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Abstract

Nanoparticles can be used as carriers to transport biomolecules like proteins and synthetic

molecules across the cell membrane because many molecules are not able to cross the cell

membrane on their own. The uptake of nanoparticles together with their cargo typically

occurs via endocytosis, raising concerns about the possible degradation of the cargo in the

endolysosomal system. As the tracking of a dye-labelled protein during cellular uptake and

processing is not indicative of the presence of the protein itself but only for the fluorescent

label, a label-free tracking was performed with the red-fluorescing model protein R-phycoer-

ythrin (R-PE). Four different eukaryotic cell lines were investigated: HeLa, HEK293T, MG-

63, and MC3T3. Alone, the protein was not taken up by any cell line; only with the help of

calcium phosphate nanoparticles, an efficient uptake occurred. After the uptake into HeLa

cells, the protein was found in early endosomes (shown by the marker EEA1) and lyso-

somes (shown by the marker Lamp1). There, it was still intact and functional (i.e. properly

folded) as its red fluorescence was detected. However, a few hours after the uptake, proteol-

ysis started as indicated by the decreasing red fluorescence intensity in the case of HeLa

and MC3T3 cells. 12 h after the uptake, the protein was almost completely degraded in

HeLa cells and MC3T3 cells. In HEK293T cells and MG-63 cells, no degradation of the pro-

tein was observed. In the presence of Bafilomycin A1, an inhibitor of acidification and protein

degradation in lysosomes, the fluorescence of R-PE remained intact over the whole obser-

vation period in the four cell lines. These results indicate that despite an efficient nanoparti-

cle-mediated uptake of proteins by cells, a rapid endolysosomal degradation may prevent

the desired (e.g. therapeutic) effect of a protein inside a cell.
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Introduction

The transport of (bio-)molecules into cells is an ongoing issue in modern biomedical research.

Many drug targets are located inside the cell [1], and the delivery of nucleic acids for gene

delivery (DNA: transfection; siRNA and μRNA: gene silencing) requires the introduction of

these biomolecules into a cell [2]. As many molecules, including proteins, are not able to cross

the cell membrane on their own, suitable carriers are necessary [3]. Liposomes, dendrimers,

polymers, and inorganic nanoparticles are prominent examples [4–12].

Prominent inorganic nanoparticles for drug delivery are noble metals [13, 14], iron oxide

[15, 16], quantum dots [17, 18], and calcium phosphate [19–22]. Calcium phosphate nanopar-

ticles have been used to transport different synthetic molecules and biomolecules like nucleic

acids, proteins, or antigens across the cell membrane [20, 22–35]. They combine several advan-

tages because they are already present in the body as mineral of human hard tissue (bone and

teeth) [19]. Thus, they are highly biocompatible (unless the dose is very high, leading to a high

intracellular calcium concentration) [36–39]. They are taken up by cells within a few hours

[40], dissolved in the lysosome and finally excreted in ionic (i.e. dissolved) form [39]. As most

other kinds of nanoparticles [8, 41–46], calcium phosphate nanoparticles are taken up by

endocytosis, more specifically by micropinocytosis [47], leading to a delivery into endosomes

and subsequently into lysosomes [47]. Generally, a degradation by an acidic environment and

by proteases and nucleases occurs in lysosomes [48]. This has raised concerns about the fate of

a biomolecule after cellular uptake because its integrity and function may be damaged after

lysosomal processing [49–52].

Experiments where pathway and fate of a nanoparticle or a biomolecule are tracked are typ-

ically based on fluorescently labelled nanoparticles or biomolecules [53, 54]. For this, a fluores-

cent dye is attached either to the nanoparticle or to the biomolecule. However, this approach

has its limitations as strictly speaking, only the dye is tracked and not the biomolecule. Neither a

separation of the biomolecule from the nanoparticle nor the integrity and function of the bio-

molecule can be probed by this approach. Therefore, we have chosen a fluorescent protein (R-

phycoerythrin) to realize a label-free uptake into cells, with and without the help of nanoparti-

cles. This eliminates the need for fluorescent labelling, and also probes the functional integrity

of the protein. Thus, the fate of the protein inside a cell can be followed. It also permits to track

the pathway inside the cell after endocytotic uptake. Four commonly applied eukaryotic cell

lines were used in this study: HeLa (human epithelial cell line), HEK293T (human epidermial

cell line), MG-63 (human osteosarcoma cell line), and MC3T3 (mouse osteoblast cell line).

