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Karolina Kędra 1 , Tomasz Szymborski 1 and Agnieszka Kamińska 1,*
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Abstract: We present here that the surface-enhanced Raman spectroscopy (SERS) technique in
conjunction with the partial least squares analysis is as a potential tool for the differentiation of
pleural effusion in the course of the cancerous disease and a tool for faster diagnosis of lung cancer.
Pleural effusion occurs mainly in cancer patients due to the spread of the tumor, usually caused
by lung cancer. Furthermore, it can also be initiated by non-neoplastic diseases, such as chronic
inflammatory infection (the most common reason for histopathological examination of the exudate).
The correlation between pleural effusion induced by tumor and non-cancerous diseases were found
using surface-enhanced Raman spectroscopy combined with principal component regression (PCR)
and partial least squares (PLS) multivariate analysis method. The PCR predicts 96% variance for
the division of neoplastic and non-neoplastic samples in 13 principal components while PLS 95%
in only 10 factors. Similarly, when analyzing the SERS data to differentiate the type of tumor
(squamous cell vs. adenocarcinoma), PLS gives more satisfactory results. This is evidenced by the
calculated values of the root mean square errors of calibration and prediction but also the coefficients
of calibration determination and prediction (R2C = 0.9570 and R2C = 0.7968), which are more robust
and rugged compared to those calculated for PCR. In addition, the relationship between cancerous
and non-cancerous samples in the dependence on the gender of the studied patients is presented.

Keywords: pleural effusion; surface-enhanced Raman spectroscopy; partial least square; cancer

1. Introduction

Cancer is one of the most common causes of death (following cardiovascular diseases)
and one of the most critical barriers to increasing life expectancy in the 21st century [1]. The
World Health Organization (WHO) estimated that in 2019 over 50% of countries (112 of
183 counties in the world), cancer was the first or second cause of death before the age of
70 years [2]. Although the population of Europe represents 9% of the world population, in
2012, one-quarter of cancer cases occurred in Europe [3]. International Agency for Research
on Cancer (IARC) GLOBACAN valuated that in 2020, there will be 19.3 million new cases of
cancer and 10 million deaths worldwide [4]. In Europe, there was an estimated 4.4 million
new cases of cancer and 1.9 million deaths [4]. Among them, lung cancer was the second
most frequently diagnosed and first cause of death worldwide [1]. The average five-year
survival rate of lung cancers is 18.6 percent lower than many other leading cancer types.
The high mortality is due to late diagnosis of lung cancer; therefore, finding a diagnostic
method of tumor detection is of great importance.
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A pleural effusion is an accumulation of extra fluid in the space between the lungs
and the chest wall (pleura). Pleural effusion (PE) can be caused by infections (pneumonia,
tuberculosis), liver or kidney disease (cirrhosis), congestive heart failure, autoimmune
disorders (lupus, rheumatoid arthritis), and/or pulmonary embolism or trauma [5,6].
Malignant pleural effusions (MPEs) of carcinomas, especially of the lung, breast, and
lymphomas, indicate the advanced stage of the cancer disease or disease progression [7].
MPEs could also be a signal for almost all cancer types [8] of spread or that the cancer
has metastasized to other areas of the body [9]. Correct differentiation between benign
(BPEs; non-malignant) and malignant pleural effusions is still a significant challenge and
of great interest due to its influence on proper patient treatments. Patients may benefit
from individualized management targeted at treating the underlying disease process and
direct control of the fluid. Generally, nowadays, analysis of the pleural effusion is mainly
based on such techniques as biochemistry, microbiology, cytology, and heparin-coated
syringe for the pH measurement. However, all those techniques carry a small accuracy;
e.g., single tumor markers have low sensitivity (<30%). In comparison, the accuracy of
cytological examinations of malignant pleural effusion is around 60% (range of 40–87%)
and depends on broad factors, such as the presence of cells, tumor type, and the skills
of cytologists [10]. The pleural fluid cytology is the most straightforward and definitive
method to diagnose MPE. Still, diagnosis cannot be made solely based on the cytology; thus,
to obtain a high sensitivity of 90% diagnostic yield for pleural fluid cytology, three methods,
namely computer tomography, PET CT, and cytology, need to be combined [11]. Similarly,
to confirm MPE etiology in the case of a negative cytological examination, other non-
invasive imaging methods are required, e.g., X-ray, ultrasonography, computer tomography,
magnetic resonance imaging, and positron emission tomography [7]. The final diagnosis is
not straightforward, and therefore, it is very important to establish new, faster techniques
with more relayed results. This is especially important for currently used immunotherapy
treatments. Therefore, the new approach for diagnosis PE with the spectroscopic method is
of great interest.

In this light, the spectral differences between normal, lung cancer, and tuberculous
cells [12] (connected to the reduction of glycogen and increased hydrogen bonding of
phosphodiester groups of nucleic acid in lung cancer) but also malignant pleural mesothe-
lioma from lung cancer and benign pleural effusion from pleural fluids [13] using Fourier
transform-infrared spectroscopy were already shown. One of the promising methods in
diagnosis is surface-enhanced Raman spectroscopy (SERS), which already is a powerful
technique to study nucleic acids and proteins [14], therapeutic agents [15], drugs and
trace materials [16], microorganisms [17], and cells [18]. The most notable recent advances
in Raman and SERS include innovative applications as bimolecular sensors for clinical
diagnosis of various diseases, such as Alzheimer’s or Parkinson’s [19], and various cancer
diseases, such as gastrointestinal [20–23], skin [24–27], breast [28–31], lung [32–35] (also
from saliva [36,37]), and also brain [38–42] cancer.

