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A B S T R A C T   

Limited data highlight the need to understand differences in SARS-CoV-2 omicron (B.1.1.529) 
variant viral load between the gold standard nasopharyngeal (NP) swab, mid-turbinate (MT)/ 
anterior nasal swabs, oropharyngeal (OP) swabs, and saliva. MT, OP, and saliva samples from 
symptomatic individuals in Atlanta, GA, in January 2022 and longitudinal samples from a small 
familial cohort were tested by both RT-PCR and ultrasensitive antigen assays. Higher concen-
trations in the nares were observed in the familial cohort, but a dominant sample type was not 
found among 39 cases in the cross-sectional cohort. The composite of positive MT or OP assay for 
both RT-PCR and antigen assay trended toward higher diagnostic yield but did not achieve sig-
nificant difference. Our data did not identify a singular preferred sample type for SARS-CoV-2 
testing, but higher levels of saliva nucleocapsid, a trend toward higher yield of composite OP/ 
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MT result, and association of apparent MT or OP predominance with symptoms warrant further 
study.   

1. Introduction 

Nasopharyngeal (NP) sampling by a trained healthcare professional is the gold standard for the diagnosis of SARS-CoV-2 infection 
[1]. Due to the complexity and discomfort of NP sampling, anterior nares (AN), nasal mid-turbinate (MT), and oropharyngeal (OP) 
swabs and expectorated saliva have garnered interest as alternative sample types in SARS-CoV-2 assays [2–8]. AN and MT sampling are 
employed in at-home rapid antigen tests with US Food and Drug Administration emergency use authorization (EUA) [9]. The 
emergence of the omicron (B.1.1.529) variant, regional differences in sampling practices, and social media trends reignited debate 
over the most effective method for sample collection in persons suspected of having COVID-19 [10–13]. 

Early meta-analyses of data corresponding to the alpha (B.1.1.7) variant demonstrated the highest sensitivity in NP swabs or 
combined nasal-OP swabs [4,14–16]. Following the emergence of delta (B.1.617.2) and omicron (B.1.1.529) variants, there are 
minimal data addressing the relative clinical sensitivity of sample types. Meanwhile, there are few systematic comparisons of the 
impact of sample type on rapid antigen test sensitivity and specificity, limiting understanding of optimal sampling techniques [17,18]. 

The omicron variant has over 50 mutations relative to the wild-type virus, which has been postulated to affect tropism, the 
anatomic distribution of virus in the upper respiratory tract, and the prevalence of symptoms such as odynophagia [19]. Some evi-
dence has suggested omicron replicates more easily in the bronchial compared to lung parenchymal tissues, which contrasts with 
measurements of delta and wild-type viruses [20]. This highlights potential differences in tissue-dependent replication profiles that 
may be present in the upper airways, thus impacting diagnostic test performance. Although it has been nearly two years since 
emergence of the omicron variant, few studies have examined this question. One published study concluded combined nasal-OP swabs 
produced a similar sensitivity to NP swabs for nucleic acid amplification testing, and another concluded that combined nasal-OP swabs 
increased the sensitivity of rapid antigen tests [12,13]. One preprint study shows that the omicron variant may be more readily 
detected in saliva compared to MT samples by RT-PCR [21], while another showed lower sensitivity of OP compared to AN swab [22]. 

To inform diagnostic sampling practices in both home and point of care settings, we sought to quantify antigen and molecular test 
performance across three sample types among patients infected with SARS-CoV-2 during the recent omicron surge. This was done in 
two complementary cohort studies: First, findings from a familial cohort were examined in a longitudinal qualitative analysis. Second, 
a cross-sectional cohort was analyzed to determine (1) the relative diagnostic performance of MT, OP, and saliva samples, (2) dif-
ferences in cycle threshold (Ct) value – the number of cycles it takes for the PCR signal to reach a predefined threshold for positivity, 
which is inversely related to RNA copy number – and quantitative antigen measurements, and (3) the impact of symptoms. 

2. Methods 

This study was approved by the Emory University Institutional Review Board under STUDY00001082. All experiments were 
performed in accordance with relevant guidelines and regulations. Recruitment was completed during the height of the omicron surge 
in the metro Atlanta, GA area between January 10, 2022 and February 1, 2022. Written or verbal informed consent was obtained from 
all participants prior to providing specimens and questionnaire data. 

