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Tumors contain a distinct small subpopulation of cells that possess stem cell-like characteristics.These cells have been called cancer
stem cells (CSCs) and are thought to be responsible for anticancer drug resistance and tumor relapse after therapy. Emerging
evidence indicates that CSCs share many properties, such as self-renewal and quiescence, with normal stem cells. In particular,
CSCs and normal stem cells retain low levels of reactive oxygen species (ROS), which can contribute to stem cell maintenance and
resistance to stressful tumor environments. Current literatures demonstrate that the activation of ataxia telangiectasia mutated
(ATM) and forkhead box O3 (FoxO3) is associated with the maintenance of low ROS levels in normal stem cells such as
hematopoietic stem cells. However, the importance of ROS signaling in CSC biology remains poorly understood. Recent studies
demonstrate that nuclear factor-erythroid 2-related factor 2 (NRF2), amaster regulator of the cellular antioxidant defense system, is
involved in the maintenance of quiescence, survival, and stress resistance of CSCs. Here, we review the recent findings on the roles
of NRF2 in maintenance of the redox state and multidrug resistance in CSCs, focusing on how NRF2-mediated ROS modulation
influences the growth and resistance of CSCs.

1. Introduction

Reactive oxygen species (ROS) are highly proactivemolecules
derived from molecular oxygen and include free radicals
such as hydrogen peroxide (H

2
O
2
), superoxide anion (O2

−),
and hydroxyl radical (OH∙). Under normal physiological
conditions, low-to-moderate levels of ROS play a critical
role in cellular development and signaling. However, excess
ROS levels, which can be caused by metabolic dysfunction
or environmental stress conditions, can lead to peroxida-
tion of cellular macromolecules such as lipids, proteins,
and nucleic acids [1, 2]. These ROS-induced byproducts
eventually trigger cellular senescence, carcinogenesis, or cell
death. Interestingly, mammalian cells have developed tightly
regulated antioxidant systems for protection against ROS-
induced oxidative damage. For example, the superoxide
anion, a product of mitochondrial dysfunction, is converted
to H
2
O
2
by superoxide dismutases (SODs). H

2
O
2
is then

decomposed to oxygen and water by catalase or glutathione
peroxidases (GPXs) [3, 4].

Multiple lines of evidence suggest that cancer cells possess
higher levels of intracellular ROS than normal cells [5, 6].
Elevated ROS levels in cancer can be utilized to promote cell
proliferation, invasiveness, and metastasis [6–9]. There are
several underlying mechanisms involved in ROS elevation in
cancer cells. First, activated oncogenes can trigger ROS pro-
duction through upregulation of ROS-generating enzymes
such as NADPH oxidases (NOXs) [10, 11]. The RAS onco-
gene increases NOX1 expression via the extracellular signal-
regulated kinases (ERK) [10] or mitogen-activated protein
kinase (MAPK) signaling pathways [11] in human cancers.
Overexpression of the c-MYC oncogene in normal human
fibroblasts induces DNA damage by increasing ROS levels
[12]. Mutation of mitochondrial DNA (mtDNA) is a major
cause of ROS elevation in cancer cells. Polyak et al. found that
seven out of ten colorectal cancer cell lines retained somatic
mutations in mtDNA; most of these mutations were detected
in mitochondrial genes such as those encoding cytochrome c
oxidases 1–3, which has potential implications with respect to
increase in mitochondrial ROS [13]. Cancer cells have their

Hindawi Publishing Corporation
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 2428153, 14 pages
http://dx.doi.org/10.1155/2016/2428153

http://dx.doi.org/10.1155/2016/2428153


2 Oxidative Medicine and Cellular Longevity

own adaptation mechanisms against increased ROS, such as
upregulation of ROS scavenging systems. As a result of these
systems, malignant transformed cells can utilize ROS as a
signal for tumor progression and metastasis [5, 14].

Recent studies are expanding our knowledge about the
biological implications of ROS in cancer stem cells (CSCs),
which are small subpopulation of cancer cells responsible for
tumorigenesis and tumor progression and relapse. Based on
increasing evidence for the role of ROS in stem cell biology,
lower levels of cellular ROS are considered beneficial for
the maintenance of quiescence and chemo/radioresistance
of CSCs [15]. In this review, we show current findings
illustrating the relationship between ROS and CSC biology
and present emerging evidence that nuclear factor-erythroid
2- (NF-E2-) related factor 2 (NRF2) may play a role in CSC
growth and resistance.

2. CSCs and Resistance to Environmental
Stress and Chemotherapy

Tumors contain a small population of cells with stem cell
properties, namely, CSCs or tumor-initiating cells (TICs)
[16, 17]. These cells are known to play a crucial role in tumor
maintenance and relapse. In the 1990s, the first experimental
evidence of CSCs was introduced by Bonnet and Dick [18].
In acute myeloid leukemia (AML), it appeared that 0.1 to
1% of the total cell population had tumor-initiating activity.
This subpopulation exhibited a CD34+/CD38− phenotype
and was capable of tumor reconstitution after transplantation
into nonobese diabetic/severe combined immune-deficient
(NOD/SCID)mice [18]. Since then,multiple lines of evidence
have revealed that theCSCpopulation exists in different types
of solid tumors, including brain, breast, and colon cancers
[19–21].

CSCs are characterized by their self-renewal and differen-
tiation capacity, similar to normal stem cells [16]. Markers of
embryonic stem cells (ESCs) such as octamer-binding tran-
scription factor 4 (OCT4), Nanog homeobox (NANOG), and
SRY (sex determining region Y)-box 2 (SOX2) are expressed
in CSCs, and the Wnt/𝛽-catenin, Hedgehog, and Notch
pathways are implicated in the self-renewal of CSCs [22–26].
Several CSC-specific surfacemarkers have been identified for
the detection and isolation of CSCs from the tumor mass.
CD44+/CD24− phenotypic cells were isolated from breast
cancer tissues and breast carcinoma cell lines andwere shown
to exhibit self-renewal and high tumorigenic capacity [27].
The CD133+ subpopulation from brain tumors demonstrated
stem cell properties and showed tumor-initiating capability
in NOD/SCID mouse brains [20].