In SERS spectroscopy, such problems as band overlaps, linearity, and interactions
exist. To overcome it, the factors or analysis-based components and multivariate calibration
methods have already been successfully and extensively used in the quantitative analysis
of spectroscopic data [43–47]. PCR studies only input variables X (spectral information) to
summarize the dataset, while PLS considers the relationship between all inputs; thus, X
and output variables Y (spectral and concentration data) are analyzed [48–50]. The SERS-
based method combined with multivariate calculation was already used to detect mutation
of epidermal growth factor receptor of malignant pleural mesothelioma from patients
with lung adenocarcinoma (90.7% accuracy) [51]. The difference between benign and
malignant of the pleural effusion associated with lung adenocarcinoma were investigated
using TiO2 photo-catalyzed Ag NPs (sensitivity and specificity over 90%) [52]. X. Chen
et al. showed that SERS serum c in combination with generic algorithm-LDA and support
vector machine (SVM) can achieve diagnosis and staging of diffuse large B-cell lymphoma
(accuracy for LDA = 71.1% and SNV = 78.4%) [53] and discrimination of multiple myeloma
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(accuracy for LDA = 75.5% and SNV = 86.6%) [54]. Moreover, our previous work proved
that it is possible to determine the difference between healthy and tumor salivary glands’
homogenates (accuracy 98%) [55].

Herein, the surface-enhanced Raman scattering technique combined with principal
component analysis as an optical spectroscopy method, with higher sensitivity and chemical
specificity than that in conventional Raman spectroscopy, have been used to maximize the
variations between the analyzed groups of cancerous and non-cancerous pleural effusion
samples. Through this work, the chemometric supervised techniques of classification
(partial least squares—PLS) and quantification (principal component regression—PCR) of
obtained SERS results were performed. The reported results indicate that fast, multivariate
evaluation of the multiple probes is feasible and may allow for broad application of
inaccurate cancer diagnosis, risk classification, and therapeutic strategies.

2. Materials and Methods
2.1. Materials

The human pleural effusion samples were derived from fourteen patients with can-
cer (tumor pleural effusion). Histopathological type of cancer was confirmed either by
histopathological or cytological examination during the routine diagnostic process. Six
samples with non-cancerous lung effusion, considered the control, were collected according
to standard best practice and ethics and bioethics guidelines. The information of the sample
classification based on histopathological and immunohistochemical staining of pleural effu-
sion is included in Table S1 (Supplementary Information). Informed consent was obtained
from all subjects. The obtained pleural fluid was disposed to cytology examination. The
other part of the pleural effusion was directly, after collection, placed in the small aliquots
(1.5 mL) and deep-frozen at −80 ◦C.

2.2. Surface-Enhanced Raman Spectroscopy (SERS)

SERS measurements were performed by Renishaw inVia Raman System, which is
equipped with a 300 mW diode laser emitting a 785 nm line. Briefly, the laser-excitation
source passes through the line filter and focuses on the test sample mounted on an XYZ
translation stage with a 50× Leica N plane EPI objective lens (numerical aperture 0.75).
The focal volume of laser beam in this configuration is 0.5 mm. The scattered Raman sig-
nal was recorded by the same lens projecting the beam through a holographic notch
filter to block Rayleigh scattering. The grating mesh has 1200 grooves per 1 mm to
obtain a visual resolution of 5 cm−1. SERS signals were detected by a RenCam CCD
1024 × 256 pixels detector. For each sample, 15 SERS spectra were collected with 8 mW of
laser power measured on the sample in mapping mode (3 mm × 3 mm). Then, the spectra
were collected with 20 s irradiation and 5 accumulations (total time for one spectrum is 60 s).
Each map was collected for 30 min. Platforms for SERS analysis were prepared according
to the already published procedure [56]. The silicon wafer p-type doped with crystal
orientation <100> was mechanically cut into a 3 mm × 3 mm fragments and subjected to
laser ablation with femtosecond laser (λ = 1030 nm). The laser working parameters were:
pulse width 300 femtosecond, repetition rate 300 kHz, distance between scanning lines
30 µm, and scanning rate of the laser beam on the surface of silicon 1.5 m/s. The surface
was modified with two ablation layers perpendicular to each other. The thawed sample
was directly applied to the active SERS substrate (5 µL),and left to dry at room temperature
in the laminar chamber.