2.1. Longitudinal sampling of a familial cohort 

Following exposure of two related individuals to a known case of COVID-19, both individuals and a third family member provided 
verbal consent over the phone and were provided with self-collection kits and collection instructions for AN swab, OP swab, and 
passive expectorated saliva samples (supplementary information). Each participant provided almost daily specimens, which were 
refrigerated immediately and transported on ice to the Emory/Children’s Laboratory for Innovative Assay Development (ELIAD) for 
analysis within 72 h of collection. 

2.2. Testing site sample collection 

MT swab, OP swab, and passive expectorated saliva samples were collected consecutively from individuals at community and 
hospital-based sites affiliated with Emory University Hospital, Grady Memorial Hospital, and Children’s Healthcare of Atlanta as part 
of the RADx program [23]. Participants were enrolled if they indicated COVID-19 symptom onset within the prior 7 days on a 
questionnaire and consented to sample collections. Asymptomatic patients, those with symptoms associated with COVID-19 for greater 
than 7 days, and those unable to provide informed consent were excluded. All specimens were collected by trained research staff 
wearing appropriate personal protective equipment (face mask, face shield or goggles, gown and gloves) [24]. Specimens were 
collected according to standard protocols (see supplementary methods) and transported on ice to ELIAD for analysis within 72 h of 
sample collection. Clinical and demographic variables were collected in a centralized, web-based database (REDcap, Nashville, TN). 
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2.3. RT-PCR testing 

Reverse transcriptase polymerase chain reaction (RT-PCR) testing for MT and OP samples was performed using the Cepheid 
GeneXpert Dx Instrument System according to the manufacturer’s instructions for MT swab testing. Assay result as positive or negative 
was reported by the GeneXpert according to the manufacturer’s threshold. The corresponding Ct value was retrieved from GeneXpert 
System Software. Saliva was processed in accordance with the SalivaDirect dual-plexed RT-PCR protocol and assayed on the ABI 
QuantStudio 5 Real-Time PCR system [25–27]. 

2.4. Antigen concentration 

Nucleocapsid antigen was quantified using the SARS-CoV-2 N Protein Advantage assay on the Quanterix Simoa HD-X platform 
(Billerica, MA) according to protocols for research use [28,29]. Samples above the clinical cutoff of 3.00 pg/mL were considered 
positive (supplementary methods). 

Fig. 1. Comparison of antigen concentration and Ct value of different sample types over the course of disease in a familial cohort. A-C) 
Three COVID-19 positive patients from the same family cohort were tracked from the time of exposure over the course of disease. Each family 
member (A, B, or C) self-collected AN, OP, and saliva samples, which were assayed by RT-PCR and the Quanterix Simoa HD-X. The time of symptom 
onset is indicated by a red line for each patient. Results of self-administered point of care tests are indicated as at least one positive result (+) or all 
negative results (− ) on the x-axis (Table S1). Some antigen measurements were too high to be quantified and are assigned a value of 4000 pg/mL in 
this figure, which is above the highest quantified antigen level. 
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2.5. Lateral flow assay testing 

In a subset of participants, a second OP swab was collected simultaneously and one AN swab was collected by trained research staff 
for use with the Quickvue OTC home test (Quidel, San Diego, CA). The test was performed according to the manufacturer’s instructions 
by study staff within 4 min of sample collection. The familial cohort also provided AN and off-label OP results on a subset of days from 
Quickvue which was performed at home by the participant according to the manufacturer’s instructions for AN sampling. 

2.6. Statistical analysis 

Participants who tested positive for SARS-CoV-2 RNA or nucleocapsid protein in at least two of six possible test combinations (RT- 
PCR or antigen testing of MT, OP or saliva) (n = 39) were included in the analysis. Not all participants were able to contribute all three 
sample types. Positive percent agreement (PPA) for a sample type was defined as the number of positive results for that sample type 
divided by the total number of the sample type tested from included individuals. 95% confidence intervals were calculated using the 
formula for standard error. 

Comparisons of Ct values and quantitative antigen measures were performed with a rank-sum test using 0 pg/mL for a negative 
antigen test. A Ct value of 50 was used for negative RT-PCR, which exceeds the highest Ct value in specimens determined to be positive 
for SARS-CoV-2 by the GeneXpert or SalivaDirect assays. Absolute agreement of each assay across sample types was calculated via an 
intraclass correlation coefficient (ICC) using a two-way mixed effects model in IBM SPSS Statistics for Windows, version 28 (IBM Corp., 
Armonk, N.Y., USA). To evaluate impact of sample type and duration of symptoms, Ct value and antigen concentrations were log 
transformed for normality and then analyzed in a mixed effects model accounting for repeated measures from the same participant 
using SAS 9.4 (Cary, NC). Subjects were treated as a random effect while time and location were considered fixed effects. In the mixed 
effects models, antigen negative samples were assigned a value of 2.99 pg/mL and negative RT-PCR results were again assigned a Ct 

Table 1 
Characteristics of study population and sample collection.  

