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Aldosterone, a specific mineralocorticoid receptor (MR) agonist and a key player in the development of hypertension, is
synthesized as a final product of renin-angiotensin-aldosterone system. Hypertension can be generally treated by negating the
effects of angiotensin II through the use of angiotensin-converting enzyme inhibitors (ACE-Is) or angiotensin II type 1 receptor
antagonists (ARBs). However, the efficacy of angiotensin II blockade by such drugs is sometimes diminished by the so-called
“aldosterone breakthrough” effect, by which ACE-Is or ARBs (renin-angiotensin system (RAS) inhibitors) gradually lose their
effectiveness against hypertension due to the overproduction of aldosterone, known as primary aldosteronism. Although MR
antagonists are used to antagonize the effects of aldosterone, these drugs may, however, give rise to life-threatening adverse actions,
such as hyperkalemia, particularly when used in conjunction with RAS inhibitors. Recently, several groups have reported that
some dihydropyridine Ca2+ channel blockers (CCBs) have inhibitory actions on aldosterone production in in vitro and in the
clinical setting. Therefore, the use of such dihydropyridine CCBs to treat aldosterone-related hypertension may prove beneficial to
circumvent such therapeutic problems. In this paper, we discuss the mechanism of action of CCBs on aldosterone production and
clinical perspectives for CCB use to inhibit MR activity in hypertensive patients.

1. Introduction

Aldosterone is an endogenous mineralocorticoid receptor
(MR) agonist synthesized in the adrenal glomerular layer
as a final product of the renin-angiotensin-aldosterone
system (RAAS); it is strongly involved in the development
of hypertension due to excessive sodium retention. It has
been reported that suppression of the renin-angiotensin
system (RAS) by angiotensin-converting enzyme inhibitors
(ACE-Is) and angiotensin II type 1 receptor blockers (ARBs)
provides an effective treatment against cardiovascular dis-
eases such as hypertension and cardiac failure [1, 2]. Several
studies have also revealed that the blockade of MR by an MR
antagonist (MRA), such as spironolactone or eplerenone,
offers an effective approach to treat cardiac disease, especially
cardiac failure [3–6]. These facts indicate that RAAS may
contribute to the underlying mechanisms of cardiac diseases
for which its control may play a critical role in ameliorating

the effectiveness of treatments [7]. Although the blockade of
RAS by ACE-Is or ARBs (RAS inhibitors) may be effective,
the long-term treatment of hypertension by drugs classified
as such often results in a diminished efficacy owing to
the inadequate suppression of aldosterone synthesis. This
phenomenon is known as “aldosterone breakthrough” [8, 9].
An effective approach may therefore be to use an MRA in
addition to RAS inhibitors to avoid such deterioration of
the ACE-I/ARB efficacy due to aldosterone breakthrough.
To this extent, however, MRA use has been associated
with an increased risk of fatal hyperkalemia, and the
concomitant use of MRAs with RAS inhibitors may have
synergistic effects, potentiating the risk for hyperkalemia
[10]. In addition, aldosterone-related hypertension may also
be caused by autonomous aldosterone secretion, such as
primary hyperaldosteronism, which is often associated with
severe hypertension and obesity [11]. These findings indicate
that it is necessary that the suppression of aldosterone
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production be considered as an alternative choice to control
blood pressure. Recently, several groups have reported that
Ca2+ channel blockers (CCBs), which are another class of
antihypertensive agent widely used to control blood pressure,
may have inhibitory actions on aldosterone synthesis. Here,
we provide an overview of the effects of CCBs on the
production of aldosterone and discuss clinical perspectives
of their use to curb aldosterone production.