2.3. Data Analysis

Before multivariate analysis, the spectra were prepared using concave rubber-band
baseline correction (number of iterations: 10, number of baseline points: 64 using smooth-
ing) with Savitzky Golay Filter: 9 points OPUS 7.2. software (Bruker Optic GmbH, Leipzig,
Germany). Additionally, normalization was performed using the standard normal variable
(SNV), and then, Principal Component (PCR) and Partial Least Squares (PLS) as well as
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regression and Partial Least Squares Discriminant Analysis (PLS-DA) were performed
using Unscrambler software (CAMO AS software, version 10.4, Oslo, Norway). PLS was
introduced to the regression tasks, and then, the PLS-DA discriminant analysis was per-
formed. The PLS-DA algorithm was used for predictive and descriptive modeling as well
as for discriminant selection of variables. Thus, throughout the manuscript, the PLS as well
as PLS-DA data are presented accordingly. For PCR the NIPALS and for PLS the Kernel
algorithms, both with random cross-validation method of 20 segments, were used.

Additionally, the root mean square errors of calibration and prediction (RMSEC,
RMSEP), the coefficients of determination of calibration and prediction (R2C, R2P), and the
receiver operating characteristic (ROC) as well as the correlation accuracy (AUC the area
under the ROC curve) were determined.

3. Results

Generally, fluid builds up in the pleural space due to an overproduction of fluid
or/and decreased fluid absorption. If the effusion is due to cancer cells in the fluid, it is
called a malignant pleural effusion (MPE). Malignant pleural effusions are present in 7–15%
of patients with lung cancer, 25% of malignant effusions being due to breast cancer and 10%
accounting for lymphomas, including Hodgkin’s disease and non-Hodgkin’s lymphoma. It
should be mentioned that any epidemiological data should be interpreted with caution,
as they may show considerable local variability due to, e.g., ethnicity, the local burden of
various diseases, the age structure of the population, and the availability and quality of
the healthcare system [57]. Adenocarcinoma is the most common histological type for ma-
lignant pleural effusion with an unknown primary tumor. Other causes of non-malignant
effusion, called benign (BPE), are very common in several non-malignant pathologies, such
as decompensated heart failure and following coronary artery bypass grafting.

Firstly, to find the origin of pleural effusion, the samples were cytologically studied.
Based on the characteristic microscopic images, the samples were classified as benign and
malignant. The diagnostic yield of pleural fluid cytology depends on several factors, such as
the extent of disease, the primary site of malignancy, and the histological type of malignancy
(adenocarcinoma is commonly diagnosed compared to squamous cell carcinoma). The high
rate of diagnostic yield in adenocarcinomas is due to the fact that it desquamates easily in
the pleural cavity [58]. On the other hand, squamous cell lung cancer is often more central,
where histological samples of the cancer tissue are the primary source of diagnosis. The
images presenting the pleural fluid of adenocarcinoma and the histopathological staining
of lung cancer tissue of squamous cell carcinoma are gathered in Figure 1.

Differentiation between benign and malignant pleural effusion allows for early treat-
ment of BPE, which decreases the possibility of disease complications. In contrast, early
treatment of MPE may increase the quality of life and survival of patients with advanced
malignant diseases. Below, the model of differentiation between benign and malignant
pleural effusion fluid based on the SERS data and both PCR and PLS analysis, elaborated
upon for clinical samples, are presented.

Studied sample classification obtained from histopathological and immunohistochem-
ical staining is gathered in Table S1 (Supplementary Information). Samples were divided
into analyzed sets:

- Non-carcinoma and carcinoma samples causing pleural effusion;
- Type of neoplastic illness (squamous cell and adenocarcinoma samples).
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Figure 1. Microscopic image of pleural fluid of adenocarcinoma (A) and the tissue of squamous cell
carcinoma (B) (×100, ×400, scale bar 50 µm).

The resultant averages of SERS spectra gathered for cancerous and non-cancerous
pleural effusion samples are presented in Figure 2. The standard deviation (SD) for bands
up to a wavelength of about 1500 cm−1 is from 8% to maximum 15% and above 1500 cm−1

is up to 25%. Additionally, Figure S1 (Supplementary Information) presents the SERS
spectra averages from the SERS map of adenocarcinoma pleural effusion calculated for
15 spectra. The standard deviation on the average plots is visualized by the grey color and
for the band at 1140 cm−1 is 15%. As can be seen within one sample, the spectra are very
similar to each other. Therefore, the multivariate method is necessary for further analysis,
as is done within this work.
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Figure 2. The averaged SERS spectra for non-cancerous and cancer samples for adenocarcinoma and
squamous cell cancer. The bars present the SD of chosen bands.

In Figure 2, the main differences among the spectra are mostly due to the bands’ intensi-
ties. However, in the spectrum of cancerous samples, new bands were revealed at 853 cm−1,
1079 cm−1, 1174 cm−1, 1223 cm−1, 1339 cm−1, 1555 cm−1, and 1586 cm−1. Those bands
are assigned to the vibration of proteins, amide III, and guanine in DNA/adenine/TRP
(protein). The increased-intensity 1079 cm−1 band was already observed in samples derived
from cancer patients [38,59]. These changes are most probably due to higher nucleic acid
bases in serum caused by the abnormal metabolism of DNA and RNA in cancer patients.
Unexpectedly, the squamous cell cancer SERS spectra, the most intensive band, appear
at 1397 cm−1. This band might be connected with a biologically active product such as
carbon monoxide (CO). The CO is produced during the oxidation of heme catalyzed by
the heme oxygenase-1 (HO-1). Recently, a growing body of evidence indicates that the
HO-1 activation may play a role in carcinogenesis and can potentially influence the growth
and metastasis of tumors [60]. The tentative assignment of all bands observed in the SERS
spectra is presented in Table 1.

