, malignant melanoma, and bone and soft tissue
sarcomas, appeared to respond favorably to carbon ions. In
addition, the efficacy of treatment regimens using a hypofrac-
tionation was confirmed in many tumor types, particularly
those in parallel organs, such as the lung or liver.14 Clinical
experience at the QST was evaluated by the review panel
consisting of radiation oncologists, radiobiologists, and
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FIGURE 1 Carbon-ion therapy institutes in Japan
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medical physicists from the U.S. and Europe.15 Peer review
of the clinical outcomes at the QST suggested that CIRT
improves the outcomes of several common cancers with poor
prognoses, in addition to the favorable results in some rare
cancers, such as bone and soft tissue sarcomas. The panel
recommended prioritization of shortening the fractionation
schedules, reducing the size and cost of the technology and
equipment, and research on improving patient throughput,
including the use of a rotating gantry.15 Prior to the recom-
mendation of the panel, the QST attempted to shorten the
treatment period even for cancers at the kidney and prostate.
Moreover, the QST is also working on the development of
downsized facilities, scanning irradiation and a rotating gan-
try in collaboration with accelerator vendors in Japan. In fact,
a rotating gantry with scanning irradiation of carbon-ion
beams became available in a new treatment facility of the
QST in 2017, which would be advantageous for the treatment
of many cancers close to the radiosensitive organs.

Physical properties of carbon-ion beams

Energetic charged particles deliver the irradiation doses to
matter via the electromagnetic interactions causing ionization
energy loss in a stopping process. The stopping power,
known as the theoretical mean value of the LET, increases
with depth by inverse speed squared and reaches a maximum
at a range to form the Bragg peak in depth–dose distribu-
tion.16 The dosimetric properties of charged-particle beams
are essentially governed by the electric charge and mass of
the particles. As shown in Table 1, a proton has a positive
elementary charge (e) and is approximately 1840 times bigger
than an electron. A carbon ion has six elementary charges
and is approximately 11.9 times bigger than the proton. For
charged particles traversing at a certain speed, the kinetic
energy is proportional to the mass, the stopping power is pro-
portional to the charge squared, and scattering angles are pro-
portional to the charge/mass ratio. A low charge/mass ratio
means carbon ions travel in a straighter trajectory through
matter, which is desirable for targeting tumor but, at the same
time, renders it difficult to bend the path of the ions magneti-
cally in the accelerator systems. In addition, the carbon-ion
range is approximately one-third the proton range at the same
speed, such that carbon ions must be accelerated faster than
protons to obtain the range required for tumor treatment.

A fully stripped accelerated carbon ion, or a carbon-12
nucleus, is a composite of six protons and six neutrons and
may incidentally fragment into lighter nuclei via nuclear
interactions as it penetrates through matter.17 For example, of

290 MeV/nucleon carbon ions, approximately 50% will frag-
ment before reaching the 16 cm depth in water. The loss of
carbon ions by fragmentation lowers the Bragg peak, and the
resulting fragments display a long tail in the depth–dose dis-
tribution curve. That is a major disadvantage of carbon ions,
especially for the treatment of deep-seated tumors.

In a modern CIRT systems, carbon ions accelerated at a
designated variable energy are delivered to cancer patients in
the form of a pencil beam typically 5 mm in both diameter
and Bragg peak size to form a local high-dose spot area,
which is scanned sequentially over a target volume.18 The
beam delivery sequence is designed using a treatment planning
system to achieve an optimal dose distribution in the patient,
whose physical structure has been modeled numerically by CT
imaging. As explained in the following section, the high-LET
nature of carbon-ion beams effectively enhances the radiation
dose to cells, especially at the Bragg peak. The enhancement
factor, or the RBE, is considered in the dose optimization
algorithms of treatment planning systems to prescribe curative
doses. For all positions, the number of carbon ions to be deliv-
ered is optimized to form a SOBP of a uniform RBE-weighted
dose covering the tumor, as shown in Figure 2.19

Biological properties of carbon-ion beams

Charged particle beams of protons and carbon ions offer a
more localized dose distribution to a tumor compare with
conventional photons and electrons due to their intrinsic
physical properties such as an advantageous depth-dose pro-
file known as the Bragg peak and little lateral scattering.20 In
addition, the high-LET nature of carbon ions provides the
advantageous radiobiological properties compare with those
of photons, electrons, and protons, such as an increasing
RBE toward the Bragg peak, a reduced oxygen enhancement
ratio, and a reduced dependence on fractionation and cell-
cycle stage.21 Furthermore, favorable responses have been
reported for high-LET carbon ions such as an increased
immune response and reduced angiogenesis and metastatic
potential.22 These physical and radiobiological properties
make carbon ions attractive for treating radioresistant tumors.