CSCs are considered to be one of themain causes of tumor
recurrence after therapy. CSC resistance to conventional
anticancer drug therapies and radiotherapy is attributed to
increased expression of ROS scavenging molecules, drug
transporters, and enhanced DNA repair capacity [28–30]. It
has been reported that CSCs contain low levels of endogenous
ROS compared to those seen in non-CSCs [31, 32]. In
primary AMLs, a subpopulation of low ROS-producing cells
demonstrated characteristics of CSCs including quiescence

and a CD34+/CD38− phenotype [31]. Moreover, Chang et al.
observed that this population of low ROS-producing cells
exhibited increased expression of stem cell markers (OCT4
and NANOG) and higher chemoresistance and tumorigenic-
ity than the population of high ROS-producing cells in head
and neck cancer [32].

The ATP-binding cassette transporter (ABC transporter)
family is known to induce multidrug resistance by actively
transporting intracellular drugs to outside of the cell [33, 34].
P-glycoprotein (P-gp), multidrug resistance-associated pro-
teins (MRPs), and breast cancer associated protein (BCRP)
belong to the ABC transporter family. Since many types of
anticancer agents are substrates of these ABC transporters,
enhanced expression of P-gp, MRPs, and BCRP is strongly
associatedwith the chemoresistant phenotype of CSCs. Based
on this, ABC transporters are often used as a CSC surface
marker [28, 35]. The side population (SP), which is a fraction
of cells that expresses a high level of BCRP, can be isolated
from cancer cells using fluorogenic dye Hoechst 33342.
As Hoechst 33342 dye is a substrate of BCRP, the BCRP
overexpressing cells exclude this fluorescent dye and thereby
a fraction of cells with low fluorescence can be isolated from
non-SP cells.This method is now widely used to isolate CSCs
from cancer cell lines and specimens using a flow cytometry
[36].

3. Role of ROS in Stem Cells

Stem cells can be broadly classified into two categories:
adult stem cells (e.g., haematopoietic stem cells (HSCs) and
neural stem cells) and ESCs. Under homeostatic conditions,
these stem cells, particularly adult stem cells, are generally
maintained in a quiescent state. However, stem cells are able
to escape quiescence and enter the cell cycle for proliferation
when they are exposed to metabolic changes [37–40].

ROS are considered as important signaling molecules in
stem cell biology. They play a key role in stem cell mainte-
nance by preserving quiescence and protecting against
environmental stress [37, 38]. Recent stem cell studies
have demonstrated that stem cells contain low levels of
intracellular ROS, and this redox status was found to be
critical for regulation of stem cell quiescence and self-
renewal. Murine ESCs exhibited low levels of intracellular
ROS compared to differentiated murine cells, due to the
increased level of GSH and thioredoxin (TXN) system [41].
Furthermore, HSCs containing low levels of ROS (i.e., cells
with low fluorescent activity following the incubation with
2󸀠,7󸀠-dichlorodihydrofluorescein diacetate (DCFDA), a cell-
permeable ROS sensing fluorogenic dye) were highly qui-
escent and expressed relatively high levels of NOTCH1 and
BCRP compared to high DCFDA fluorescent cells. High
levels of ROS are cytotoxic, since ROS accumulation in HSCs
can lead to cellular prematurity and senescence [42, 43].

ROS have been reported to be involved in stem cell differ-
entiation. Bone marrow mesenchymal stem cells (MSCs) are
found in the bone marrow together with HSCs and have the
potential to differentiate to adipocytes, osteocytes, and chon-
drocytes. It was shown that humanMSCs are highly resistant
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to ROS.This phenomenon was linked to low levels of cellular
ROS and high levels of SODs, catalase, GPX1, and GSH in
MSCs [38, 40]. Elevated antioxidant molecules appear to play
a crucial role in the protection of stem cells against oxidative
stress. However, under certain circumstances, NOX-derived
ROS are associated with MSC differentiation. The treatment
of MSCs with antioxidants or interfering RNA of NOX4 pre-
vented adipocyte differentiation of MSCs via cAMP response
element-binding protein (CREB) inhibition. Similarly, ESC
differentiation to the cardiac lineage was dependent on
NOX4-derived ROS [44]. These findings indicate that ROS
are important for stem cell fate determination for quiescence
or differentiation.

4. Redox Signaling Molecules in Stem Cells

It has been reported that multiple signaling molecules are
involved in ROS-mediated regulation of stem cells (Figure 1).
First, ataxia telangiectasia mutated (ATM) plays a critical
role in controlling ROS levels in stem cells. ATM, a ser-
ine/threonine protein kinase, is a known regulator of the
DNA damage response and contributes to the regulation of
cellular ROS. ATM is known to regulate ROS via modulation
of AMPK-mTOR pathway or NADPH production [45, 46].
Ito et al. showed that atm−/− mice developed bone marrow
failure after 24 weeks of age due to a depletion of HSCs.
In this study, HSCs in atm knockout mice showed higher
levels of ROS than wild type mice, which presumably caused
a reduction in the self-renewal activity of HSCs. However,
the treatment of mice with antioxidant N-acetylcysteine
(NAC) restored HSC reconstitution in atm knockout mice by
reducing ROS in HSCs, confirming the critical role of ROS
in HSCs maintenance [47]. Similarly, in another study, NAC
treatment prevented hypersensitivity of atm−/−mice to X-ray
irradiation and senescence of atm−/− embryonic fibroblasts
[48]. Cosentino et al. have presented amolecularmechanistic
role for ATM, demonstrating that ATM activation promotes
the binding of heat shock protein 27 (HSP27) to glucose-
6-phosphate dehydrogenase (G6PDH), which can result in
G6PDH activation and subsequent NADPH increase [46].