Variable Level Overall N = 39 

Age Median (IQR) 29.03 (22.99, 40.61) 
Sex Female 19 (48.72) 

Male 20 (51.28) 
Race White 21 (53.85) 

Black/African American 15 (38.46) 
Asian 3 (7.69) 

Ethnicity Hispanic 4 (10.26) 
Non-Hispanic 35 (89.74) 

Received COVID-19 Vaccine Yes 32 (82.05) 
No 7 (17.95) 

Type of Vaccine Received  
Boosted (1 J&J or 2 mRNA and booster) 14 (35.90) 
Primary Series (1 J&J or 2 mRNA only) 16 (41.03) 
Incomplete Series (1 mRNA only) 2 (5.13) 
Unvaccinated 7 (17.95) 

Previous COVID-19 Diagnosis Yes 8 (20.51) 
No 31 (79.49) 

Days Since Symptom Onset* Median (IQR) 2.00 (1.00, 4.00) 
Symptoms in the Preceding 14 Days Congestion/rhinorrhea 29 (74.36) 

Cough 29 (74.36) 
Headache 29 (74.36) 
Sore throat 23 (58.97) 
Fatigue 21 (53.58) 
Myalgias 18 (46.15) 
Chills 13 (33.33) 
Arthralgias 7 (17.95) 
Fever 6 (15.38) 
Nausea 6 (15.38) 
Diarrhea 5 (12.82) 
Photophobia 4 (10.26) 
Shortness of breath 4 (10.26) 

Symptoms At Time of Test Congestion/rhinorrhea 26 (66.67) 
Cough 25 (64.10) 
Headache 20 (51.28) 
Fatigue 19 (48.72) 
Sore throat 16 (41.03) 
Myalgias 15 (38.46) 
Chills 8 (20.51) 
Nausea 5 (12.82) 
Diarrhea 4 (10.26) 

Symptoms with less than 10% prevalence are omitted. 
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value of 50. 

3. Results 

3.1. Familial cohort 

In longitudinal self-collection by a 3-participant familial cohort aged 30–39 (n = 2) and 60–69 (n = 1) each of the participants 
provided almost daily samples for RT-PCR and ultrasensitive antigen assay over a period of 8–11 days (Fig. 1A–C). Participants also 
provided the results of point-of-care (POC) diagnostic tests when available (Table S1). All three participants were infected with the 
Omicron variant (Table S2).We observed consistently higher antigen concentrations and lower Ct values suggesting higher viral loads 
in AN samples compared to paired OP and saliva samples (Fig. 1). 

3.2. Cross-sectional cohort participants and characteristics 

MT, OP, and saliva specimens were collected from 121 individuals in the cross-sectional cohort of whom 39 were included in the 
analysis. 19 (48.7%) were female and 32 (82.1%) had received at least one dose of a COVID-19 vaccine (Table 1). Median days since 
symptom onset was 2.0 (IQR 1.0–4.0). 26 (66.7%) reported congestion or rhinorrhea and 16 (41.0%) reported sore throat (Table 1) at 
time of evaluation. Spike single-nucleotide polymorphism (SNP) or full viral genome sequencing were able to be performed for 30 of 39 
participants, all of which identified the omicron variant (Table S2) [30–33]. National surveillance data report greater than 98% 
circulating B.1.1.529 during the study period (Table S3) [34]. 

Fig. 2. Positive percent agreement (PPA) of RT-PCR and antigen measurements of different specimen types. All included specimens came 
from participants who had two or more of the three specimens positive for SARS-CoV-2 by RT-PCR or antigen detection. PPA is calculated as the 
total number of positive results of that sample type divided by the total number of specimens of that sample type tested. Results are included in the 
composite MT or OP only if the participant had both MT and OP samples tested. (A) Antigen PPA determined by a cutoff of 3 pg/mL and RT-PCR 
(threshold cycle cutoff based on respective assay). (B) Antigen PPA for MT, OP and MT or OP composite for a range of antigen cutoffs. Shaded 
regions denote 95% CI calculated using the formula for standard error. Expected ranges for commercially available EUA rapid diagnostic tests based 
on local testing in comparison with the Quanterix assay are shown in gray (see Table S4). (C) RT-PCR PPA for MT, OP and MT or OP composite 
versus threshold cycle cutoff. Shaded regions denote 95% CI calculated using the formula for standard error. 
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3.3. Diagnostic performance 