What causes the differences in radiobiological effects of
radiations? The radiobiological effects following energy trans-
fer by radiation proceed in the following steps: physical pro-
cesses (<10�15 s) including ionization, excitation, and
transportation of secondary electrons, chemical processes
(<10�3 s) including dissociation of excited/ionized molecules,
diffusion and reaction of generated radical species, and bio-
logical processes (<109 s) including all subsequent processes
such as enzymatic repair, cellular and tissue responses, muta-
tions, and carcinogenesis. Figure 3 shows the spatial dose
distributions on a microscopic scale delivered via the physical
processes pertaining to the same 1-Gy macroscopic dose
exposures to radiation with different LET values; 100-keV
electrons with a LET of 0.5 keV/lm, 270 and 15 MeV/u car-
bon ions with LETs of 13 and 118 keV/lm, respectively.23

The diameter of the circle in each panel is 10 lm (approxi-
mately the size of a cell nucleus). The 100-keV electrons
(right figure) yield an almost homogeneous microscopic dose
distribution within the cell nucleus, inducing simple DNA

TABLE 1 Particle mass and charge for common therapeutic radiations

Particle type Symbol Mass Charge Composition

Photon c 0 0 Elementary

Electron e� 0.511 –1 Elementary

Proton p 938.3 +1 u u d (quarks)

Neutron n 939.6 0 u d d (quarks)

Carbon-ion 12C6+ 11 175 +6 6 p + 6 n
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damage that is easy to repair. In contrast, stopping carbon
ions with a high LET (left figure) causes track cores with
high local doses exceeding 10 Gy, inducing clustered DNA
damages around the track cores that are difficult to repair. It
should be noted that 270 MeV/u carbon ions (middle figure)
show reduced local doses at track cores causing reduced
DNA damages, compared with stopping carbon ions. Thus,
the difference in the microscopic dose distributions delivered
in the initial physical processes at the atomic or molecular
level may lead to the differences in radiobiological effects at
the cellular, organ, and eventually systemic levels after radia-
tion exposure, resulting in the advantageous radiobiological
properties of carbon ions.

To effectively use the advantageous physical and radiobio-
logical properties of carbon ions in cancer treatments, a

clinically relevant dose, defined as the product of the physical
dose and the clinical RBE, must be calculated for treatment
planning systems. The RBE of heavy ions depends on vari-
ous physical and biological parameters, including LET, ion
species, dose level, type of tissue or cell, oxygen conditions,
and endpoint of interest. For practicality, the survival of
human salivary gland tumor cells under aerobic conditions
was selected as the endpoint of the RBE definition in
Japan.24,25 The LET and ion-species dependencies were
accounted for by taking the specific energy z absorbed by a
microscopic subcellular structure ‘domain’ for expressing the
RBE of heavy ions, as the quantity directly relates to ionizing
densities in microscopic sites.26,27 In CIRT planning, the spa-
tial distribution of z in patients is calculated for the therapeu-
tic carbon-ion beam, and the uniform clinical dose
distribution is designed throughout the tumor volume using
dose-optimization algorithms. Since the RBE of therapeutic
carbon-ion beams varies along the SOBP, a uniform clinical
dose in the tumor results in a varying physical dose along the
SOBP, as shown in Figure 4.