The forkhead box O (FoxO) transcription factor family
is also implicated in redox regulation of stem cells. The
FoxO family, including FoxO1, FoxO3, FoxO4, and FoxO6,
is a key regulator of cell survival, proliferation, DNA repair,
and apoptosis. FoxO1 and FoxO3 are reported to upregulate
the expression of GSH biosynthetic enzymes and SODs
and therefore are associated with cellular protection against
oxidative stress [49, 50]. Particularly, FoxO3 has been known
to play crucial roles in cytoprotection of stem cells including
HSCs [51–53]. Loss of FoxO3a, which regulates the expression
of antioxidant enzymes such as catalases and SOD2, led to
ROS accumulation and thus a higher rate of cell cycling
and a loss of quiescence in HSCs [51]. In foxo1/foxo3a/foxo4
triple-knockout mice, the number of HSCs was substantially
decreased and apoptotic HSCs were increased through ROS
elevation [52]. Notably, Yalcin et al. provided a link between
ATMand the FoxOprotein in ROS regulation of stem cells. In
foxo3−/−HSCs, ATMexpressionwas diminished compared to
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Senescence
apoptosis
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PI3K/AKT ↑

FoxO ↓

Figure 1: Involvement of ROS in normal stem cell quiescence and
self-renewal. In normal stem cells, modulation of ROS levels can
determine quiescence and cell fate progression. At low ROS levels,
which are maintained by ATM and FoxO signaling, stem cells
remain quiescent and self-renewal activity is enhanced.On the other
hand, increased ROS levels result in cell cycle progression, cellular
senescence, and apoptosis. The PI3K-AKT pathway is known to
elevate ROS levels by negative regulation of FoxO.

normalHSCs, suggesting that FoxO3 repressed ROS viaATM
regulation [53]. Similar to HSCs, foxo-deficient neural stem
cells demonstrated a decline in self-renewal capacity due to
increased cellular ROS levels [54, 55].

The phosphoinositide 3-kinase (PI3K)/AKT pathway is
another ROS regulator in normal stem cells. In particular,
PI3K/AKT signaling associates with FoxO transcription fac-
tors to mediate ROS regulation. Activated AKT promotes
FoxO phosphorylation, resulting in the nuclear export and
cytoplasmic degradation of FoxO through the proteasome
[56, 57]. Therefore, ak𝑡1/2 double knockout HSCs displayed
increased quiescence and low cellular ROS levels [58]. Con-
sistently, persistent activation of the PI3K/AKT pathway in
phosphatase and tensin homolog (PTEN) deleted HSCs led
to defective quiescence, resulting in cellular senescence [59].
Based on the above observations, the PI3K/AKTpathway and
FoxO/ATMpathway exhibit opposite roles in ROS regulation
of stem cells.

Hypoxia-inducible factors (HIFs) are transcription fac-
tors that respond to hypoxic conditions [60]. They are also
critical factors for the maintenance of stem cells. HSCs
cultured in hypoxic conditions displayed a higher colony
formation capacity, and high HIF levels positively regulated
the pluripotency of human ESCs by activating stemness
transcription factors such as OCT4, SOX2, and NANOG
[61, 62]. Moreover, in neuronal stem cells in a hypoxic
environment, accumulated HIF1𝛼 promoted Wnt/𝛽-catenin
pathway activation [63]. The involvement of HIFs in stem
cell biology is mediated by ROS. Takubo et al. observed that
hif1𝛼−/− HSCs contain high levels of ROS, which could be
associated with a loss of HSC quiescence and an induction of
cellular senescence [64]. In agreement with this finding, the
suppression of HIF1𝛼 and HIF2𝛼 in HSCs led to increased
ROS generation via mitochondrial metabolic shift and con-
sequently induced cellular senescence and apoptosis. Scav-
enging ROS byNAC treatment could restore HSC quiescence
and function in stem cells withHIF1𝛼 andHIF2𝛼 suppression
[65].

5. Involvement of ROS in CSC Biology

Very few studies have investigated the involvement of redox
change in CSC biology compared to that in cancer cells
or normal stem cells. However, it has been reported that
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CSCs appear to share several ROS-associated properties
with normal stem cells. CSCs are known to contain lower
levels of ROS compared to non-CSCs. CD44+/CD24−/low
breast cancer CSCs, isolated from MDA-MB-231 and MCF7
mammospheres, were relatively more resistant to radiation
and this was associated with lower levels of ROS after
radiation [66]. Diehn et al. observed that ROS levels in
CD44+/CD24− breast cancer CSCs were lower than in non-
CSCs, and the expression levels of the modulatory subunit of
glutamate cysteine ligase (GCLM, the rate-limiting enzyme
of GSH synthesis) and FoxO1 were high. Treatment of the
CD44+/CD24− subpopulationwith buthionine sulphoximine
(BSO), an inhibitor of GSH synthesis, resulted in reduced
colony forming capacity and increased sensitivity to radiation
therapy through an increase in ROS [67]. In a study using
human AML specimens, leukemic stem cells with low levels
of ROS majorly contributed to stem cell quiescence by
maintaining a low rate of oxidative phosphorylation and
metabolism [31]. A leukemia with a high amount of leukemic
stem cells showed low levels of ROS and increased expression
of GPX3 compared to tumors with a low frequency of
leukemic stem cells. This study demonstrated that GPX3
levels positively correlated with poor prognostic outcome in
AML patients [68]. Glioma stem cells within the tumor mass
have low levels of cellular ROS, although they are located in a
hypoxic environment. A proposed molecular mechanism of
this phenomenon was the significantly upregulated expres-
sion of peroxiredoxin 4 (PRDX4) in glioma stem cells [69].