However, all observed changes in the SERS spectral patterns are not sufficient for
discrimination between the cancerous and non-cancerous origin of pleural effusion, and as
such, this excludes the possibility to use those SERS spectra directly as a medical indicator
for tumor detection. Therefore, further analyses were performed over the gathered SERS
data using the multivariate method (MVA). Firstly, the principal component regression
(PCR) was applied over the SERS data, and then, to more strength categorization and
quantification of analyzed data, the partial least square (PLS) method was used. Both
methods, PLS and PCR, are used to find the best discrimination algorithm to classify the
obtained SERS spectra as coming from non-cancerous or cancerous samples as well as
from different types of cancer (squamous cell or adenocarcinoma). The main difference
between both methods is the validation set considered in the calculation, which influences
the possibility of considering the random noise in the PLS method. Therefore, validation is
necessary for the obtained results. Usually performed validation, similar to that used herein,
divides the data table into a calibration set and a prediction set. To evaluate the accepted
models, the root mean square errors of calibration and prediction (RMSEC, RMSEP) and
the coefficients of determination of calibration and prediction (R2C, R2P) are determined.
Additionally, the sensitivity and the specificity based on the receiver operating characteristic
(ROC) and the correlation accuracy (AUC the area under the ROC curve) are calculated
and presented.
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Table 1. Tentative assignments of bands observed in SERS spectra of adenocarcinoma and squamous
cell [12,59,61–68]. The bands that show significant differences in intensity are bolded.

SERS Bands

Compound/AssignmentsCancerous
Non-Cancerous

Adenocarcinoma Squamous Cell

633 633 633 Phenylalanine (skeletal)

678 Guanine (DNA)

722 DNA

728 728 Tryptophan, lipids

755 755 CH2 rocking, symmetric breathing, tryptophan

809 809 809 Cytosine, uracil, tyrosine

853 853 Tyrosine, proteins

890 890 884 Proteins

1003 1003 1003 Phenylalanine (ring breathing mode)

1030 1030 1030 Proteins, C-H in plane Phe, deoxyribose, str. (C-O)

1043 1043 Proteins, ν (C-O), ν (C-N)

1079 1079 CC or PO2 stretching, phospholipids in nucleic acids

1133 1133 1133 ν (C-N) of proteins or ν (C-C) lipids

1174 CC stretching, L-phenylalanine, proteins

1206 1208 1206 N-C-C stretching and bending

1223
Amide III

1270 1270 1270

1319 CH3 def. in collagen

1339 1339 1336 Adenine ring breathing, phospholipids, or nucleic acid

1370 Guanine in DNA/TRP (protein)/lipids

1397 CO of the COH stretching of amino acids in proteins or
COO stretching

1445 1445 1445 CH2 bending in proteins and lipids, keratin, fatty acids,
triglycerides, CH2, CH3 deformation/lipids/proteins C–H wag.

1555 1555

Guanine in DNA/adenine/TRP (protein)1570

1586

1610 1610 Phenylalanine, tyrosine, cytosine,

1655 1660 1655 Amide I/C=C lipid stretch

Herein, all SERS data were divided into a calibration set and a prediction set in
approximately 2:1 ratio (a calibration set—14 samples; and a validation set—6 samples;
around 15 spectra for each sample, total 300 spectra). The number of components or factors
are selected by the algorithm implemented in Unscrambler as the most important for
presented differentiation. The calculated PCR and PLS scores in 2D and 3D scatter plots
are shown in Figure 3. The rest of the PCs or Fs important for calculated discrimination
are presented in Figures S2 and S3 (Supplementary Information), respectively. It should be
mentioned that the average of the standard deviation (SD) variations up to 15% (Figure S1;
Supplementary Information) were obtained for the recorded spectra. Therefore, all gathered
spectra, recorded for one sample in the mapping mode, were analyzed and included in the
presented classification.
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Let us consider results of PCR and PLS calculated for non-cancerous and cancerous
samples. In the presented PCR data, PC-1 explains 48% of the variance in block X, while
PC-2 explains 18%, and PC-3 explains only 8% (Figure 3A). In comparison, PLS data for
Factor-1 explain 28% of the variance in block Y with 33% of the spectral data (X matrix),
while F-2 explains 26% of the variance in block Y with 24% of analyzed data. The last F-3
explains only 14%, with 13% of the data within X matrix (Figure 3C). Thirteen consecutive
components calculated for PCR explain 96%, while only ten factors as the most important
for PLS explain 95 % of the variance between studied groups. However, the PCR and PLS
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data after RMSEC and RMSEP together with R2C and R2P evaluation most significantly
prove the advantage of PLS over PCR method. For PCR, RMSEC = 0.1958 and RMSEP
= 0.2058, R2C = 0.7967, and R2P = 0.7770; for PLS model, RMSEC = 0.0901 and RMSEP
= 0.1289, R2C = 0.9570, and R2P = 0.9129 (see Table S2; Supplementary Information).
The smaller the value of RMSE, the higher the quality of the quantitative model and the
opposite: the smaller the value of RMSE, the stronger the predictive ability of the model
achieved. On the other hand, if the predictive values of the coefficients of calibration
determination and prediction in square roots are close to 1, they will ensure the correct
classification. Therefore, considering the obtained values, the PLS model is much more
robust with higher predictive ability.