CLINICAL OUTCOMES OF CARBON-ION
THERAPY FOR UROLOGICAL CANCERS

Prostate cancer

Since 1995, CIRT for prostate cancer has been provided to
more than 4100 prostate cancer patients as of November
2021 (Table 2).1,28 In the initial study (protocol 9402), 35
patients with histologically confirmed adenocarcinoma of the
prostate were enrolled through December 1997, and the dose
was escalated from 54 Gy (RBE) to 72 Gy (RBE) in 20 frac-
tions.28 In the study, patients with T2b–T3N0M0 were eligi-
ble. In addition, patients who underwent staging pelvic
lymphadenectomy and were diagnosed as pN1 (single and
non-fixed lymph node metastasis) were also eligible as T2b–
T3pN1M0 prostate cancer. On the other hand, Gleason scores
and initial PSA values were not restricted to the eligibility in
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all studies at our institute. That study established the tolerable
dose to the rectum and the basic methodology for CIRT for
prostate cancer. The second study (protocol 9703) was initi-
ated in January 1998, and T1b–T2aN0M0, T1b–T3pN0M0
prostate cancer was treated with CIRT alone, while T2b–
T3bN0M0 or T2b–T3pN1M0 prostate cancer was treated
with CIRT combined with ADT. A total of 97 patients were
enrolled in these studies and a recommended dose of
66.0 Gy (RBE) was determined for both locally advanced
and early-stage tumors.28,29

Based on these results, a phase II study (protocol 9904)
was started in April 2000 to validate the feasibility and effi-
cacy of CIRT using the shrinking field technique and the rec-
ommended dose fractionation (66.0 Gy (RBE) in 20 fractions
over 5 weeks) determined from the phase I/II studies.30 In

that study, patients were divided into two groups according
to their risk classification, such as T stage, initial prostate
specific antigen level, and Gleason score. Patients were eligi-
ble if their tumors were histologically confirmed as adenocar-
cinoma of the prostate and staged as T1b–T3N0M0,0 and
patients with pN0 or a solitary and non-fixed regional lymph
node metastasis (pN1) were also eligible as T1b-3pN0-1 M0.
On the other hand, exclusion criteria of the study were the
history of pelvic RT or other treatments for prostate cancer,
performance status of 3–4, and presence of concurrent active
malignancies. A total of 176 patients were enrolled, and local
control was achieved in all but one patient. The 4-year bRF
rate was 87%, and grade 2 GU and GI events were observed
in only 2% and 5% of patients, respectively without grade 3
or higher morbidities.30

After the phase II study, a lower dose of 63.0 Gy (RBE)
in 20 fractions was successfully evaluated for the purpose of
reducing late toxicities. Consequently, the appropriate treat-
ment technique and recommended dose in 20-fraction CIRT
was established and confirmed around 2006.30 The results of
the phase II trial also suggested dividing the high-risk group
into two subgroups: intermediate-risk and true high-risk
groups. It was also recommended that true high-risk patients
should undergo combined treatment with CIRT and long-
term ADT, whereas CIRT combined with a short course of
neoadjuvant and concurrent ADT should be applied to
patients in the intermediate-risk group. Hereby, a treatment
strategy of the 20-fraction CIRT according to the risk factors
was established.30,31 Furthermore, studies including various
patient backgrounds and treatment factors relates to reduced
GU and GI disorders found that anticoagulation and high rec-
tal doses increased the risk of rectal bleeding, and that pro-
longed ADT worsened GU symptoms.30,31

At an a/b ratio of 1.5 Gy for prostate cancer, 63 Gy
(RBE) in 20 fractions is equivalent to 83.7 Gy in 2 Gy
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TABLE 2 Clinical outcomes of high-dose RT for prostate cancer

Author (year) No. of patients Total dose Fractions (Gy)

5-year bRF (%)

Late toxicity

(%)