Evidence is indicating that low ROS levels in CSCs
result from the intrinsic characteristics of CSCs. Cell surface
markers of CSCs, including CD44 and CD13, are found to
be involved in ROS regulation. Ishimoto et al. demonstrated
that a variant isoform of CD44 (CD44v) can bind to the
cystine/glutamate exchange transporter xCT and activates
cysteine uptake to enhance GSH synthesis in gastrointestinal
CSCs [70]. The expression of antioxidant genes such as
GPX1/2 was significantly increased in CD44+ gastric tumor
cells. In addition, knockdown of CD44 in mice led to
ROS increase, p38MAPK activation, and cellular senescence
that are related to p21 expression. In a subsequent study,
the same group demonstrated that the number of CD44+
cells increased with neoadjuvant chemotherapy in head and
neck squamous cell carcinoma (HNSCC) patients. These
CD44+ undifferentiated cancer cells displayed high xCT
expression, GSH upregulation, and low cellular ROS levels.
Ablation of xCT by siRNA or sulfasalazine treatment (xCT-
mediated cystine transport inhibitor) induced differentiation
of HNSCCCSCs both in vitro and in vivo [71]. CD13 has been
identified as a surface marker for liver CSCs. In liver cancer
cell lines including Huh7 and PLC/PRF/5, CD13 positive cells
predominated the SP fraction and were mainly in the G0/G1
phase of the cell cycle. Additionally, resistance to anticancer
drugs or radiation in the CD13 positive cell fraction was
much higher than that observed in the CD13 negative cell
fraction. Direct comparison of ROS levels between the two
cell fractions revealed that the CD13 positive cell fraction
contains lower levels of ROS and expresses higher levels
of GCLM [72]. In another study by the same group, CD13
expression reduced transforming growth factor-𝛽 (TGF-𝛽)

induced ROS production and promoted survival of liver
CSCs [73].

It has been demonstrated that signaling pathways
involved in ROS regulation of normal stem cells also play
a role in CSC biology. The nuclear expression levels of
FoxO3a was high in chronic myeloid leukemia-initiating
cells, and the transplantation of leukemic stem cells derived
from foxo3a knockout mice significantly reduced their ability
to cause myeloid leukemia in an animal model [74]. This
study also revealed that TGF-𝛽 is a crucial regulator of
FoxO3a activity. In the SP of MCF-7 breast cancer cells,
activation of the PI3K/mammalian target rapamycin (mTOR)
signaling pathway was important for tumorigenecity of these
CSCs, and knockdown of PI3K or mTOR led to ablated
tumorigenecity [75]. When CD133+/CD44+ prostate cancer
cells were grown in sphere-forming conditions, activated
PI3K/AKT signaling was found to be critical for maintaining
CSCs [76]. CD44+/CD24−or low cells isolated from breast
cancer cell lines and breast cancer patient specimens were
radioresistant, and this resistant phenotype was associated
with ATM signaling activation [77].

6. NRF2 as a Key Molecule for
Redox Homeostasis

In 1990, Rushmore and Pickett discovered the enhancer
sequence in the rat gsta2 gene promoter as a response element
to 𝛽-naphthoflavone and t-butylhydroquinone (t-BHQ) and
named it antioxidant responsive element (ARE) [78]. Subse-
quent studies revealed that ARE is commonly involved in the
transcription of multiple antioxidant and detoxifying genes,
including glutamate-cysteine ligase (GCL), glutathione S-
transferase (GST), and NAD(P)H quinone oxidoreductase-
1 (NQO-1) [79, 80]. Based on sequence homology between
ARE and MAF-recognition element (MRE), further studies
hypothesized that small MAF and bZIP cap’n’collar (CNC)
transcription factors may interact with ARE [81, 82]. Among
bZIP CNC transcription factors, NRF2 was found to play a
crucial role in ARE regulation, in which inducible expression
of NQO1 and GST was ablated in t-butylhydroxy anisole-
treated nrf2 null mice, in contrast to the observation in wild
type mice [83]. After this report, numerous studies have
elucidated a wide spectrum of protective effects of NRF2
signaling against various stressors. For example, sensitivity
to benzo[a]pyrene-induced carcinogenesis was significantly
greater in nrf2-knockout mice than in wild type mice [84].

To account for the protective effects of Nrf2, comparative
analyses of gene expression patterns were carried out in
nrf2-deficient and wild type mice following treatment with
Nrf2 activators. In global gene analysis of dithiolethione-
administered mouse livers, Nrf2 was found to govern
the expression of xenobiotic-detoxifying enzymes, GSH-
generating systems, antioxidant proteins, and the molec-
ular chaperone-26S proteasome [85]. Similarly, Hu et al.
demonstrated that detoxifying enzymes, antioxidants, drug
transporters, stress response proteins, and some signaling
molecules serve as Nrf2-dependent and isothiocyanate-
inducible genes in mouse liver [86]. It has now been firmly
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established thatNRF2 regulates divergent genes to coordinate
xenobiotic detoxification and redox homeostasis [85, 87–89].
In its function as a regulator of cellular redox homeostasis,
NRF2 elevates the expression of GCL and the cysteine
transporter xCT to increase cellular GSH levels. NRF2 also
enhances regeneration of reduced GSH by upregulating
GPX and GSH reductase (GSR). Expression of thioredoxin
1 (TXN1), thioredoxin reductase 1 (TXNRD1), and perox-
iredoxin 1/6, which can reduce oxidized protein thiols, is
also under the control of NRF2. In addition, the levels of
NADPH, a cofactor of many antioxidant enzymes such as
GSR and TXNRD, can be increased by NRF2 (reviewed
in Hayes and Dinkova-Kostova [90]). The expression of
multiple NADPH generating enzymes such as G6PDH and
6-phosphogluconate dehydrogenase is upregulated by NRF2.
Additionally, the role of NRF2 in ABC transporter expression
for xenobiotic detoxification is notable. The basal expression
level of Mrp1 was relatively lower in nrf2-deficient fibroblasts
than that in wild type fibroblasts, and the treatment of
mice with Nrf2 activating diethyl maleate increased Mrp1
expression in the liver [91]. Levels of MDR1, MRP2/3, and
BCRP were elevated following oltipraz treatment in pri-
mary human hepatocytes [92]. Sulforaphane (SFN) treatment
enhanced the levels ofMDR1, BCRP, andMRP2 in the blood-
brain barrier of rats [93]. Our recent study showed that
genetic activation of NRF2 via KEAP1 silencing increases the
expression ofMDR1,MRP2/3, and BCRP in human proximal
tubular epithelial cells [94]. As direct molecular evidence,
functional AREs have been identified in human MRP3 [95]
and BCRP genes [96].