Among the 39 included participants, RT-PCR was performed on 39 MT, 33 OP, and 36 saliva specimens. Nucleocapsid was 
measured in 37 MT, 31 OP and 35 saliva specimens (Table 1). PPA [95% CI] for RT-PCR was 89.7 [80.2–99.3], 90.9 [81.1–100] and 
94.4 [87–100], in MT, OP and saliva specimens, respectively, while antigen detection exhibited 64.9 [49.5–80.2], 71 [55–86.9], and 
91.4 [82.2–100] PPA at a cutoff of 3 pg/mL (Fig. 2A). A composite result was also considered among individuals who had both MT and 
OP specimens analyzed to understand dual sampling strategies, where only one positive result on the MT or the OP specimens was 
required to consider the composite result positive. , PPA of the composite result was 93.9 [85.8–100] for RT-PCR (n = 33) and 83.3 
[70–96.7] for antigen detection (n = 30). McNemar test did not show significant difference between the diagnostic performance of MT 
only and the composite result for either antigen (p = 0.07) or RT-PCR (p = 0.48). 

The diagnostic performance of antigen detection at varying cutoffs was examined, revealing a higher PPA for the composite result 
of MT or OP but with significant overlap of the 95% CI for the individual sample types. This was observed throughout the entire range 
of cutoffs (Fig. 2B) including the reference ranges of common over the counter (OTC) rapid diagnostic tests (RDTs; Table S4). PPA for 
RT-PCR over the range of Ct values is shown in Fig. 2C. This analysis produced similar results in a supplemental analysis where an 
alternate reference standard only requiring one of six sample type-assay combinations to be positive was used (Figs. S1 and S2). 

Sub-analysis comparing diagnostic performance of OP antigen testing in participants with presence and absence of sore throat at 
the time of sampling showed PPA [95% CI] of 92.3 [77.8–100] and 55.6 [32.6–78.5], respectively (Fig. S3). OP antigen concentration 
between participants with (median [IQR] = 22.9 [11.9–206.8]) and without (6.8 [0–90.5]) sore throat did not achieve statistical 
significance (p = 0.09). Stratification by presence or absence of rhinorrhea showed overlapping PPA for MT sample antigen testing (68 
[49.7–86.3] with rhinorrhea, 58.3 [30.4–86.2] without) but stark difference was observed in performance at thresholds above 20 pg/ 
mL including regions without overlap of the 95% CI (Fig. S4). MT antigen concentrations for participants with and without rhinorrhea 
were (median [IQR]) 33.1 [8.6–200.4] and 4.6 [0–18.9], respectively (p = 0.07). 

3.4. Viral load distribution and agreement between sample types 

Distribution of Ct value, a surrogate marker for RNA copy number or viral load, did not show significant differences in comparison 

Fig. 3. Time-independent comparison of (A) Ct value and (B) nucleocapsid antigen concentration distributions for the three sample types. Sig-
nificant differences in distribution of values based on rank-sum test were only observed for the comparisons of antigen concentration between MT 
and Saliva (p = 0.02) as well as OP and Saliva (p = 0.02). Boxplots display median values (center line), IQR (box) and range (whiskers) excluding 
outliers (data points more than 1.5*IQR above the upper limit of the IQR). OP vs MT plots demonstrate distribution of (C) Ct values and (D) antigen 
concentration for paired specimens in which both OP and nares predominant phenotypes are observed among individuals tested early (<3 days) and 
late (>3 days) after symptom onset. 
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of any two sample types across the cohort (MT vs OP: p = 0.47, saliva vs OP: p = 0.21, MT vs saliva: p = 0.56; Fig. 3A). Meanwhile, 
nucleocapsid antigen measurements were significantly higher in saliva compared to MT or OP samples (p = 0.02 for both comparisons; 
Fig. 3B), but not in the comparison of MT to OP samples (p = 0.99). 

A model assuming independence and models assuming correlation between observations were applied to each assay result and a 
likelihood ratio test between nested models was employed to determine the model of best fit which would be used for the final analysis. 
Three possible correlation structures were considered: autoregression, Toeplitz, and unstructured correlation. The highest-level cor-
relation structure that returned a significantly better fit than the previous structure was used for analysis. A Toeplitz covariance 
structure and an unstructured covariance matrix allowed the best fit mixed effects model for the antigen concentrations and Ct values, 
respectively. Sample type was significantly associated with mean antigen concentrations (p = 0.05), but not with Ct values (Table 2). 