Low-risk Intermediate-risk High-risk GI GU

IMRT

Kupelian37 (2007) 770 70 28 94 83 72 6 7

Cahlon38 (2008) 478 86.4 48 98 85 70 7 16

Guckenberger39 (2014) 150 73.9–76.2 32–33 88 80 78 4.8 22.4

Leing40 (2017) 123 60–66 20–22 100 56–89 56 7.3 12.2

Shimizu41 (2017) 138 72.6–74.8 33–34 95 92 77 10.9 7.2

SBRT

King42 (2013) 1100 35–40 5 95 84 81 NA NA

Fuller43 (2018) 259 38 4 100 81–90 NA 3.4 14.7

Vuolukka44 (2020) 213 36.25 5 100 87.5 80 NA NA

PBT

Bryant45 (2016) 1327 72–82 36–41 99 94 74 0.6‡ 2.9‡

Iwata46 (2018) 1291 70–80/63–66 35–40/21–22 97† 91† 83† 4.1 4.0

Takagi47 (2020) 2021 74 37 99–100 90–93 76–88 4.0 2.2

CIRT

Ishikawa1 (2012) 927 63–66/57.6 20/16 90 97 88 1.9 6.3

Nomiya36 (2016) 2157 63–66/57.6/51.6 20/16/12 92† 89† 92† 0.4 4.6

†Biochemical relapse-free survival. ‡Grade 3.
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fraction. Further hypofractionation was attempted since it was
expected to be beneficial for prostate cancer considering the
characteristics of carbon-ion beams and prostate cancer. CIRT
of 57.6 Gy (RBE) in 16 fractions, which was estimated to be
almost equivalent to 63.0 Gy (RBE) in 20 fractions, was
applied to a portion of patients in 2003 and then expanded to
all patients in 2007.32 The 5-year bRF rate of patients treated
with 16-fraction CIRT was 88.5% and was comparable with
that of 20-fraction CIRT (90.2%). The incidence of grade 2
GU toxicities was lower with 16-fraction than 20-fraction
CIRT.32 Thus, the 57.6 Gy (RBE) in 16 fractions was more
suitable for prostate cancer compared with the recommended
dose of 63.0 Gy (RBE) in 20 fractions. Based on the success
with further hypofractionation from 20 to 16 fractions, a new
clinical trial of hypofractionated CIRT (protocol 1002) was
planned in 2010.33 This protocol used a total dose of
51.6 Gy (RBE) in 12 fractions, which has been used as the
standard dose fractionation in subsequent protocols. Patients
who met all the following conditions were included in the
study: histologically diagnosed prostate adenocarcinoma,
without any previous surgery or radiotherapy for prostate
cancer, and T1b–T3bN0M0. The bRF rate in that study was
comparable with those in the 20-fraction and 16-fraction pro-
tocols, and the 5-year rates of grade 2 late GI and GU toxici-
ties were 0.4% and 6.3%, respectively. Regarding the
irradiation technique, the CIRT beam delivery method was
changed from passive to scanning in 2012, which further
improved the dose distribution of CIRT for prostate cancer
(Figure 5).34,35 Since October 2018, we have started 4-
fraction CIRT with the aim of further ultra-hypofractionation
(protocol 1891, UMIN000032340). This trial consists of start-
ing with a total dose of 36 Gy (RBE) and then increasing the
dose, while confirming no severe toxicities, until eventually
reaching 44 Gy (RBE). A total of 60 patients were enrolled
by October 2020, and we are currently in the post-treatment
follow-up stage.

The numbers of CIRT facilities and patients treated with
CIRT were gradually increasing in Japan (Figure 6). With
these increases, there is a growing momentum for clinical
research using CIRT among other facilities. In the field of
prostate cancer, the Gunma University Heavy Ion Medical

Center and Ion Beam Therapy Center, SAGA HIMAT Foun-
dation participated in a multi-institutional prospective study
in addition to NIRS (J-CROS1501PR). The study enrolled
2157 patients treated with CIRT for prostate cancer.36 The 5-
year bRF survival rates of the low-, intermediate-, and high-
risk groups were 92%, 89%, and 92%, respectively. The
results of late adverse events were also favorable, and the
incidences of grade 2 GU and GI toxicities were 4.6% and
0.4%, respectively, and there were no grade 3 or higher GU/
GI toxicities. Table 2 summarizes clinical outcomes of
IMRT, SBRT, PBT, and CIRT for prostate cancer,1,36–47 and
the bRF of the high-risk prostate cancer patients and the inci-
dence of GI toxicity after CIRT were relatively better than
those after other modalities.1,36–47