Kelch-like ECH-associated protein 1 (KEAP1), a cysteine-
rich actin-binding protein, is the main negative regulator
of NRF2 activity [83, 97]. Under quiescent conditions,
NRF2 remains inactive by forming a complex with KEAP1
in the cytoplasm. NRF2 is subject to ubiquitination and
KEAP1-induced proteasomal degradation through the Cullin
3 (CUL3) based E3 ligase. KEAP1 has three major domains
as follows: (i) The BTB domain is associated with KEAP1
homodimerization, (ii) the IVR domain plays a role in
regulation ofKEAP1 activity, and (iii) theKelch/DGRdomain
mediates binding with NRF2 [83, 90, 98–101]. The binding
of NRF2 with KEAP1 has been described as the “hinge and
latch” model, where one molecule of NRF2 interacts with the
Kelch/DGR domains of the KEAP1 dimer through conserved
motifs called ETGE (D/N-X-E-T/S-G-E) and DLG (L-X-X-
Q-D-X-D-L-G) [102–104]. In these reports, it was shown that
the binding affinity of the ETGE motif to KEAP1 is much
higher than that of the DLG motif. It has therefore been
shown that “latch” binding of the NRF2 DLG motif is easily
broken by modifications of KEAP1 cysteine residues by ROS
or electrophiles. In turn, disrupted DLG binding of NRF2 to
KEAP1 leads to the blockade of ubiquitination and further
degradation of NRF2, resulting in nuclear translocation of
NRF2. It has been demonstrated that the sulfhydryl groups of
multiple cysteine residues of KEAP1 can be directly modified
by oxidation/reduction or alkylation. In particular, Cys151,
Cys273, and Cys288 were found to be essential for the
regulation of NRF2 activity [99, 104–106]. Mutation of the
Cys273 or Cys288 residue of KEAP1 ablated its ability to

suppress NRF2 activity, leading to accumulation of the NRF2
protein [99, 104].

In addition to KEAP1-mediated stability regulation,
NRF2 activity can be modulated at multiple steps. First, it
is noticeable that NRF2 activity is regulated at the transcrip-
tional step. Functional AREs were identified in the murine
nrf2 gene promoter and were involved in the autoregulation
of NRF2 through transcriptional activation [107]. Moreover,
a single nucleotide polymorphism in the ARE-like sequences
of the human NRF2 promoter was associated with increased
lung cancer susceptibility [108]. Second, it was shown that
NRF2 activity is regulated by posttranslationalmodifications.
Studies indicate that NRF2 activation involves phosphoryla-
tion signaling mediated by multiple kinase pathways such as
MAPK, protein kinase C (PKC), PI3K, and protein kinase
RNA-like endoplasmic reticulum kinase (PERK) [109–111].
Meanwhile, glycogen synthase kinase-3 (GSK-3), a consti-
tutively active serine/threonine kinase, was found to inhibit
NRF2 activity [112]. Last, NRF2 activity is increased by
several intrinsic proteins such as p21 and p62 [113, 114]. For
example, p62, a linker protein of ubiquitinated proteins to
autophagy degradation, binds to the KEAP1 protein and
interferes with the binding of NRF2 to KEAP1, resulting in
NRF2 stabilization.

7. Emerging Role of NRF2 in Cancer Biology

Continuous or fatal stimuli such as toxic chemicals and excess
ROS disrupt cellular homeostasis, causing macromolecular
damage and alterations in cell cycle and growth signaling,
which can eventually result in carcinogenesis. The NRF2
pathway deserved significant attention in the area of cancer
biology because numerous studies have demonstrated that
activation of the NRF2 pathway decreases the sensitivity of
cells to carcinogens [115–117]. For instance, the burden of
gastric neoplasia caused by benzo[a]pyrene was effectively
attenuated by the Nrf2 activator oltipraz in wild type mice,
whereas nrf2 knockout mice did not show any protective
effect of oltipraz [84]. Similarly, the incidence of N-butyl-N-
(4-hydroxybutyl)nitrosamine (BBN) induced urinary blad-
der carcinomawas greater in nrf2 knockoutmice than in wild
type mice, and oltipraz treatment reduced tumor incidence
only in wild type mice [118].