Materials and methods

Synthesis

The synthesis of calcium phosphate/polyethyleneimine/R-phycoerythrin (CaP/PEI/R-PE)

nanoparticles was carried out as follows. Aqueous solutions of calcium nitrate (6.25 mM;

Merck p.a.) and diammonium hydrogen phosphate (3.74 mM; Merck) were rapidly mixed

by pumping them into a glass vessel with a peristaltic pump. The pH of both solutions was

adjusted before with NaOH (0.1 M; Merck) to 9. A few seconds after mixing, 1 mL of the

formed calcium phosphate nanoparticle dispersion was taken with a syringe and rapidly

mixed with 0.2 mL of a polyethyleneimine solution (PEI; Sigma-Aldrich, MW 25 kDa; 2 mg

mL-1) to achieve the colloidal stability of the nanoparticle dispersion. The positive zeta poten-

tial (+22 mV) indicates a successful stabilization with PEI.

1 mL of this dispersion was mixed with 1 mL of the dissolved protein phycoerythrin (R-PE;

1 mg mL-1) under thorough vortexing. The particles were separated from dissolved counter-
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ions and non-adsorbed molecules by centrifugation (21,000 g; 30 min; 4˚C) with subsequent

redispersion in the same volume of water with a sonotrode (Hielscher UP50H; sonotrode 3;

cycle 0.8, amplitude 60%, 30 s). All inorganic salts were of p.a. quality. Ultrapure water (Pure-

lab ultra instrument from ELGA) was used for all preparations. Phycoerythrin (R-PE from

Rhodomonas) was obtained from Molecular Probes1 by LifeTechnologiesTM (Eugene, Ore-

gon, USA), dissolved at 4 mg mL-1 in ammonium sulphate/potassium phosphate buffer at pH

7.0, and used as obtained. All dilutions of this R-PE solution were done with pure water. For

loading the calcium phosphate nanoparticles as described above, we have diluted R-PE with

pure water to 1 mg mL-1. All syntheses were carried out at room temperature.

In the final dispersion, the calcium concentration as determined by atomic absorption spec-

troscopy was 5.0 μg mL-1. Assuming the stoichiometry of hydroxyapatite, Ca5(PO4)3OH,

spherical particles (radius from SEM 75 nm), and the density of hydroxyapatite (3.14×103 kg

m-3), this corresponds to a particle concentration of 2.27×109 particles mL-1, computed with

the following parameters: Concentration of hydroxyapatite: 12.6 μg mL-1, volume of one parti-

cle: 1.77×10−21 m3, weight of one particle 5.54×10−18 kg. The amount of R-PE on the dispersed

particles was determined by UV spectroscopy after removal of non-adsorbed protein by centri-

fugation. About 90% of the protein was adsorbed onto the particles, leading to a concentration

of R-PE of 443 μg mL-1 in the nanoparticle dispersion. This corresponds to about 4.9×105 R-

PE molecules per nanoparticle, based on M = 2.4×105 g mol-1, m = 3.99×10−22 kg per R-PE

molecule, and 1.11×1015 R-PE molecules per mL. With a surface area of each nanoparticle of

7.07×10−14 m2 (70,700 nm2), each R-PE occupies about 0.14 nm2. This indicates that the load-

ing of the nanoparticles with R-PE is rather high, exceeding a monolayer on the particle sur-

face, probably by incorporation into the PEI polyelectrolyte shell. This stock solution of CaP/

PEI/R-PE nanoparticles was used for all cell experiments.