2. Overview of Steroid Biosynthesis in
Adrenal Cells

A brief summary of steroid biosynthesis in human adrenal
cells is provided here for the convenience of the reader. The
biosynthetic pathways of adrenal steroids are summarized
in Figure 1 [12, 13]. Briefly, steroid biosynthesis is initiated
by steroidogenic acute regulatory protein (StAR), which
transports cholesterol into the mitochondria. The side chain
of cholesterol is then cleaved by cytochrome P450 side chain
cleavage enzyme (CYP11A1) to produce pregnenolone. In
the zona glomerulosa of the adrenal gland (solid line in
Figure 1), which does not express cytochrome P450 17α-
hydroxylase/17,20 lyase (CYP17), pregnenolone is converted
to progesterone by 3β-hydroxysteroid dehydrogenase type 2
(3β-HSD2). CYP17, which is expressed by cells of the zona
fasciculata (dotted line in Figure 1) and the zona reticularis
(broken line in Figure 1), catalyzes the conversion of preg-
nenolone and progesterone to 17α-hydroxypregnenolone
and 17α-hydroxyprogesterone, respectively. Via a different
pathway, progesterone is catalyzed to 11-deoxycorticosterone
(DOC), and 17α-hydroxyprogesterone to 11-deoxycortisol,
respectively, by hydroxylation with steroid 21-hydroxylase
(CYP21A2). Corticosterone is generated from DOC by 11β-
hydroxylase (CYP11B1), which also generates cortisol from
11-deoxycortisol in zona fasciculata cells, and, in turn,
aldosterone is generated from 18-hydroxycorticosterone by
CYP11B2, which is also known as aldosterone synthetase.
The regulation of CYP11B2 is mediated by Ca2+-sensitive
manner through mechanisms involving calmodulin and
calmodulin-dependent kinases, and the 11β-hydroxylase
activity is also stimulated by Ca2+ [14, 15]. The previous
experiments revealed that angiotensin II-induced aldos-
terone synthesis is involved in activation of the low voltage-
activated T-type Ca2+ channel [16, 17], and the expression of
CYP11B2 mRNA was suppressed by some dihydropyridine
CCBs, which can inhibit the T-type Ca2+ channel [18–
20]. In the adrenal cells of the zona reticularis, 17α-
hydroxypregnenolone and 17α-hydroxyprogesterone are
also catalyzed to dehydroepiandrosterone (DHEA) and
androstenedione, respectively. The DHEA is further sulfated
to DHEA-sulfate (DHEA-S) by sulfotransferase (SULT2A1)
and reversely sulfated from DHEA-S by steroid sulfatase
(STS). Androstenedione on the other hand is converted to
testosterone by 17β-hydroxysteroid dehydrogenase type 3
(17β-HSD3).

Both the expression of StAR at mRNA and protein
levels and its activity were shown to be increased by
nifedipine and efonidipine in MA-10 mouse Leydig cells
and NCI-H295R human adrenocortical carcinoma cells, but

decreased by amlodipine, azelnidipine, or R(-)-efonidipine
[21, 22]. Likewise, CYP11B1 and CYP11B2 are decreased
by azelnidipine, benidipine, and efonidipine (∗ in Figure 1)
in NCI-H295R human adrenocortical carcinoma cells [18–
20], while efonidipine increases DHEA-S production in NCI-
H295R human adrenocortical carcinoma cells probably as a
result of increased StAR expression (# in Figure 1) [22]. The
reported actions of dihydropyridine CCBs on the expression
of steroidogenic enzymes in in vitro studies are summarized
in Tables 1 and 2 [18–25].