Since the treatment outcomes for prostate cancer have
improved, researchers have paid more attention to treatment-
related changes in QOL. We initially investigated 150
patients after CIRT using the self-administered FACT-P ques-
tionnaire and found that the change in HRQOL from before
to after CIRT was minimal.48 Updated data after long-term
follow up obtained from 417 patients confirmed the minimal
changes in HRQOL after 60 months and revealed that the
use of ADT, presence of adverse events, and biochemical
failure were related to lower scores.49 Comparisons of
adverse events and QOL between PBT and IMRT have also
been conducted, with several studies reporting higher rates of
acute GU adverse events in the IMRT group.50,51 No differ-
ence in adverse events or post-treatment change in QOL
between CIRT and PBT was observed in a prospective ran-
domized trial,52 and based on these favorable outcomes, parti-
cle therapy for prostate cancer became covered by the
national health insurance in Japan from April 2018.19

Renal cell carcinoma

In Japan, the incidence of renal cancer has been increasing,
with approximately 30 000 new diagnoses and over 9000
deaths in 2018.53 RCC accounts for the majority of renal can-
cers, and the standard of care for patients with localized RCC
is surgery to remove the tumor, by either partial or radical
nephrectomy.54 However, RCC predominantly affects the

(a) (b)

(c) (d)

FIGURE 5 Difference in dose distributions of

CIRT for prostate cancer. Compared with using

passive scattering beams (a), irradiated doses and

volumes at the rectum and bone can be reduced

using spot scanning beams (b). In the prospective

study for ultra-hypofractionated CIRT, the urethra

doses are constrained using the inverse treatment

planning method (c). The rectal dose can be also

much reduced using a commercial rectal spacer

(d)
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older population, and some patients have contraindications to
surgery due to comorbidities, while others refuse to undergo
surgery. Both RFA and cryoablation may be offered as treat-
ment options, but they have limited effects in some patients
depending on tumor size and location and require access to
the kidney via percutaneous or laparoscopic approaches.55,56

Furthermore, both techniques may encounter issues in
patients taking continuous anticoagulative medications.

RT is another non-surgical treatment option, but normal
tissues surrounding the tumor are radiosensitive in addition to
the kidney. Furthermore, RCC as well as prostate cancer may
be radioresistant to standard fractionation, and such tumors
theoretically benefits from dose escalation with hypofractiona-
tion using a large fractional dose, because the estimated a/b
ratio of RCC is lower than those of other tumors based on
the linear-quadratic model.4 Therefore, in the last decade,
SBRT using photons has been performed in RCC patients
with contraindications for surgery, RFA, or cryoablation,57

and the usefulness of SBRT in small-sized tumors is well
confirmed. As with SBRT for stage I non-small cell lung can-
cer,58 the normal tissues surrounding the kidney irradiated
with a low- to intermediate-dose of SBRT will increase with
increasing tumor diameter. To control the radioresistant
tumors by hypofractionated RT without increasing the rate of
late adverse effects such as GI bleeding and chronic renal
dysfunction, CIRT for RCC has been started as a pilot study
using 16 fractions at our institute.2

The first report to analyze the initial experience with CIRT
involved 10 RCC patients (seven with stage I and three with
stage IV).2 The patients received a total dose of 64–80 Gy
(RBE) in 16 fractions over 4 weeks with a fractional dose of 4,
4.5, or 5.0 Gy (RBE).2 After a median follow-up of 57 months
for the eight surviving patients, the 5-year rates of local control
and overall survival were 100% and 74%, respectively, and no
cases of cancer recurrence was observed at the last follow-up.
In addition, one patient had complete response, including the
disappearance of tumor; six patients had partial response with
≥50% decrease in tumor volume; and three patients had stable

disease with either ≤50% decrease or ≤25% increase in tumor
volume. Furthermore, there was no case of grade 2 or more
severe GI bleeding. These results were confirmed by long-term
follow-up, which indicated no grade 3 renal dysfunction in the
patients without chronic kidney disease after CIRT.59 Regard-
ing a change in tumor size, imaging studies showed that the
tumors transiently increased for several months after CIRT but
were gradually shrunk thereafter (Figure 7). Therefore, the
patients were carefully examined during the follow-up to avoid
interpretation of local failure.