Although it has been firmly confirmed that NRF2 activa-
tion can protect cells against a wide range of toxicants and
stressors, aberrant activation of NRF2 has been associated
with several types of cancers. NRF2 levels were constitutively
elevated in cancer cell lines and tumor samples of the lung,
breast, esophagus, endometrial cancers, and prostate cancers
[119–125]. Molecular mechanisms involved in constitutive
NRF2 activation include the following: (i) somatic mutations
of KEAP1 or NRF2, (ii) epigenetic silencing of the KEAP1
gene, (iii) aberrant accumulation of proteins that compete
with NRF2 for KEAP1 binding, and (iv) oncogene-mediated
overexpression of NRF2 [101, 126]. First, somatic mutations
of KEAP1-NRF2 have been reported in an initial study by
Padmanabhan et al. [127]. This study identified mutations
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in the Kelch/DGR domain of KEAP1 in lung cancer cell
lines as well as lung cancer tissue samples and demonstrated
that these mutant KEAP1 proteins lost their NRF2 repressive
function, which resulted in NRF2 accumulation. Singh et al.
also demonstrated that the Kelch/DGR and IVR domains
of the KEAP1 gene contain multiple somatic mutations and
these mutations were identified in 19% of tumor specimens
from non-small cell lung cancer patients [123]. In gallbladder
cancer, 4 of 13 patients harbored KEAP1 mutations [122].
Shibata et al. reported that NRF2 somatic mutations were
found in 10.7% of primary lung cancer patients and 27.2%
of primary head and neck cancer patients [122]. Notably,
thesemutationswere primarily located in theDLG andETGE
motifs, and eventually led to the loss of a proper interaction
between the NRF2 protein and KEAP1. Second, CpG island
hypermethylation in the KEAP1 promoter resulted in low
KEAP1 expression in lung cancer cell lines and tumor samples
[124].Third, in humanhepatocellular carcinoma, p62 positive
cellular aggregates were found with a frequency of 25%, and
most of these tumors retained higher levels of NRF2 and
its target gene expression [128]. Fourth, oncogenes have also
been shown to play a role in NRF2 signaling. Oncogenic
activation of KRAS (KRASG12D), c-MYC (c-MYCERT12), and
BRAF (BRAFV619E) elevates the transcript levels of NRF2 and
its target gene expression [129].

It is now widely accepted that aberrant activation of
NRF2 can enhance cancer cell survival and growth in oxi-
dizing tumor environments, and further promote chemo/
radioresistance. Indeed, the prognosis of cancer patients
negatively correlated with NRF2 levels in the tumor [122,
130]. The favorable effect of NRF2 overexpression on tumor
survival and growth can be attributed to the increase in
NRF2 target antioxidant proteins and their counteractive
effect on oxidative stress. For instance, GSH, which is a
direct target molecule of NRF2, has been shown to be critical
for cell proliferation [131, 132]. In addition to its antioxi-
dant contribution, Mitsuishi et al. provided direct evidence,
demonstrating that NRF2 alters the cellular metabolism in
relation to anabolic pathways to accelerate cell proliferation
[133]. Multiple metabolic genes, such as those involved
in the pentose phosphate pathway, were upregulated by
NRF2 through ARE, and these changes promoted purine
synthesis, glutamine metabolism, and NADPH production
for enhanced cell proliferation.

Constitutively high levels of NRF2 have been associated
with chemoresistance as well as radioresistance. Cancer cells
with high NRF2 activity were less sensitive to cytotoxic
chemotherapeutics such as cisplatin, doxorubicin, and 5-
fluorouracil through facilitated detoxification of anticancer
agents and enhanced antioxidant capacity [101]. It is there-
fore hypothesized that NRF2 inhibition can enhance the
chemosensitivity of cancers. NRF2 siRNA could suppress
cancer resistance to cisplatin, topoisomerase inhibitors, and
5-fluorouracil [101, 122, 134, 135]. Cancer cells with constitu-
tively high NRF2 were protected against 𝛾-radiation induced
toxicity. Moreover, siRNA-mediated inhibition of NRF2 in
non-small cell lung cancer cell lines substantially enhanced
radiosensitivity [136]. Additionally, NRF2 expression was

increased during the acquisition of chemoresistance. In our
previous study, doxorubicin-selected ovarian cancer cells
demonstrated increased expression of NRF2 and its target
genes forGSH synthesis, andNRF2 inhibition in this resistant
cell line could restore doxorubicin sensitivity [137].

Our understanding of the role of NRF2 in cancer cell sig-
naling has expanded. In particular, the relationship between
oncogenic signaling and NRF2 is noteworthy. As men-
tioned earlier, activation of oncogenes such as KRAS and c-
MYC increased the expression of NRF2 presumably through
oncogene-mediated ROS increase, and this phenomenon
appears to contribute to the maintenance of reduced redox
homeostasis in cancer cells [129]. In ERBB2 (Her2/Neu) over-
expressing ovarian cancer cells, the stable silencing of NRF2
repressed ERBB2 expression and its downstream signaling
and retarded tumor growth. Therefore, the inhibition of
NRF2 could sensitize these cells to taxol therapy by repressing
ERBB2 expression [138]. Moreover, NRF2 was shown to be
associated with HIF signaling, which is a critical factor for
tumor angiogenesis. When NRF2 was stably knocked down
in colon carcinoma cell lines, hypoxia-inducible HIF-1𝛼
accumulation was abrogated and consequently, angiogenesis
and tumor growth were significantly suppressed in NRF2
knockdown tumors compared to the control group [139]. In
type 2 papillary renal cell cancer, which is characterized by
loss of the fumarate hydratase gene and consequentmetabolic
alteration, accumulated fumarate was associated with tumor
progression via NRF2 signaling. Fumarate was shown to
modify KEAP1 cysteine residues and elevate NRF2 levels,
which contributed to the growth and progression of type 2
papillary renal cell cancer [140]. These accumulating lines
of evidence suggest that once cells are transformed to the
neoplastic stage, cancer cells utilize NRF2 signaling to adapt
to the stressful tumor environment and to promote survival
and further cancer progression (Figure 2).