3. Actions of Dihydropyridine CCBs on Adrenal
Steroid Synthesis

A previous study reported that a specific step in the
steroidogenic pathway may be directly linked to agonist-
induced increases in the cytosolic free Ca2+ concentration
in intact isolated zona glomerulosa cells [26]. Stimulation
by angiotensin II or exposure to high extracellular potas-
sium (which depolarized the cell membrane) elevates the
intracellular Ca2+ [27] and induces aldosterone production.
This increase in intracellular Ca2+ can be blocked by the
L-type CCB nifedipine, though not completely in the case
of the angiotensin II-induced intracellular Ca2+ elevation
[27], with a concomitant decrease in aldosterone production
[28]. In addition, even verapamil and diltiazem, which
are nondihydropyridine L-type Ca2+ channel antagonists,
exerted inhibitory actions on aldosterone production in rat’s
adrenal glands [29]. These findings indicate that the pro-
duction of aldosterone may be stimulated by processes other
than by Ca2+ influx through the L-type calcium channel. For
example, other studies on adrenal glomerulosa cells, in which
T-type Ca2+ channel-specific antagonists (mibefradil, tetran-
drine, and Ni2+) were used, reported involvement of the T-
type Ca2+ channel in aldosterone production in addition to
the L-type Ca2+ channel [28, 30–32]. These results indicate
that adrenal aldosterone production requires the activa-
tion of T-type Ca2+ channels. Thereafter, it was reported
that a newly developed dihydropyridine CCB, efonidipine,
which has inhibitory properties for both L- and T-type
Ca2+ channels [33], suppressed aldosterone and cortisol
production more potently than nifedipine by reducing the
expression of CYP11B1 and CYP11B2 [18, 20]. Interestingly,
however, when used on NCI-H295R human adrenocortical
carcinoma cells, efonidipine increased the expression of
StAR mRNA and protein, possibly resulting in the increased
production of DHEA-S [22]. It has also been reported that
azelnidipine and benidipine, as well as efonidipine, have
inhibitory actions on adrenal aldosterone production by
decreasing the expression of CYP11B1 and CYP11B2 more
potently than nifedipine [19, 20], and cilnidipine suppressed
angiotensin II-induced CYP11B2 mRNA expression, but not
CYP11B1. Moreover, while azelnidipine, benidipine, and
efonidipine have inhibitory properties against T-type Ca2+

channels (α1H and α1G), nifedipine has little effect on
these T-type Ca2+ channel subtypes [24], indicating that the
effects of CCBs on the T-type Ca2+ channel, in addition
to that on the L-type Ca2+ channel, may be involved in
their inhibitory actions on aldosterone production. Recently,
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Figure 1: Overview of steroid biosynthesis in adrenal cells. Asterisks (∗) and the symbol (#) indicate enzymes and the adrenal steroid that
may be modulated by dihydropyridine CCBs. Solid line: steroid biosynthesis in cells of the zona glomerulosa; dotted line: steroid biosynthesis
in cells of the zona fasciculate; broken line: steroid biosynthesis in cells of the zona reticularis.

another group reported that cilnidipine, which has little
or no effect on T-type Ca2+ channels [24] but significant
inhibitory actions against an N-type Ca2+ channel [34],
also suppressed aldosterone production in NCI-H295R
human adrenocortical carcinoma cells [23]. The N-type
Ca2+ channel may be involved in aldosterone production,
because ω-conotoxin GIVA, a specific N-type Ca2+ channel
blocker, significantly suppressed aldosterone and cortisol
secretions in NCI-H295R human adrenocortical carcinoma
cells without significantly influencing CYP11B2 or CYP11B1
mRNA expression [23].

Given that aldosterone is a key factor in cardiac patho-
logical stress, promoting processes such as fibrosis and
oxidative stress [7], it is important to evaluate the effects
of above-mentioned CCBs on aldosterone production in in
vivo animal preparations and in patients with cardiovascular
diseases. In this way, in vivo studies with benidipine and
cilnidipine were found to reduce the plasma aldosterone
concentration (PAC) in stroke-prone spontaneously hyper-
tensive rats [35], in the ischemia reperfusion mouse model
[36], and in male SHR/Izm rats [37]. In clinical studies,
azelnidipine, benidipine, and efonidipine were shown to
exert suppressive actions on PAC in hypertensive patients
with type 2 diabetes mellitus [38], in patients with mild-
to-moderate stage chronic kidney disease with albuminuria
[39], in patients with chronic glomerulonephritis [40], and
in patients with essential hypertension [41].