Characterization

Dynamic light scattering and zeta potential determinations were performed with a Zetasizer

Nano series instrument (Malvern Nano-ZS, laser wavelength λ = 532 nm) using the Smolu-

chowski approximation and taking the data from the Malvern software without further cor-

rection. The particle size data refer to scattering intensity distributions (z-average). Scanning

electron microscopy was performed with an ESEM Quanta 400 instrument (FEI), equipped with

energy-dispersive X-ray spectroscopy (EDX; Genesis 4000, SUTW-Si(Li) detector) operating in

a high vacuum with gold/palladium-sputtered samples. Centrifugation was performed at 4˚C

with a Heraeus Fresco 21 centrifuge. The amount of calcium was determined by atomic absorp-

tion spectroscopy (AAS) with an M-Series AA spectrometer (ThermoElectron, Schwerte). The

concentration of nanoparticles in the dispersion was estimated using the calcium concentration

as outlined below. The amount of R-PE on the nanoparticles was determined by quantitative

UV spectroscopy, using a calibration curve at λ = 497 nm.

Antibodies and reagents

Mouse anti-Lamp1 (sc-20011) was purchased from Santa Cruz Biotechnology. Mouse anti-

EEA1 (610457) was obtained from BD Transduction Laboratories. Alexa Fluor1 633 second-

ary antibodies, Alexa Fluor1 660 phalloidin and DAPI were purchased from Thermo Fisher

Scientific. Hoechst33342 and Bafilomycin A1 were obtained from Sigma.

Cell culture

HeLa cells (human epithelial cervical cancer cells) were cultured in DMEM, supplemented

with 10% fetal bovine serum (FBS) at 37˚C (5% CO2, humidified atmosphere) according to
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standard cell culture protocols. HEK293T cells (human epidermal kidney cells) and MG-63

(human bone osteosarcoma cells) were cultured in DMEM without phenolred, supplemented

with 10% fetal bovine serum (FBS), 100 U mL-1 penicillin and streptomycin, 1×GlutaMax

(Gibco, Life Technologies, Carlsbad, California), 1×sodium pyruvate (Gibco, Life Technolo-

gies, Carlsbad, California) at 37˚C (5% CO2, humidified atmosphere) according to standard

cell culture protocols. MC3T3-E1 (mouse osteoblastic cell line) were cultured in αMEM, sup-

plemented with 10% fetal bovine serum (FBS), 100 U mL-1 penicillin and streptomycin, 1%

NEAA (Gibco, Life Technologies, Carlsbad, California) at 37˚C (5% CO2, humidified atmo-

sphere), according to standard cell culture protocols.

12 h before the incubation with nanoparticles, the cells were trypsinized and seeded in cell

culture dishes with 5�104 cells per well in 0.5 mL medium. The incubation with either nanopar-

ticles (Ca/PEI/R-PE) or dissolved R-PE protein was carried out as follows. The particle disper-

sion (CaP/PEI/R-PE) was added to the growth medium in the ratio of 1:11 (50 μL to 500 μL).

This gave a concentration of 2.06×108 nanoparticles per mL, 1.13×108 nanoparticles per well

and about 2260 nanoparticles per cell. As control, cells were either incubated with dissolved

protein alone (R-PE; 443 μg mL-1; 50 μL) or left untreated. After 3 or 6 h of incubation, the cell

culture medium was removed and the cells were washed three times with Dulbecco’s phos-

phate-buffered saline (DPBS). After this, only nanoparticles and proteins that were either

taken up by the cells or strongly adsorbed on the cell surface remained. The cells were fixed

with 4% (w/v) para-formaldehyde for immunofluorescence staining. For live cell imaging

experiments, the cells were seeded on 8-well chambered cell culture slides (Falcon™) and in-

cubated with CaP/PEI/R-PE nanoparticles as above. After 6 h of incubation, the cells were

washed with pre-warmed (37˚C) DPBS and supplied either with fresh medium alone (control)

or medium containing 100 nM Bafilomycin A1. The R-PE intensity was then monitored by

live cell imaging over a period of 20 h.