8. Involvement of NRF2 Signaling in
Stem Cell Quiescence and Differentiation

There is considerable evidence to suggest that NRF2 plays
a role in normal stem cell biology [141–145]. For example,
NRF2 activation in HSCs plays a critical role in not only the
maintenance of quiescence but also in the determination of
differentiation fate [141, 145]. In Drosophila intestinal stem
cells, constitutive Nrf2 activation sustained quiescence by
reducing the levels of ROS via upregulation of antioxidant
genes such as gclc. However, in the case of KEAP1-mediated
Nrf2 repression, high levels of intracellular ROS facilitated
an ablation of the quiescent state in intestinal stem cells
and age-related degeneration in the intestinal epithelium
[146]. Similarly, low intracellular ROS levels are required
for the maintenance of quiescence in human airway basal
stem cells (ABSCs). When exposed to exogenous ROS,
quiescent ABSCs enter the proliferation stage. Changes in
ROS levels activate the NRF2-Notch pathway, which results
in self-renewal and protection of ABSCs from ROS-induced
hyperproliferation and senescence. Moreover, the quiescent
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Figure 2: Implications of NRF2 signaling in cancer. NRF2 coordi-
nates the expression of genes associated with cellular redox regu-
lation, metabolism, and xenobiotic efflux, and thereby its aberrant
activation promotes cancer cell survival, proliferation, and anti-
cancer drug resistance. GCLM, glutamate cysteine ligase modifier
subunit; GCLC, glutamate cysteine ligase catalytic subunit; NQO1,
NAD(P)H:quinone oxidoreductase 1; SODs, superoxide dismutases;
G6PDH, glucose-6-phosphate dehydrogenase; PGD, phosphoglu-
conate dehydrogenase; ME1, malic enzyme 1, MDRs, multidrug
resistance proteins;MRPs,multidrug resistance-associated proteins;
BCRP, breast cancer resistance protein.

state of ABSCs was maintained by NRF2 activation [147].
In osteoclast progenitor cells, hydrogen sulfide (H

2
S) inhib-

ited human osteoclast differentiation by NRF2-dependent
induction of peroxiredoxin 1 and NQO1. These results
were further confirmed using NRF2 activators including
sulforaphane and t-BHQ [148]. It is also notable that NRF2
participates in the regulation of cell fate determination of
HSCs.Murakami et al. demonstrated that HSCs derived from
KEAP1-deficientmice exhibited preferred differentiation into
the granulocyte-monocyte lineage rather than differentiating
into the erythroid-lymphoid lineage [145].

Up to now, numerous studies have demonstrated that
NRF2 plays a protective role against various stressors in
stem cells. In neural stem cells, overexpression of NRF2
or pharmacological NRF2 activation prevented necrotic
cell death [149]. In an animal study, nrf2-deficient mice
showed defective stem cell function. HSCs from nrf2−/− mice
expressed lower levels of prosurvival cytokines and exhib-
ited spontaneous apoptosis [150]. Ionizing radiation-induced
myelosuppression and mortality were mitigated through
NRF2-mediated Notch signaling activation in HSCs [142].
Similarly, resveratrol-inducedNRF2 expression improved the
survival of cardiac stem cells and consequently regenerated
infarcted myocardium [151, 152]. The heme oxygenase 1
(HO-1) inducer, cobalt protoporphyrin (CoPP) elicited an
antiapoptotic effect on cardiac stem cells via activation of the

ERK-NRF2 pathway [153]. In neural stem cells, NRF2 activa-
tion by melatonin or t-BHQ ameliorated lipopolysaccharide
(LPS) orH

2
O
2
induced cell death [149, 154]. In addition, amy-

loid 𝛽-mediated neural stem cell death could be alleviated by
exogenous NRF2 transduction, which was accompanied by
increased expression of GCLC, NQO-1, andHO-1.This study
also demonstrated that neuronal differentiation of neural
stem cells is enhanced by NRF2 activation [155]. Similar to
neural stem cells, NRF2 has a protective role against hypoxic
and oxidative stress conditions in undifferentiated MSCs.
Treatment of the murine mesenchymal stem cell line with
adrenaline increased the mRNA expression of nrf2, gclc, and
xCT, leading to an increase in GSH levels and the prevention
of ROS-induced cytotoxicity [156, 157].

9. Potential Implication of NRF2 in
CSC Maintenance and Resistance

The role of NRF2 in CSC biology is now beginning to
be unveiled. Similar to the case of normal stem cells, it
was shown that NRF2 contributes to CSC stemness by
maintaining their self-renewal capacity and protecting them
from chemo/radiotherapy. Achuthan et al. established stable
chemotherapy-resistant breast cancer cells and observed that
these cells expressed higher levels of CD133 and OCT-4,
indicating that these cells exhibit CSC phenotype [34]. Of
note, it was shown that ROS levels were relatively low in
these drug-selected cells, presumably due to higher levels
of antioxidant enzymes such as SOD1 and GPX1/2. NRF2
protein stabilizationwas associatedwith high levels of antiox-
idant enzymes. As an underlying molecular mechanism,
diminished proteasome activity and increased p21 levels
appear to stabilize the NRF2 protein in these stem-like cells.
Evidently, p21 knockdown repressed the mammosphere-
forming potential of these stem-like breast cancer cells.
Similarly, a study by Zhu et al. showed the involvement of
NRF2 in glioblastoma stem cells that were isolated from
human surgical glioblastoma specimens. NRF2 knockdown
in glioblastoma stem cells inhibited cell proliferation and
neurosphere formation and further suppressed SOX2 expres-
sion. Moreover, NRF2 knockdown changed the cell cycle
distribution to the G2 phase and significantly attenuated the
tumorigenecity of glioblastoma stem cells [158, 159]. These
results are providing evidence that NRF2 is necessary for
maintenance of the self-renewal capacity of glioblastoma
stem cells.