Activation of MR by aldosterone is one of the important
causes of arterial hypertension, and, due to the extrarenal
effects of aldosterone, such as cardiac fibrosis and vascular
inflammation [42], it is very important to antagonize the MR

activities in such patients. Dihydropyridine CCBs are widely
recommended in the treatment of hypertension by several
guidelines [43–47] and may have more therapeutic potential
in combination with antagonists for RAS [48–50]. Combi-
nation therapies with RAS inhibitors and CCBs are well-
tolerated in hypertensive patients [51–54], indicating that
CCBs are the potentially important candidates as a concomi-
tant drug with RAS inhibitors. Also, because monotherapy by
RAS inhibitors for hypertension may often cause diminished
efficacy of treatment, so-called “aldosterone breakthrough
[8, 9],” treatment of hypertensive patients with RAS inhibitor
alone is often required to add another antihypertensive drug
to avoid aldosterone breakthrough. MRAs are often con-
sidered for such purpose, but concomitant usage of MRAs
with RAS inhibitors increases incidence of hyperkalemia,
which is one of the life-threatening adverse effects [10].
Furthermore, recent data suggest that primary aldosteronism
is present in approximately 10% of hypertensive patients
[55], indicating that the suppressive property of adrenal
aldosterone production without severe adverse effects may be
a key element in treatment of hypertension. Therefore, CCBs,
which suppress adrenal aldosterone production and have
tolerable property in concomitant usage with RAS inhibitors,
may be another useful choice to overcome aldosterone
breakthrough and aldosterone-related hypertension without
intolerable adverse effects, such as severe hyperkalemia.
Therefore, taken together with the recently reported data
concerning the antagonistic properties of CCBs against MR
activity [56, 57], such dihydropyridine CCBs may act as a
new class of MRAs providing a therapeutic advantage for the
treatment of aldosterone-related hypertensive patients.



4 International Journal of Endocrinology

Table 1: The effects of dihydropyridine CCBs on dbcAMP- or KCl-induced expression of steroidogenic enzymes.

Dihydropyridine CCB Type of affecting
Ca2+ channels

StAR CYP11A1 3βHSD2 CYP21A2 CYP11B1 CYP11B2 STS SULT2A1

Amlodipine L, T → → → → → →
Azelnidipine L, T → → → → ↓ ↓ → →
Benidipine L, T ↓ ↓
Efonidipine L, T ↑ → → → ↓ ↓ → →
Isradipine L, T ↑
Nifedipine L ↑ → → → ↓ ↓ → →
Nitrendipine L ↓ ↓

dbcAMP: N6, 2′-O-dibutyryladenosine 3′, and 5′-cyclic monophosphate.

Table 2: The effects of dihydropyridine CCBs on angiotensin II-induced expression of steroidogenic enzymes.

Dihydropyridine CCB Type of affecting Ca2+ channels StAR CYP11B1 CYP11B2

Amlodipine L, T →
Azelnidipine L, T ↓ ↓ ↓
Benidipine L, T ↓ ↓
Cilnidipine L, N → ↓
Efonidipine L, T ↑ ↓ ↓
Nifedipine L → ↓ ↓
Nitrendipine L → →

4. Conclusion

Recent studies have revealed that dihydropyridine CCBs,
such as azelnidipine, benidipine, cilnidipine, efonidipine,
and nifedipine, have inhibitory actions on adrenal aldos-
terone biosynthesis in vitro. Some studies have also shown
that plasma aldosterone levels are decreased in the patients
prescribed such dihydropyridine CCBs. Based on accumu-
lating evidence from in vitro and clinical studies of the
actions of these drugs on aldosterone production, the clinical
use of dihydropyridine CCBs may provide therapeutic
advantages to combat aldosterone-related hypertension in
affected patients.
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