Immunofluorescence

Cells were fixed with 4% (w/v) para-formaldehyde for 20 min, washed twice with DPBS and

permeabilised using 0.1% (v/v) Triton X-100 in DPBS for 10 min. For indirect immunofluo-

rescence, samples were washed with DPBS and incubated in blocking solution (3% (v/v) BSA,

0.1% (v/v) Triton X-100, 0.1% (v/v) saponin) for 1 h, followed by incubation with the indicated

primary antibodies for 1 h in blocking solution. The cells were washed three times with 0.1%

(v/v) Triton X-100 in DPBS and incubated with the fluorescently labelled secondary antibody

and Hoechst33342 in blocking solution for 1 h. After washing with 0.1% (v/v) Triton X-100 in

DPBS and DPBS alone, the coverslips were mounted on glass slides using ProLong Gold anti-

fade reagent (Thermo Fisher Scientific). For staining of filamentous actin, the fixation, wash-

ing and permeabilisation steps were the same as described above. Afterwards, the cells were

blocked with 1% (v/v) BSA, 0.1% (v/v) Triton X-100, and 0.1% (v/v) saponin for 30 min, fol-

lowed by incubation with 1 unit of Alexa Fluor1 660 Phalloidin (200 U mL-1) per coverslip in

blocking solution for 20 min. Cells were washed three times with 0.1% (v/v) Triton X-100 and

stained with DAPI in DPBS (300 nM) for 5 min. Then, the coverslips were washed with DPBS

and mounted as described above.

Microscopy and image analysis

Phase contrast and wide field fluorescence microscopy was performed on a Keyence Biorevo BZ-

9000 (Osaka, Japan), equipped with filters for DAPI (EX 360/40, DM 400, BA 460/50), TRITC

(R-PE; EX 540/25, DM 565, BA 605/55) and Cy5 (Alexa Fluor1 633 phalloidin; EX 628/40, DM

660, EM 692/40). Images were taken with an S Plan Fluor ELWD 40×/0.60 air objective (Nikon,
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Japan). Confocal laser scanning microscopy (CLSM) was performed on a TCS SP5 AOBS system

equipped with PMT detectors as well as sensitive HyD detectors (Leica Microsystems). The laser

lines used for excitation were Diode 405 nm (DAPI; detection range 410–460 nm), DPSS 561 nm

(R-PE; detection range 570–620 nm), and HeNe 633 nm (Alexa Fluor1 633; detection range

640–720 nm). Images were acquired with an HCX PL Apo 63×/1.4 oil objective.

For the visualization of the distribution of the fluorescent protein within early endosomes

(EEA1) and lysosomes (Lamp1), three independent cell uptake experiments were performed.

30 images per well were taken. The images were processed using the ImageJ software [55] and

Photoshop (Adobe Photosystems). Automated image analysis was performed with CellProfiler

[56] using a self-written pipeline that gave the percentage of R-PE vesicles co-localized with

either Lamp1 or EEA1. Generation of graphs and statistical analysis were performed with

GraphPad Prism (Graph Pad Software).

Bafilomycin A1 chase and time-lapse measurements

The lysosomal degradation chase of nanoparticle-transported R-PE was validated by Bafilomy-

cin A1 (BafA1) treatment. In an eight-chamber well (Falcon), 2.0×104 cells/well were seeded in

400 μL DMEM (1×) supplemented with 10% FBS and 100 U mL-1 Penicillin and Streptomycin

each and incubated for 24 h at 37˚C, 5% CO2. Then, 20 μL of a dispersion of CaP/PEI/R-PE

nanoparticles were added to the first row of the eight-chamber well, while 20 μL of dissolved

R-PE (443 μg mL-1) were added to the second row. This gives a concentration of 1.08×108

nanoparticles per mL (dilution 1:21), 4.53×107 nanoparticles per well and about 2,260 nano-

particles per cell. After 6 h of incubation, the cells were washed with pre-warmed (37˚C) DPBS

twice and the lysosomal degradation chase was started by adding fresh (1×) DMEM containing

100 nM BafA1 in final to two wells of the first and second row of the eight-chamber well, while

the remaining wells received (1×) DMEM without BafA1. Cells were imaged with a Keyence

Biorevo BZ-9000 microscope (Osaka, Japan) and an air objective S Plan Fluor ELWD 40×/0.60

OFN22 Ph2 WD 3.6–2.8 (Nikon, Japan). Images were taken every 30 min over 24 h. For each

well three positions of one well were recorded in three independent experiments. The red fluo-

rescence of the cells was analysed manually in each image with the same illumination parame-

ters. At least 100 cells were counted for each image. The generated data were analysed with the

statistical analysis software Prism.