Next, to find the determination model for SERS spectra gathered for two different
types of cancer, namely squamous cell and adenocarcinoma, again, the PCR and PLS were
considered (Figure 3B,D). Evidently, for the first view, the PLS gives scores that allow
unambiguous assignment of a given cancer type based on the SERS spectrum. Moreover,
the RMSE and R2 data indicate PLS as the most forceful model for that discrimination (see
Table S2; Supplementary Information). Four consecutive components calculated for PCR
explain 81%, while eight factors as the most important for PLS explain 95% of the variance
between studied groups.

One of the most unexpected results during analyzed data was scores distribution
according to gender. The PLS discrimination for cancerous and non-cancerous samples
versus gender are presented in Figure S4 (Supplementary Information). The scores that
responded to each valuated group of SERS data, i.e., non-cancerous and cancerous, are
divided by two axes: F-1 and F-2. According to the obtained results, the scores responding
to the non-cancer samples collected from both women and men are located in the third
quarter of the presented plots (Figure S4a,b; Supplementary Information). A comparison of
the percentages of discrimination between the samples in the distribution by cancerous
and non-cancerous samples for both male and female samples and separately for men
and women is shown in Figure 4. PLS prove that the first three factors explain 97%, 91%,
and 61% of the variance between non-cancerous groups for men, women, and the entire
population. For statistical significance, the closest values to 100% are better, and the same is
true with lower numbers of concerned factors. The presented values of the first three PLS
factors of the gender analysis give significantly better values than for the whole population
(both genders together). These results are in line with other studies; Sikirzhytskaya et al.
demonstrated that Raman spectroscopy combined with other statistic methods, such as
support vector machine (SVM), might be useful in determining the sex of a blood sam-
ple [69]. It is known that biological differences between the genders result in differences in
the epidemiology of cancer, i.e., in gene polymorphism and genetics/molecular level [70].
Similarly, Conforti et al. [71] noticed that when personalized immunotherapy strategies are
used in advanced non-small cell lung cancer, gender is strongly associated with outcomes
influencing prognosis; men and women should be treated accordingly with different and
personalized immunotherapy strategies. However, so far, there are not enough experimen-
tal data focusing on this problem. In this sense, the results presented here are essential
for a better understanding of the relationship between images of body fluids’ molecular
structure, which may differ depending on gender. Thus, when studying neoplastic diseases
from human fluids, it seems essential to consider changes within one gender.

Moreover, the analysis of the calculated PCs and Fs (for PCR and PLS, respectively)
of cancerous and non-cancerous samples and type of cancer data revealed a few essential
variables at 638 cm−1, 1142 cm−1, and 1452 cm−1 (PC1, which accounts for 48% of the total
variance) and at 639 cm−1, 1140 cm−1, and 1452 cm−1 (F1 28% of the total variance; Figure
S5A–D, Table S3; Supplementary Information). Those bands correspond to the bands
observed in SERS spectra at 633 cm−1, 1133 cm−1, and 1445 cm−1 (Figure 2, Table 1). For
tumor type differentiation in PLS analysis, F1 revealed an additional variable at 1657 cm−1

(1655 cm−1 in SERS). Those four bands are responsible for the presented differentiation
between the samples of the analyzed groups.
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The PLS analyses also were performed for the cancerous and non-cancerous SERS
spectra in respect to the gender of the patients. The variables at 632 cm−1, 1127 cm−1,
1310 cm−1, and 1432 cm−1 for the F1 loading plots for females and only two variables at
639 cm−1 and 1455 cm−1 for men (Figure S5E,F, Table S3; Supplementary Information)
were shown. Those bands are attributed to spectral regions corresponding in SERS spectra
to phenylalanine (633 cm−1), proteins or lipids (1133 cm−1), collagen (1319 cm−1), and
proteins or/and lipids (1445 cm−1) (see Figure S6, Table S3; Supplementary Information).