On the other hand, activation of NRF2 signaling has been
demonstrated in different types of CSC models, including
lung, esophageal, breast, ovarian, and colon CSCs, and this
is closely correlated with themaintenance of low intracellular
ROS levels and chemoresistance of CSCs [160–165]. In lung
and esophageal cancer cells, cigarette smoke condensate
increased the SP as well as BCRP expression, which are
hallmarks of CSCs [165]. Promoter analysis revealed that
BCRP expression was associated with elevated levels of
NRF2, aryl hydrocarbon receptor (AhR), and specificity
protein 1 (SP1). Additionally, this study demonstrated that
mithramycin diminished BCRP expression via repression of
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Figure 3: Potential roles of NRF2 signaling in CSCs. InCSC-like cell
models, NRF2 is activated through multiple molecular mechanisms
in a context-dependent manner. The upregulation of competing
proteins such as p62 and p21, activation of PERK, or repressed
proteasome function were shown to enhance NRF2 activity in
these models. Elevated NRF2 levels in CSCs can contribute to
the maintenance of low ROS by upregulating multiple antioxidant
genes. In addition, NRF2-mediated expression of ABC transporters
elicits efflux of anticancer drugs from cancer cells. Overall, activated
NRF2 signaling facilitates CSCs survival and stress resistance, and
consequently, it can be suggested that CSCs with high NRF2 activity
play a crucial role in tumor recurrence and further progression.

NRF2, AhR, and SP1, and thereby inhibiting the expression
of genes associated with CSC-related pathways, resulting in
reduced proliferation and tumorigenecity. Similarly, it was
reported that lung cancer SP cells exhibited high levels of
NRF2 and BCRP expression. These SP cells were highly
tumorigenic and possessed self-renewal capacity, compared
to non-SP cells [164]. Emmink et al. performed a proteome
analysis on collected secretome from highly tumorigenic
CSCs and their corresponding nontumorigenic differentiated
cells, both of which were established from human colorectal
specimens [160]. Subsequent bioinformatic analysis revealed
that the CSC secretome contained a large amount of proteins
associated with cell survival and protein quality control,
compared to differentiated tumor cells. Notably, the CSC
secretome contained an NRF2 antioxidant and detoxifying
protein signature, in that it included elevated levels of
GCLC, GPX2/3, and TXNRD1. This study provided novel
evidence that CSCs secrete NRF2 target antioxidant proteins
to counteract extracellular stressors and chemotherapeutics.
In patients with ovarian clear cell carcinoma, the expression
of the CSC maker aldehyde dehydrogenase-1 (ALDH1) was
strongly correlated with an advanced clinical stage and
reduced progression free survival [161]. Ovarian clear cell
carcinoma cells with high ALDH1 expressionmaintained low
levels of ROS compared to ALDH-low cells, and these cells
were shown to express higher levels of NRF2 and its target
genes.

Two recent studies have demonstratedNRF2 activation in
sphere cultures of breast cancer cells, that is one of models of
CSCs. Wu et al. showed that mammospheres derived from
MCF7 and MDA-MB231 breast cancer cell lines exhibited
lower ROS levels compared to their monolayer counterparts.
They also showed that levels of NRF2 and target genes such

as NQO1 and GCLM were elevated in mammospheres [163].
Similarly, our group has shown substantially elevated NRF2
protein levels along with increased expression of antioxidant
genes (e.g., HO-1 and GPX2) and drug efflux transporters
(e.g., MRP2 and BCRP) in sphere cultures of breast cancer
cells. NRF2 accumulation was also observed in sphere-
cultured ovarian and colon cancer cells. However, shRNA-
mediated downregulation ofNRF2 led to decreased chemore-
sistance of mammospheres presumably due to reduced levels
of antioxidant genes and drug transporters. High ROS levels
in NRF2 knockdown mammospheres caused sphere growth
retardation and apoptosis. Coherently, ablation of ABC
transporter induction in NRF2 knockdown mammospheres
sensitized to anticancer agents [162]. Additionally, this study
provided evidence that increased NRF2 protein expression in
mammospheres can be linked to 26S proteasome reduction
and p62 accumulation. In particular, knockdown of p62 in
MCF7 mammospheres significantly attenuated NRF2 eleva-
tion.

Surviving dedifferentiated breast cancer cells after chem-
otherapy treatment retained high levels of NRF2 activation,
similar to other CSCs. However, NRF2 activation was medi-
ated by a noncanonical pathway. Levels of PERKwere high in
dedifferentiated cancer cells and this in turn phosphorylated
and activated NRF2 signaling to maintain low cellular ROS
levels and to express ABC transporters. In agreement with
these findings, clinical observations revealed that the PERK
pathway gene signature is related to chemoresistance and
reduced patient survival [166].

10. Concluding Remarks

Recent studies have started to uncover the role of ROS signal-
ing in the biology of CSCs, which is related to tumorigenecity,
tumor progression, and relapse. Expression of the transcrip-
tion factor NRF2, a master regulator of antioxidant genes
expression, is increased in different models of CSCs, and this
elevation is likely to promote CSC maintenance and survival
in an oxidizing tumormicroenvironment. In addition,NRF2-
mediated overexpression of ABC transporters, particularly
the CSC marker BCRP, may play a critical role in the
multidrug resistance of CSCs.These findings, combined with
the increasing evidence showing the alteration of KEAP1-
NRF2 signaling in cancer cells, suggest a novel role of NRF2
in CSC maintenance and survival (Figure 3).

One important question that arises from the current stud-
ies is whether it is possible to design CSC-targeted therapies
through regulation of theNRF2 pathway and its related redox
homeostasis inCSCs. Recent studies provide several potential
clues for addressing this question: the naturally occurring
alkaloid brusatol could reduce the growth and chemoresis-
tance of breast CSCs [163]. Treatment ofmammospheres with
brusatol elevated ROS levels and promoted taxol-induced
growth retardation and cell death. The NRF2 repressive
mechanism of brusatol has not been clearly elucidated, but it
appears to be independent of KEAP1-mediated degradation
[167]. In addition to brusatol, natural compounds such as
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chrysin, apigenin, luteolin, and trigonelline are known to
inhibit NRF2 signaling in several types of cancer cells [102,
168–170] and therefore the development of NRF2 inhibitors
with characterized modes of action will enable efficient tar-
geting of the redox homeostasis system as well as multidrug
resistance systems in CSCs.
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