Results

The red fluorescent phycobilliprotein phycoerythrin (R-PE) is a multimeric protein (240 kDa)

that consists of several disk-like subunits containing up to 10 phycoerythrobillin chromo-

phores which are responsible for its fluorescence [57]. This protein is used in immunoassays

like fluorescence-assisted cell sorting (FACS), flow cytometry, multimer/tetramer applications,

or conjugate labelling chemistry [58–62]. It can also produce singlet oxygen after radiation

and might be used in photodynamic therapy (PDT) [63]. It was also shown to be toxic for

some cell lines by inducing apoptosis by arresting the cell cycle in the S phase [63]. Its auto-

fluorescence (bands at 499, 565 nm and a shoulder at 545 nm) was used here to track the pro-

tein alone and together with the nanoparticles. The fluorescence also served as proof that no

degradation or damage of its functional integrity had occurred in the endolysosomal system.

Calcium phosphate nanoparticles were first coated with the cationic polyelectrolyte PEI

and then loaded with phycoerythrin (R-PE). The particle diameter was determined by scan-

ning electron microscopy (SEM) with 150 nm (Fig 1). The fact that the particles consisted of

calcium phosphate was proven by energy-dispersive X-ray spectrometry (EDX), as shown by

the presence of calcium, phosphate, and oxygen, recorded on SEM images. The particles are
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X-ray amorphous, but we have found crystalline domains in similar calcium phosphate nano-

particles by high-resolution transmission electron microscopy in an earlier study [64].

The dispersion state of particles cannot be derived from scanning electron microscopy

because the removal of the solvent and subsequent drying usually causes agglomeration, as

seen in Fig 1. Therefore, complementary methods that probe the particle diameter in disper-

sion are necessary. Dynamic light scattering (DLS) showed that the nanoparticles were well

dispersed in water. The average particle diameter was 541 nm, indicating a moderate degree of

agglomeration of the individual particles (150 nm) by comparison with the SEM data. The par-

ticles were slightly negatively charged (zeta potential -10 mV), indicating a charge reversal of

the originally cationic CaP/PEI nanoparticles (zeta potential +22 mV) by the adsorption of

negatively charged R-PE (isoelectric point at pH = 4.25 [60]).

HeLa, HEK293T, MG-63, and MC3T3 cells were incubated with the R-PE-loaded nanopar-

ticles, respectively, and in parallel with the dissolved protein alone at the same protein concen-

tration for 3 and 6 h. All cell lines strongly took up R-PE together with the nanoparticles with

an increasing amount from 3 to 6 h. The results for HeLa cells are shown in Fig 2, with equiva-

lent results obtained for the other three cell lines. The protein was not able to cross the cell

membrane alone for any cell line, corroborating earlier results on the nanoparticle-mediated

uptake of (bio)molecules by cells [3, 11, 29, 40]. The nanoparticle-treated cells did not exhibit

any adverse effects due to the presence of calcium or polyethylenimine (PEI), probably due to

the low dose (about 1.1 g μL-1 calcium phosphate in the well). The concentration of polyethyle-

neimine on the purified nanoparticles cannot be directly determined, but based on earlier

quantitative analyses of polymer-coated nanoparticles [65], we estimate its concentration with

1/10 of the calcium phosphate, i.e. to about 0.1 μg mL-1. This is well below the concentration

Fig 1. Representative scanning electron micrograph of R-PE-loaded calcium phosphate

nanoparticles.

https://doi.org/10.1371/journal.pone.0178260.g001
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where cytotoxic effects of PEI have been observed [66]. However, some toxicity of the dis-

solved R-PE alone was observed for HeLa and HEK293T cells (Fig 2, control experiment), in

accordance with earlier observations by Tan et al. [63]. Based on our observations we can con-

clude that the toxicity of R-PE is probably based on an effect occurring from outside the cell.