Additionally, based on the predicted and correlated matrix of PCR and PLS, the re-
ceiver operating characteristic (ROC) curve was constructed for studied samples (Figure 5).
To determine the correlation accuracy, specificity, and sensitivity to every possible level of
probability of significance, the area under the curve (AUC) was evaluated. Those calcu-
lations were performed for whole samples of the non-cancerous and cancerous samples,
squamous cell, and adenocarcinoma but also for the non-cancerous vs. cancerous samples
in respect to gender. Based on the presented data calculated for non-cancerous vs. cancer-
ous samples, the correlation accuracy for PCR is 0.67 (67%), while for the PLS-DA method,
it is 0.80 (80%). The optimal cut-off point identified from the ROC curve had a sensitivity of
0.89 (89%) or 0.90 (90%) and specificity of 0.44 (44%) or 0.70 (70 %) (for PCR and PLS-DA,
respectively). Presented for squamous cell vs. adenocarcinoma data (type of cancer), the
correlation accuracy for PCR is 0.44 (44%), while for the PLS-DA method, it is 0.99 (99%).
The optimal cut-off point identified from the ROC curve had a sensitivity of 1.00 (100%) or
0.90 (90%) and specificity of 0.60 (60%) or 1.00 (100%) (for PCR and PLS-DA, respectively).
As it can be seen, in a case of PCR calculated in order to determine the type of cancer, the
AUC is below 0.5. Thus, it can be surely concluded that PCR cannot be used for squamous
cell vs. adenocarcinoma differentiation, as such low AUC values do not carry a medical
diagnosis. In a case of samples determined from the non-cancerous vs. cancerous and in
respect to gender, the correlation accuracy for PLS-DA is 0.68 (68%) for men and 0.86 (86%)
for women. The optimal cut-off point identified from the ROC curve had a sensitivity of
0.67 (67%) or 0.71 (71 %) and specificity of 0.67 (67%) or 0.86 (86%) (for men and women,
respectively). Presented values of sensitivity, specificity, and AUC, gathered in Table 2,
definitely indicate the PLS-DA model as much better in identification of samples between
the non-cancerous and cancerous, squamous cell, and adenocarcinoma pleural fluids.
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Figure 5. The ROC curve with the optimal operating point (red circle) for PCR method, calculated for
non-cancerous vs. cancerous samples (green line) and squamous cell vs. adenocarcinoma samples
(purple line) (A). For the PLS-DA method, calculated for the non-cancerous vs. cancerous samples
(dark blue line) and squamous cell vs. adenocarcinoma samples (pink line) (B) and for the non-
cancerous and cancerous samples for men (blue line) and women (red line) (C).
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Table 2. Results for PCR and PLS-DA classification model for non-cancerous vs. cancerous samples
and squamous cell vs. adenocarcinoma samples.

Type of Tested Samples Method Sensitivity Specificity AUC

non-cancerous vs. cancerous PCR 0.89 0.44 0.67
PLS-DA 0.90 0.70 0.80

Women PLS-DA 0.71 0.86 0.86
Men PLS-DA 0.67 0.67 0.68

squamous cell vs. adenocarcinoma PCR 1.00 0.60 0.44
PLS-DA 0.90 1.00 0.99

To summarize, the presented method of pleural effusion analysis allows for quick and
sensitive differentiation among the possible reason for pleural effusion. Furthermore, it
shows a great possibility of faster diagnosis results, and finally, it gives a faster implemen-
tation of treatment, which in the case of adenocarcinoma, may significantly increase the
chances of curing patients and extending their lives.

4. Conclusions

The potential of SERS in combination with PLS as a rapid method of diagnosing lung
cancer from pleural fluids and identifying the two most common types of lung cancer was
demonstrated for the first time. The PLS method is the best choice in the tested SERS data
configurations (cancer vs. non-neoplastic and squamous samples vs. adenocarcinoma).
However, the most visible evidence of this, apart from the percentages of the explained
variance, is the calculated value of the root mean square error (RMSE) and the coefficients
of determination (R2) of the calibration and prediction (e.g., RMSEC = 0.09, R2C = 0.9570
and RMSEC = 0.0553, R2C = 0.9539). In addition, the calculated area under the ROC curve
is consistent with the RMSE results and confirms the effectiveness of the selected PLS
method. The obtained results prove the feasibility and convenience of using the SERS
method together with the PLS analysis as a competitive tool for the detection of lung cancer
and even the type of cancer from the pleural fluids. Moreover, a correlation was found
between the discrimination of non-cancer and cancer studies and the gender of the patients.
Analysis of data in respect to gender allowed for the practical improvement of the obtained
results (97%, 91% of the variance for men and women versus 68% for the entire population).
This suggests that in future research, biological samples should also be analyzed, taking
into account the gender of the patients of the analyzed samples.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10050993/s1, Table S1: Sample classification based
onto histopathological and immunohistochemical staining; Table S2: The RMSE and R2 along with
number of important PCs or Fs and their corresponding percentage values data obtained from
PCR and PLS multivariate analysis; Table S3: The first three or five components/factors with their
calculated weight (absolute values) obtained for each PCR and PSL model; Figure S1: SERS spectra
averages from the SERS map of adenocarcinoma pleural effusion are based onto 15 spectra. The
standard deviation on the average plots is visualized by the grey color; Figure S2: PCR scores plots of
PC1 vs. PC3 and PC2 vs. PC3 for non-cancerous and cancerous (A) and PC1 vs. PC3, PC2 vs. PC3,
PC1 vs. PC4, and PC1 vs. PC5 for squamous cell and adenocarcinoma samples (B); Figure S3: PLS
scores plots of F-2 vs. F-3, F-1 vs. F-3, F-1 vs. F-4, and F-1 vs. F-5 for healthy and cancer (A) and
for squamous and adenocarcinoma samples; Figure S4: PLS scores plots of F-1 vs. F-3, F-1 vs. F-2,
and F-2 vs. F-3 for non-cancerous and cancerous samples for women (A) and for men (B); Figure S5:
Loadings of the first three/five components in the fingerprint region with reference to the Figure 3A
(A), Figure 3B (B), Figure 3C (C), Figure 3D (D), Figure 3E (E), and Figure 3F (F); Figure S6: The
averaged SERS spectra for non-cancerous and cancer samples for women (A) and for men (B).
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SERS Substrates for Selective Identification of Bacteria in Human Blood. Analyst 2014, 139, 1037–1043. [CrossRef]