In April 2013, a phase I/II study of CIRT was initiated to
establish 12-fraction CIRT for RCC and to investigate the rates
of acute and late adverse effects, local control rate, and sur-
vival.7 Five patients received 66 Gy (RBE) without any dose-
limiting toxicity, and thus the dose was escalated to 72 Gy
(RBE) for the next three patients. Although the trial was cen-
sored in March 2017 because of poor patient accrual, grade 2
or severe late adverse effects outside of the kidney were not
observed. After a median follow-up of 50 months, the average
decrease in the eGFR, reflecting renal function, was 10.8 ml/
min/1.73 m2. Three patients had partial response and the
remaining five patients had stable disease according to the
modified response evaluation criteria in solid tumors,60 and all
tumors were locally controlled at the last follow-up.

Table 3 summarizes the treatment outcomes of RCC
according to RT modality.7,59,61–66 Although studies of parti-
cle beam therapy using protons and carbon ions included rel-
atively higher populations of advanced tumor cases compared
with the SBRT series, no severe GI toxicities was observed.
Furthermore, the average decrease in the eGFR rate after
CIRT was comparable with that after SBRT for small-sized
tumors. At our institute, a new phase I/II study for 4-fraction
treatment of CIRT within a week has been ongoing since
2017. Study registration was completed successfully, and
follow-up is ongoing for all 10 eligible patients. In the near
future, the optimal fractionation schedule for 4-fraction CIRT
will be determined, and CIRT and PBT may be the standard
for treating inoperable patients with large (>4 cm) tumors.
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Retroperitoneal sarcoma

RPSs are rare malignancies accounting for 1–2% of solid
malignancies, and 10–20% of all sarcomas are originated from
the retroperitoneum.67 RPSs frequently occur in the 5th decade
of life,68 and liposarcoma and leiomyosarcoma are common
among the many subtypes.69 The mainstay of treatment for
RPSs is surgery, and 70% of patients underwent surgical resec-
tion. However, complete resection cannot be sometimes
achieved due to the structural complexity of the retroperi-
toneum and large tumor size, and RT was performed for 25%
of patients with RPSs, combined with surgery.70 On the other
hand, the published data of phase I and II trials and retrospec-
tive trials were not enough to make the effectiveness of periop-
erative RT clear.71,72 A multicenter randomized phase III study
(STRASS: EORTC-62092) was conducted to evaluate the effi-
cacy of perioperative RT, but the 3-year abdominal-free sur-
vival rates in the surgery group and surgery plus perioperative
RT group were 58.7% and 60.4%, respectively.71

CIRT has been applied to unresectable gross RPSs at NIRS
since 1997.5 The eligibility is that tumor is not widely attached
to the intestines and the tumor size is within 20 cm. The irra-
diated dose was set to be 70.4 Gy (RBE) in 16 fractions over
four weeks. Recently, the outcomes of 50 RPSs treated with

CIRT were updated, and the 3-year rate of overall survival
was 60%, which is almost equal to that after surgery for opera-
ble patients.71,72 In addition, Grade 3 or severe adverse events
were observed only in 8% of the patients. Although the
reported analysis was retrospective data, CIRT may be an
option for unresectable gross RPSs (Figure 8).

FUTURE PROSPECT

As new approaches to improve the clinical outcomes of CIRT
for prostate cancer and RCC, image-guided and real-time
tumor tracking RT using fiducial markers in the prostate and
kidney are currently available. Furthermore, the dose to the
urethra using inverse treatment planning with carbon ions (Fig-
ure 5c) and the dose to the rectum using SpaceOAR injections
(Boston Scientific Corp., Marlborough, MA, USA; Figure 5d)
can be reduced to improve the incidence of adverse events
after prostate cancer treatment. In addition, a kind of bioab-
sorbable spacer sheet to make a distance between tumors and
intestines was approved by the Japanese public insurance in
2019.9 The spacer sheets will significantly assist the safety and
effectiveness of CIRT for RCC and RPSs.