In contrast, MG-63 and MC3T3 cells were less sensitive to R-PE (data not shown).

To further elucidate the intracellular localization of the nanoparticles loaded with R-PE

after uptake into HeLa cells, we carried out confocal laser scanning microscopy after 6 h of

incubation and subsequent immunostaining for the early endosome-associated protein 1

(EEA1) or the lysosome-associated membrane protein 1 (Lamp1) (Fig 3). The uptake of nano-

particles with R-PE did not change the overall pattern of the endolysosomal system compared

to untreated cells (Fig 3A). The R-PE molecules were found both in the early endosomes and

lysosomes (Fig 3B), supporting the earlier observation that calcium phosphate nanoparticles

are taken up by endocytosis, followed by fusion of the endosome with the degrading lysosome

[47]. Endosome-to-lysosome processing can occur within several minutes up to 3 h [67].

Quantitative analysis of the confocal images showed that about 15% of the R-PE vesicles co-

localized with the early endosome marker EEA1 and about 45% of the R-PE vesicles were

found in lysosomes as shown by co-localization with Lamp1 (Fig 3B). Strikingly, the red fluo-

rescence from R-PE always occurred concentrated to vesicular structures (i.e. inside endo-

somes/lysosomes) and not widely distributed across the cell (i.e. inside the cytoplasm).

No significant amount of R-PE was found inside the cell if the protein was given to the cells

without nanoparticles, indicating the need for a nanoparticle to act as transporter across the

Fig 2. Loading in nanoparticles enables R-PE to enter cells. HeLa cells were incubated with R-PE-loaded nanoparticles (CaP/PEI/

R-PE) or dissolved R-PE for 3 h (top row) or 6 h (center row). Cells were fixed and stained with phalloidin (green; actin filaments) and

DAPI (blue; nucleus). Bottom row: Magnification of the upper images (white boxes; top row): 3 h incubation R-PE/Phalloidin/DAPI for

CaP/PEI/R-PE nanoparticles (left) and 3 h incubation R-PE/Phalloidin/DAPI for R-PE alone (right). All scale bars are 20 μm.

https://doi.org/10.1371/journal.pone.0178260.g002

Endolysosomal protein degradation

PLOS ONE | https://doi.org/10.1371/journal.pone.0178260 June 6, 2017 7 / 17

https://doi.org/10.1371/journal.pone.0178260.g002
https://doi.org/10.1371/journal.pone.0178260


cell membrane. However, there was only little evidence for R-PE not co-localized with early

endosomes or lysosomes in HeLa cells, indicating that it did not escape the lysosome without

irreversible damage to its structure. This is also shown by the fact that the red fluorescence

from R-PE always occurred concentrated to small areas (i.e. inside the endosomes/lysosomes)

and not widely distributed across the cell (i.e. inside the cytoplasm).

To examine if R-PE is able to escape from lysosomes at later time points, we monitored its

fate over time by live cell imaging, first with HeLa cells. After 6 h of incubation with R-PE-

loaded nanoparticles, cells were washed and further cultivated in nanoparticle-free medium.

The red fluorescence of R-PE vanished over time (Fig 4). At no time point, a clear cytoplasmic

distribution of R-PE was observed. This result strongly suggests that R-PE is degraded in

lysosomes. To verify this assumption and to exclude fast escape into the cytoplasm and fast

Fig 3. CaP/PEI/R-PE nanoparticles enter HeLa cells and co-localize with early endosomes and lysosomes. (A) Confocal laser scanning microscopy

on HeLa cells after 6 h of incubation with either CaP/PEI/R-PE nanoparticles or untreated, followed by washing with PBS, fixation and staining with EEA1

(green) or Lamp1 (green) and Hoechst33342 (blue). The overall pattern of early endosomes or lysosomes is not affected by incubation with CaP/PEI/R-PE

nanoparticles. Scale bar, 20 μm. (B) Higher resolution images to analyse the co-localization of R-PE with EEA1 or Lamp1. HeLa cells were treated and

processed as in (A). An enlargement of the boxed area is shown. Diagram on the right: Quantification of R-PE vesicles that are positive for EAA1 or Lamp1.