18. Genova, E.; Pelin, M.; Decorti, G.; Stocco, G.; Sergo, V.; Ventura, A.; Bonifacio, A. SERS of Cells: What Can We Learn from Cell
Lysates? Anal. Chim. Acta 2018, 1005, 93–100. [CrossRef]

http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death
https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death
http://doi.org/10.1002/ijc.29210
http://doi.org/10.1002/ijc.33588
http://www.ncbi.nlm.nih.gov/pubmed/33818764
http://doi.org/10.2147/OAEM.S29942
http://www.ncbi.nlm.nih.gov/pubmed/27147861
http://doi.org/10.1016/j.thorsurg.2012.10.004
http://doi.org/10.21037/jtd.2017.07.79
http://doi.org/10.4046/trd.2014.76.5.211
http://www.ncbi.nlm.nih.gov/pubmed/24920947
http://doi.org/10.1016/S0025-6196(11)60848-3
http://doi.org/10.1002/(SICI)1097-0339(199906)20:6&lt;350::AID-DC5&gt;3.0.CO;2-7
http://doi.org/10.21037/jtd.2018.11.127
http://www.ncbi.nlm.nih.gov/pubmed/30746236
http://doi.org/10.1016/S0048-9697(97)00180-0
http://doi.org/10.1117/1.JBO.23.10.105003
http://www.ncbi.nlm.nih.gov/pubmed/30317725
http://doi.org/10.1103/PhysRevE.57.R6281
http://doi.org/10.1366/000370208784046812
http://www.ncbi.nlm.nih.gov/pubmed/18416893
http://doi.org/10.1039/b107318b
http://www.ncbi.nlm.nih.gov/pubmed/11913874
http://doi.org/10.1039/c3an01924a
http://doi.org/10.1016/j.aca.2017.12.002


Biomedicines 2022, 10, 993 14 of 16

19. Beier, H.T.; Cowan, C.B.; Chou, I.H.; Pallikal, J.; Henry, J.E.; Benford, M.E.; Jackson, J.B.; Good, T.A.; Coté, G.L. Application of
Surface-Enhanced Raman Spectroscopy for Detection of Beta Amyloid Using Nanoshells. Plasmonics 2007, 2, 55–64. [CrossRef]

20. Petersen, D.; Naveed, P.; Ragheb, A.; Niedieker, D.; El-Mashtoly, S.F.; Brechmann, T.; Kötting, C.; Schmiegel, W.H.; Freier, E.;
Pox, C.; et al. Raman Fiber-Optical Method for Colon Cancer Detection: Cross-Validation and Outlier Identification Approach.
Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 181, 270–275. [CrossRef]

21. Almond, L.M.; Hutchings, J.; Lloyd, G.; Barr, H.; Shepherd, N.; Day, J.; Stevens, O.; Sanders, S.; Wadley, M.; Stone, N.; et al.
Endoscopic Raman Spectroscopy Enables Objective Diagnosis of Dysplasia in Barrett’s Esophagus. Gastrointest. Endosc. 2014,
79, 37–45. [CrossRef]

22. Hsu, C.-W.; Huang, C.-C.; Sheu, J.-H.; Lin, C.-W.; Lin, L.-F.; Jin, J.-S.; Chen, W. Differentiating Gastrointestinal Stromal Tumors
from Gastric Adenocarcinomas and Normal Mucosae Using Confocal Raman Microspectroscopy. J. Biomed. Opt. 2016, 21, 075006.
[CrossRef] [PubMed]

23. Hsu, C.W.; Huang, C.C.; Sheu, J.H.; Lin, C.W.; Lin, L.F.; Jin, J.S.; Chau, L.K.; Chen, W. Novel Method for Differentiating
Histological Types of Gastric Adenocarcinoma by Using Confocal Raman Microspectroscopy. PLoS ONE 2016, 11, e0159829.
[CrossRef]

24. Nijssen, A.; Schut, T.C.B.; Heule, F.; Caspers, P.J.; Hayes, D.P.; Neumann, M.H.A.; Puppels, G.J. Discriminating Basal Cell
Carcinoma from Its Surrounding Tissue by Raman Spectroscopy. J. Investig. Dermatol. 2002, 119, 64–69. [CrossRef] [PubMed]

25. Gniadecka, M.; Philipsen, P.A.; Sigurdsson, S.; Wessel, S.; Nielsen, O.F.; Christensen, D.H.; Hercogova, J.; Rossen, K.; Thomsen,
H.K.; Gniadecki, R.; et al. Melanoma Diagnosis by Raman Spectroscopy and Neural Networks: Structure Alterations in Proteins
and Lipids in Intact Cancer Tissue. J. Investig. Dermatol. 2004, 122, 443–449. [CrossRef]
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46. Osmani, A.; Par, M.; Škrabić, M.; Vodanović, M.; Gamulin, O. Principal Component Regression for Forensic Age Determination
Using the Raman Spectra of Teeth. Appl. Spectrosc. 2020, 74, 1473–1485. [CrossRef] [PubMed]