Paired MT and OP samples showed poor absolute agreement (interclass correlation [95% CI] 0.03 [− 0.03, 0.09] for Ct values and 
0.06 [− 0.04, 0.16] for antigen concentration). Ct values for OP and MT samples were directly compared as these have identical 
collection methods except for the anatomic site being swabbed. Ct value and antigen measurements both revealed a mix of paired 
samples with greater concentration in the OP sample (OP-predominant phenotype) and greater concentration in the MT sample (MT- 
predominant phenotype) and do not demonstrate clear trends if sampled early (<3 days) or late (>3 days) after symptom onset 
(Fig. 3C–D, Fig. S5). 

3.5. Rapid diagnostic testing 

Testing of 17 of the 124 individuals in this study (Table S5) with separate AN and OP specimens on a common OTC RDT (Quickvue 
OTC home test) showed 4 true positives and 15 true negatives for AN sampling and 2 false negatives and 14 true negatives for OP 
sampling. There were no false positives for any sample type. 

3.6. Investigation of possible confounding factors 

Ct value and antigen concentrations were examined separately based on duration of symptoms at time of sampling. Comparisons of 
Ct or antigen distribution did not differ significantly in pairwise comparison of sample types on any day of symptoms (all p values >
0.08; Fig. S6). Results from the mixed effects model found no evidence that duration of symptoms nor vaccination status were 
significantly associated with Ct value (p = 0.05 and p = 0.76, respectively) or antigen concentrations (p = 0.78 and p = 0.94, 
respectively; Table 2). Sensitivity analysis excluding negative RT-PCR (i.e. Ct values that were imputed as 50) in the main analysis 

Table 2 
Impact of sample type and duration of symptoms on antigen concentrations and Ct values using a mixed effect linear model (n = 49).   

Ct value Antigen concentration 

Mean 95% CI P-value Mean 95% CI P-value 

Sample Type   0.19   0.045 
Mid-turbinate 28.38 (24.72, 32.57)  22.76 (5.73, 90.44)  
Oropharyngeal 27.58 (23.85, 31.90)  19.29 (4.68, 79.44)  
Saliva 29.68 (25.94, 33.97)  93.65 (23.04, 380.66)  

Days of symptoms   0.05   0.78 
0 41.12 (29.10, 58.11)  7.96 (0.28, 229.27)  
1 25.36 (22.09, 29.10)  60.43 (15.58, 234.44)  
2 32.01 (26.97, 37.98)  26.71 (5.01, 142.51)  
3 23.75 (19.02, 29.65)  125.61 (14.94, 1055.95)  
4 27.82 (23.79, 32.54)  58.76 (12.74, 270.91)  
5 29.14 (18.71, 45.37)  32.90 (0.47, 2310.46)  
6 23.98 (15.40, 37.33)  18.70 (0.27, 1312.91)  

Vaccination Status   0.76   0.94 
Received at least 1 dose 28.96 (25.83, 32.46)  33.39 (11.16, 99.89)  
Never vaccinated 28.11 (23.04, 34.31)  35.68 (5.10, 249.51)  

Sample Type   0.23   0.045 
Mid-turbinate 28.05 (24.74, 31.80)  22.76 (5.73, 90.44)  
Oropharyngeal 27.35 (23.95, 31.24)  19.29 (4.68, 79.44)  
Saliva 29.28 (25.94, 33.06)  93.65 (23.04, 380.66)  

Days of symptoms   0.06   0.78 
0 39.41 (28.75, 54.02)  7.96 (0.28, 229.27)  
1 25.38 (22.41, 28.75)  60.43 (15.58, 234.44)  
2 30.92 (26.49, 36.08)  26.71 (5.01, 142.51)  
3 23.90 (19.57, 29.20)  125.61 (14.94, 1055.95)  
4 27.46 (23.83, 31.63)  58.76 (12.74, 270.91)  
5 29.14 (19.56, 43.40)  32.90 (0.47, 2310.46)  
6 24.08 (16.17, 35.87)  18.70 (0.27, 1312.91)  

Vaccination Status   0.74   0.94 
Received at least 1 dose 28.61 (25.81, 31.73)  33.39 (11.16, 99.89)  
Never vaccinated 27.82 (23.25, 33.29)  35.68 (5.10, 249.51)   
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showed similar results (Table S6). 