Data represent mean ± SD from three independent experiments (student’s t-test). **, p<0.01. Scale bar 10 μm.

https://doi.org/10.1371/journal.pone.0178260.g003
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degradation there, we performed the experiment of chasing the HeLa cells in nanoparticle-free

medium with Bafilomycin A1. This is a specific inhibitor of vacuolar-type H+-ATPase that

inhibits the acidification and protein degradation in lysosomes of cultured cells [68]. Indeed,

Fig 4. CaP/PEI/R-PE nanoparticles are degraded in lysosomes after uptake into HeLa cells. (A) R-PE

signal persists after inhibition of lysosomal degradation. HeLa cells were incubated with CaP/PEI/R-PE

nanoparticles for 6 h, washed and chased for the indicated time either in the presence of Bafilomycin A1 or

without any additive (control). The fluorescence signal of R-PE is shown alone or merged with phase contrast

to visualize the cells. Scale bar 50 μm. (B) Quantification of R-PE positive cells from three independent

experiments. Data represent mean ± SD (student’s t-test). *, p<0.05, **, p<0.01, ***, p<0.001.

https://doi.org/10.1371/journal.pone.0178260.g004
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the intrinsic fluorescence of R-PE was preserved over the whole observation time in vesicular

structures (Fig 4).

Bafilomycin chase experiments were also carried out for HEK293T, MG-63, and MC3T3

cell lines under the same conditions and with the same calcium phosphate nanoparticles,

loaded with R-PE. As stated above, the particles were able to transport the R-PE into cells of all

four cell lines (Figs 5–7). Inside HEK293T cells and MG-63 cells, R-PE was not degraded. In

contrast, in MC3T3 cells, the protein was rapidly degraded within 6 h, comparable to HeLa

cells. Bafilomycin A1 prevented the degradation of R-PE in all cases, indicating that the degra-

dation occurred by proteolysis.

Discussion

The delivery of therapeutic molecules with the help of nanoparticles is a major goal of nanome-

dicine [3, 69, 70]. In gene therapy, this is exploited for transfection and gene silencing [5, 6, 8],

in immunology, it is used for vaccination and cell stimulation [71–73], and in tumour therapy,

it is used to deliver therapeutic molecules like cytostatics [4, 74, 75]. Typically, a transport of

these drugs across the cell membrane is desired, and the functional integrity of the drugs must

be assured to preserve the therapeutic effect. For gene delivery and immunology, this concept

works as demonstrated by many successful transfection, gene silencing, and immunization

Fig 5. CaP/PEI/R-PE nanoparticles are not degraded in lysosomes after uptake into HEK293T cells.

There is no degradation of R-PE after cellular uptake as indicated by the persistent fluorescence (control).

HEK293T cells were incubated with CaP/PEI/R-PE nanoparticles for 6 h, washed and chased for the

indicated time either in the presence of Bafilomycin A1 or without any additive (control). The fluorescence

signal of R-PE is shown alone or merged with phase contrast to visualize the cells. Scale bar 50 μm.

https://doi.org/10.1371/journal.pone.0178260.g005
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studies (see, e.g., the references cited above). If nucleic acids were degraded completely within

the lysosome, they would not be able to exert their genetic effect. However, it has been shown

that an early endosomal escape that prevents lysosomal degradation is highly advantageous for

an efficient gene transfer [76–78]. Especially the "proton-sponge effect" induced by cationic

polyelectrolytes like PEI has been discussed to facilitate the endosomal escape [50, 52, 79–81].

This has also been proposed to be the case for calcium phosphate nanoparticles that increase the

osmotic pressure in the lysosome due to dissolution into ions [82].

Red-fluorescing R-PE is taken up by all four investigated cell lines with the help of nanopar-

ticles after 3 to 6 h. After 6 h, the protein is mainly located in early endosomes and lysosomes,

as shown for HeLa cells. From earlier studies, we know that the uptake of calcium phosphate

nanoparticles into HeLa cells mainly occurs by macropinocytosis and endocytosis [47]. Both

pathways first lead into early endosomes which are then fusing with lysosomes where degrada-

tion by digesting proteases and an acidic environment occurs [48]. At least in the case of R-PE

after uptake by HeLa cells and MC3T3 cells, the endosomal escape by increased osmotic pres-

sure due to the presence of PEI and calcium phosphate does not work.