QST is now developing a compact equipment called
“Quantum Scalpel” (Figure 9), which can deliver not only

(a)

(b) (c)

(d) (e)

FIGURE 7 A representative RCC case after CIRT. Dose distribution of CIRT (a), and changes in a tumor on CT images at before (b) and 1 (c), 3 (d), and 10 (e) years

after CIRT
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carbon-ion beams but also helium-ion, oxygen-ion, and neon-
ion beams to radioresistant tumors including prostate cancer
and RCC. A clinical study of CIRT using a mixture of sev-
eral ion types for non-squamous cell head and neck carcino-
mas was initiated in September 2020, and new studies for
CIRT of pancreas cancer, prostate cancer, and RCC will be
started in the near future. The injector length is about 5 m
using a laser-driven ion accelerator and the size of the syn-
chrotron in the Quantum Scalpel is 7 m in diameter, of which
the footprint is 1/40th that of the HIMAC at QST and 1/10th

that of conventional equipment installed at other Japanese
institutes. We will begin construction of the superconducting
synchrotron prototype at QST in Chiba. The rotating gantry
will be 7 m in size using the new superconducting technol-
ogy, and CIRT will become a more attractive treatment due
to significantly reduced construction and running costs and
the equipment size.

CONCLUSION

In conclusion, the evidence that CIRT is feasible and effective
for many types of cancers including prostate cancer and RCC
is accumulating, but Japanese health insurance covers CIRT

only for limited diseases such as prostate cancer, unresectable
sarcomas, and head and neck cancers. Theoretically, carbon
ions are high-LET charged particles that contribute to improv-
ing local control and reducing the toxicity because local failure
and treatment-related toxicities occur in a dose-dependent man-
ner. To reduce the cost of CIRT construction and broaden the
use of CIRT as a cancer treatment, we are developing a new

TABLE 3 Clinical outcomes of RCC according to RT methods

Author (year) Study

No. of

patients
Size

(mm) Age (years)

Follow-up

(months) OS (%) LC (%)

eGFR

(ml/min/1.73 m2)

GI toxicity

(≥grade 3)All Non-T1

X-ray (SBRT)

Ponsky61 (2015) Prospective 19 NA 57.9 cm3 77† 13† 72 (3y) 100 (3y) NA 10.5%

Siva62 (2017) Prospective 37 2.7% 48† 78† 24† 92 (2y) 100 (2y) �11.0 (2y) 3.0%

Siva63 (2018) Retrospective 223 NA 43‡ 72‡ NA 82/71 (2/4y) 98/98 (2/4y) �5.5 (3.6y) 1.3%

Funayama64 (2019) Prospective 13 0% 19† 72† 48.3† 92/71 (2/3y) 92/92 (2/3y) �16.3 (2y§) 0%

Peddada65 (2019) Prospective 21 4.8% 29† 71† 78† 88 (5y) 100 (5y) �6.8 0%

PBT

Fukumitsu66 (2020) Retrospective 22 9.1% 35† 67† 37† 95 (3y) 100 (3y) �7.2 (3y§) 0%

CIRT

Kasuya59 (2018) Retrospective 19 15.8% 36† 67† 79† 89 (5y) 94 (5y) �6.1 0%

Kasuya8 (2019) Prospective 8 12.5% 43† 69† 50† 88 (3y) 100 (3y) �10.8 0%

†Median, ‡mean, §estimated.

(a) (b) (c)

FIGURE 8 A large retroperitoneal sarcoma (13.6 9 11.5 cm) of a 78-year-old male treated with CIRT at a total irradiation dose of 70.4 Gy (RBE) in 16 fractions

(a). The red, pink, green, blue lines indicated 97, 70, 50, 30% of the total dose. The tumor located in the right pelvic retroperitoneum (b), and it has gradually

shrunk and the tumor size was 7.5 9 5.9 cm at 2 years after CIRT (c)

Superconducting

Laser-driven ion
accelerator

magnets

7 m

FIGURE 9 Schematic perspective view of Quantum Scalpel
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compact-sized equipment using several heavy ion types and
are continuing clinical trials and a registry of all treated
patients via the J-CROS. If the national health insurance covers
CIRT for many types of cancers including RCC, randomized
trials comparing CIRT with other cancer therapies including
photon-based RT are feasible, to support CIRT as a representa-
tive therapy for urological cancers.
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