4. Discussion 

Trends in self-testing for COVID-19 have raised interest in understanding diagnostic performance of specimens obtained from 
distinct anatomic sites during the omicron era. We collected specimens from a familial cohort of 3 individuals following exposure to 
SARS-CoV-2 and 121 individuals presenting for testing, of whom 39 were included because they had at least two positive test results 
between RT-PCR and antigen testing of MT, OP and saliva specimens. 

Longitudinal samples from the familial cohort showed highest viral load in self-collected AN specimens compared to self-collected 
OP and saliva specimens for all three individuals. Plotting these measurements suggested similar viral kinetics in all three sample types 
and that the AN consistently remained the sample type of highest viral content. As such, this cohort appeared to maintain a nasal- 
predominant phenotype among samples collected by non-healthcare trained participants. 

In contrast, our cross-sectional cohort data did not provide clear evidence that one sample type was more reliable for clinical 
testing. The cross-sectional cohort demonstrated a mix of MT-predominant and OP-predominant phenotypes and there was not a 
sample type with consistently higher viral RNA or nucleocapsid antigen across all participants. Trends in absolute PPA of simultaneous 
nares and OP testing favor further study. A recent pre-print describes early false-negative nares rapid antigen testing in a small cohort 
despite positive RT-PCR in saliva in the same period [35]. Our data did not show a clear trend toward nares or OP-predominant 
phenotypes for those testing early or late after symptom onset (Fig. 3C–D). Although there were 4 individuals with detectable OP 
antigen and undetectable MT antigen less than 3 days after symptom onset, another individual had detectable MT antigen and un-
detectable OP antigen in this same window. Finally, although our data show apparently higher antigen yield of saliva, there are no 
validated OTC RDTs that utilize saliva and, notably, we did not see this relative advantage with molecular testing. 

Limitations of our study include use of self-collected swabs in the familial cohort, which are generally not considered as reliable as 
those collected by trained research staff. Though some evidence supports the adequacy of self-collected AN and MT swabs, OP 
sampling is an inherently more challenging self-collection procedure [36,37]. There were likely differences in duration of sample 
storage for the familial cohort compared to the cross-sectional cohort prior to analysis which are not expected to contribute signifi-
cantly to our results, though may have more substantial effects on antigen measurements than molecular testing [38]. In the 
cross-sectional cohort, we cannot exclude the effect of sampling variability in producing the observed phenotypes. Further investi-
gation with repeat sampling of participants is needed. Our study also excludes asymptomatic individuals, which limits generalization 
of our findings. 

Consistencies in testing methodology across sample types is also am important consideration. RT-PCR assays were performed with a 
common assay (Cepheid GeneXpert) for MT and OP samples. Saliva RT-PCR was performed using the SalivaDirect protocol. Because of 
these differences, and because neither assay has EUA as a quantitative test, conclusions are limited from comparisons of Ct values 
between saliva and the other specimens. 

Comparisons across all three sample types in antigen testing are addressed by our study format. While the quantity of cellular 
material and mucous may be inherently different between sample types with different collection methodologies, the pragmatic 
question of viral antigen yield can be examined in our study because a consistent sample volume and a common assay was used for 
nucleocapsid measurements across all sample types. Thus, our data suggest that higher antigen levels may be found in saliva speci-
mens, but calculation of PPA failed to show clear benefit in diagnostic yield. Conclusions as to the utility of saliva for antigen testing are 
limited by missing specimens from some participants and a small sample size. 

The observation of apparent OP- and MT-predominant phenotypes is a key finding in our data and a strength of our study that 
should motivate further investigation. Isolated reports of OP-positive, nares-negative tests early during symptomatic COVID-19 have 
motivated practices of combined oropharyngeal and nasal sampling. Yet testing with OTC tests in a subset of our population did not 
produce any positive OP specimens. Our data is compatible with the hypothesis that viral loads in individuals with COVID-19 during 
the omicron surge manifest distinctly as OP- or MT-predominant phenotypes. Our sub-analyses (Figs. S3–S5) also suggest symptoms 
could be a clue to phenotyping. Examination of this phenomenon in larger sample sizes is warranted and should include longitudinal 
re-sampling of participants and association of symptoms with test performance of each sample type. 

In total, our data do not support a preferred singular anatomic location for sampling with SARS-CoV-2 diagnostics during the 
omicron surge. However, trends toward increasing sensitivity when both MT and OP results are considered may suggest a benefit can 
be achieved by testing multiple sample types concurrently. Further rigorous study should investigate the benefit and safety of com-
bined sampling methods. 
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