Thus, for these two cell lines R-PE is not escaping from the lysosomes but undergoes endo-

lysosomal degradation. It has been shown that the fluorescence of R-PE does not significantly

change in the pH range between 3.5 and 10 [83]. The pH inside a lysosome is between 4.5 and

Fig 6. CaP/PEI/R-PE nanoparticles are not degraded in lysosomes after uptake into MG-63 cells. There

is no degradation of R-PE as indicated by the persistent fluorescence intensity (control). MG-63 cells were

incubated with CaP/PEI/R-PE nanoparticles for 6 h, washed and chased for the indicated time either in the

presence of Bafilomycin A1 or without any additive (control). The fluorescence signal of R-PE is shown alone

or merged with phase contrast to visualize the cells. Scale bar 50 μm.

https://doi.org/10.1371/journal.pone.0178260.g006
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5 [84], therefore the autofluorescence of R-PE did not disappear due to the low pH but rather

due to a proteolytic decomposition. Furthermore, the calcium phosphate nanoparticle does

not dissolve at neutral pH as shown earlier [37, 39]. In contrast, HEK293T cells and MG-63

cells took up R-PE with nanoparticles, but no degradation occurred, even without Bafilomycin.

This indicates that the fate of a protein and a nanoparticle depends on the individual cell line.

The degradation of R-PE within a few hours in two out of four investigated cell lines points to

differences between the delivery of nucleic acids and proteins with the help of nanoparticles

[85]. The difference may be due to different degradation mechanisms, i.e. nucleases in the case

of DNA and siRNA and proteases in the case of proteins. This deserves further attention, espe-

cially when a nanoparticle-mediated therapeutic delivery of proteins into a cell is desired.

We wish to add that the presented results are only indicative for this special case, i.e. the

transport of R-phycoerythrin by calcium phosphate nanoparticles into these four cell cells.

However, the endocytotic uptake of nanoparticles into cells has also been demonstrated many

times [8, 41, 42, 45, 46, 86–88], including our comprehensive study with 10 different cell lines

and calcium phosphate nanoparticles [82]. Together with earlier proofs for the transport of

biomolecule-loaded calcium phosphate nanoparticles by endocytosis into various cell lines

[37, 39, 40, 47, 82], it is very likely that the described scenario applies also to other situations

where proteins are delivered into cells with the help of nanoparticles.

Fig 7. CaP/PEI/R-PE nanoparticles are degraded in lysosomes after uptake into MC3T3 cells. After

cellular uptake, R-PE is rapidly degraded as indicated by the vanishing fluorescence intensity (control).

MC3T3 cells were incubated with CaP/PEI/R-PE nanoparticles for 6 h, washed and chased for the indicated

time either in the presence of Bafilomycin A1 or without any additive (control). The fluorescence signal of

R-PE is shown alone or merged with phase contrast to visualize the cells. Scale bar 50 μm.

https://doi.org/10.1371/journal.pone.0178260.g007

Endolysosomal protein degradation

PLOS ONE | https://doi.org/10.1371/journal.pone.0178260 June 6, 2017 12 / 17

https://doi.org/10.1371/journal.pone.0178260.g007
https://doi.org/10.1371/journal.pone.0178260


Conclusions

The autofluorescent protein R-phycoerythrin is easily taken up by four different cell lines with

the help of calcium phosphate nanoparticles, but not in dissolved form without nanoparticles.

Our results highlight the fact that following a fluorescent label attached to a biomolecule is not

the same as following the protein (and its integrity) itself. A successful nanoparticle-mediated

uptake of a labelled protein (and other cargo molecules) does not necessarily mean that the

protein is still functional. As the function of a protein inside a cell is often difficult to measure

and to quantify, autofluorescent proteins offer an easy way to study the efficiency of new car-

rier systems for biomolecules.
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