47. Hemmateenejad, B.; Akhond, M.; Samari, F. A Comparative Study between PCR and PLS in Simultaneous Spectrophotometric
Determination of Diphenylamine, Aniline, and Phenol: Effect of Wavelength Selection. Spectrochim. Acta Part A Mol. Biomol.
Spectrosc. 2007, 67, 958–965. [CrossRef] [PubMed]

48. Thien, T.F.; Yeo, W.S. A Comparative Study between PCR, PLSR, and LW-PLS on the Predictive Performance at Different Data
Splitting Ratios. Chem. Eng. Commun. 2021, 1–18. [CrossRef]

49. Wentzell, P.D.; Montoto, L.V. Comparison of Principal Components Regression and Partial Least Squares Regression through
Generic Simulations of Complex Mixtures. Chemom. Intell. Lab. Syst. 2003, 65, 257–279. [CrossRef]

50. Khajehsharifi, H.; Pourbasheer, E.; Tavallali, H.; Sarvi, S.; Sadeghi, M. The Comparison of Partial Least Squares and Principal
Component Regression in Simultaneous Spectrophotometric Determination of Ascorbic Acid, Dopamine and Uric Acid in Real
Samples. Arab. J. Chem. 2017, 10, S3451–S3458. [CrossRef]

51. Wang, L.; Guo, T.; Lu, Q.; Yan, X.; Zhong, D.; Zhang, Z.; Ni, Y.; Han, Y.; Cui, D.; Li, X.; et al. Sea-Urchin-like Au Nanocluster
with Surface-Enhanced Raman Scattering in Detecting Epidermal Growth Factor Receptor (EGFR) Mutation Status of Malignant
Pleural Effusion. ACS Appl. Mater. Interfaces 2015, 7, 359–369. [CrossRef]

52. Liu, K.; Jin, S.; Song, Z.; Jiang, L. High Accuracy Detection of Malignant Pleural Effusion Based on Label-Free Surface-Enhanced
Raman Spectroscopy and Multivariate Statistical Analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 226, 117632.
[CrossRef]

53. Chen, X.; Li, X.; Yang, H.; Xie, J.; Liu, A. Diagnosis and Staging of Diffuse Large B-Cell Lymphoma Using Label-Free Surface-
Enhanced Raman Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 267, 120571. [CrossRef] [PubMed]

54. Chen, X.; Li, X.; Xie, J.; Yang, H.; Liu, A. Non-Invasive Discrimination of Multiple Myeloma Using Label-Free Serum Surface-
Enhanced Raman Scattering Spectroscopy in Combination with Multivariate Analysis. Anal. Chim. Acta 2022, 1191, 339296.
[CrossRef] [PubMed]

55. Czaplicka, M.; Kowalska, A.A.; Nowicka, A.B.; Kurzydłowski, D.; Gronkiewicz, Z.; Machulak, A.; Kukwa, W.; Kamińska, A.
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Determination in Plasma Samples as Alternative Method of Tumor Detection. J. Biophotonics 2021, 14, e202000318. [CrossRef]

68. Talari, A.C.S.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2015,
50, 46–111. [CrossRef]

69. Sikirzhytskaya, A.; Sikirzhytski, V.; Lednev, I.K. Determining Gender by Raman Spectroscopy of a Bloodstain. Anal. Chem. 2017,
89, 1486–1492. [CrossRef]

70. Kim, H.I.; Lim, H.; Moon, A. Sex Differences in Cancer: Epidemiology, Genetics and Therapy. Biomol. Ther. 2018, 26, 335–342.
[CrossRef]

71. Conforti, F.; Pala, L.; Pagan, E.; Corti, C.; Bagnardi, V.; Queirolo, P.; Catania, C.; De Pas, T.; Giaccone, G. Sex-Based Differences
in Response to Anti-PD-1 or PD-L1 Treatment in Patients with Non-Small-Cell Lung Cancer Expressing High PD-L1 Levels. A
Systematic Review and Meta-Analysis of Randomized Clinical Trials. ESMO Open 2021, 6, 100251. [CrossRef]

http://doi.org/10.1016/j.bios.2010.07.089
http://www.ncbi.nlm.nih.gov/pubmed/20728335
http://doi.org/10.2147/IJN.S71811
http://www.ncbi.nlm.nih.gov/pubmed/25609959
http://doi.org/10.1002/jrs.2421
http://doi.org/10.1002/jbio.202000318
http://doi.org/10.1080/05704928.2014.923902
http://doi.org/10.1021/acs.analchem.6b02986
http://doi.org/10.4062/biomolther.2018.103
http://doi.org/10.1016/j.esmoop.2021.100251

	Introduction 
	Materials and Methods 
	Materials 
	Surface-Enhanced Raman Spectroscopy (SERS) 
	Data Analysis 

	Results 
	Conclusions 
	References

