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Sleep apnea is a potentially serious sleep disorder characterised by abnormal pauses in breathing. Electroencephalogram (EEG) signal analysis
plays an important role for detecting sleep apnea events. In this research work, a method is proposed on the basis of inter-band energy ratio
features obtained from multi-band EEG signals for subject-specific classification of sleep apnea and non-apnea events. The K-nearest
neighbourhood classifier is used for classification purpose. Unlike conventional methods, instead of classifying apnea patient and healthy
person, the objective here is to differentiate apnea and non-apnea events of an apnea patient, which makes the task very challenging.
Extensive experimentation is carried out on EEG data of several subjects obtained from a publicly available database. Comprehensive
experimental results reveal that the proposed method offers very satisfactory classification performance in terms of sensitivity, specificity
and accuracy.
1. Introduction: Apnea is a sleep disorder which causes sleep
deprivation and lessens sleep quality. It yields severe headaches,
hypertension, daytime sleepiness, diminished neurocognitive per-
formance and cardiovascular diseases [1, 2]. It is defined by one
or more pauses in breathing or shallow breaths during sleep.
Duration of each pause can vary from a few seconds to several
seconds. Apnea and hypopnea index (AHI) is defined as the
number of occurrences of apnea and hypopnea events per hour of
sleep. Generally, AHI of healthy subject should be <5; 5–15 corres-
ponds to mild; 15–30 is moderate; and more than 30 corresponds
to severe [3]. Polysomnography (PSG) is a type of sleep study
which is used for the diagnosis of sleep apnea. It records the
biophysiological changes occurring during sleep. It monitors body
functions and several signals such as electroencephalogram (EEG),
electro-oculogram (EOG), electrocardiogram (ECG), electro-
myogram (EMG), oro-nasal airflow, ribcage movements, abdomen
movements and oxygen saturation are recorded. Sleep-disordered
breathing events, different sleep stages, arousals in sleep etc., are
annotated by a sleep technologist. AHI is calculated from the
results of PSG study [4].

A sleep technologist is required to monitor and diagnose sleep
apnea events, which is a laborious and costly process. Several resear-
ches have been pursued to develop automatic apnea detection process
utilising different bio-signals including EEG, EOG, ECG and EMG
[5]. Among them, the EEG signal has received much attention. The
reason behind this is EEG signals reflect the electrical activity of
brain, which has a significant relationship with sleep stages and
sleep quality, and apnea events acutely disturb sleep quality.

Most of the methods available in the literature deal with the
task of classifying apnea patients and healthy subjects [5–8]. In
[5], EEG signal is used along with other physiological signals
(EOG and EMG) for scoring sleep stages, and to detect apnea
frames, ECG signal is used. Here, various time- and frequency-
domain feature extraction methods are utilised, namely derivative
dynamic time warping, Fourier and wavelet transform and wave-
form recognition. Instead of using several physiological signals,
only EEG signal is also used to detect sleep apnea as it offers
less computational cost. The detrended fluctuation analysis of
EEG signal is employed in [6] for the purpose of apnea detection.
Feature extraction from different frequency bands of EEG signal is
a popular technique. In [7], quadratic phase coupling in each fre-
quency band is calculated over bispectral density of EEG,
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whereas in [8], energy and variance of each frequency band of
EEG signal are used to detect apnea frames. Instead of differentiat-
ing healthy and apnea subjects, detection of apnea events within an
apnea patient is also an important but difficult task. Duration of ob-
structive sleep apnea event within patient’s overnight EEG data is
detected in [9] utilising the variation in Hilbert spectrum frequency
in particular frequency bands. In [10], the expectancy of identifying
sleep-disordered breathing events within an apnea patient is studied
analysing the characteristics of EEG frequency bands and EMG
signal. In [11], apnea events within an apnea patient are detected
using entropy values computed from each frequency band of
EEG signal. Sub-frame-based features are extracted and feature
variation within a frame is modelled using Rician probability
density function (PDF) and model parameters along with some stat-
istical parameters are used in [12] for apnea detection. However,
inter-band characteristics have not been utilised in these methods.
Moreover, most of the methods [5–8] mentioned above classify
between healthy and apnea subjects, while in real-life applications,
there is also a great demand for an efficient method to discriminate
apnea and non-apnea events of an apnea subject.

The main focus of this research work is to develop an automatic
effective sleep apnea event detection method for apnea subject
based on inter-band energy ratios of frequency band-limited
EEG signals. The study is performed on a standard sleep apnea
database. After pre-processing, the energy of band-limited EEG
signal is computed for each frequency band of EEG. Instead of
using the band energy, inter-band energy ratios are computed
and cascaded to construct the proposed feature set. Finally, the
K-nearest neighbourhood (KNN) classifier is used for apnea and
non-apnea classifications.

2. Proposed method: In the proposed method, frame-by-frame
apnea detection task is carried out on each subject individually.
From given two channel EEG data collected from symmetric
locations, in order to reduce the effect of noise, average values
of the two channels in time domain are considered for feature
extraction in the proposed scheme. Main steps signifying the
proposed method are illustrated in Fig. 1. Pre-processed averaged
EEG data is divided into band-limited signals and features are
extracted from each of them. In lieu of using band features,
inter-band features are calculated and cascaded to detect apnea
events using the KNN classifier.
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Fig. 1 Flowchart of the proposed method
2.1. Pre-processing: The dc offset of an EEG test frame is
eliminated by subtracting the mean value of that frame from each
sample value since other frequency components are the
significant ones. Frame amplitude normalisation is required to
remove undesirable fluctuation in amplitude occurring in different
test frames belonging to the same class. For this purpose, after
mean value subtraction, normalisation of sample values in a test
frame is accomplished with reference to the maximum sample
value of that frame.
2.2. Band-limited signal extraction: When a person is sleeping, due
to pause in breathing, carbon dioxide may build up in the
bloodstream. When this reaches a critical level, it is detected by
chemoreceptors. These receptors signal an alarm to the brain to
wake the sleeping person and breathe in air. As a result, a
transition in sleep stages occurs, which in turn, causes fluctuation
in activity level of various frequency bands of the EEG signal.
Hence, more distinct features can be preserved in frequency
band-limited signals for apnea detection compared with that in
full-band EEG signal. As a result, for apnea event detection,
characteristics of band-limited signals are used instead of
analysing full-band EEG signal. EEG signal is partitioned into
five frequency bands [10] including delta (δ) (0.25–4 Hz), theta
(θ) (4–8 Hz), alpha (α) (8–12 Hz), sigma (σ) (12–16 Hz) and beta
(β) (16–40 Hz). Spectral filtering is done in fast Fourier transform
domain to achieve this division.
2.3. Proposed inter-band energy ratio feature: For classification of
apnea and non-apnea events, a subject-specific classification
scheme based on feature is introduced in this proposed method.
Inter-band energy ratio of band-limited EEG signal, expected to
possess differentiating characteristic for apnea and non-apnea
events, is proposed as the feature.
First, energies of δ, θ, α, σ and β frequency bands are computed.

Energy of the pth band is defined as

Ep =
∑N

n=1

{xp[n]}2, (1)

where p is the band index (i.e. p= 1 to 5 corresponds to five fre-
quency bands); xp[n] is the EEG signal of the pth band and N is
the total sample number of a frame.
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Next, the inter-band energy ratios are computed. The ratios are:
d− u, d− a, d− s, d− b, u− a, u− s, u− b, a− s, a− b
and s− b ratios. The ratio p–q is defined as

Rpq =
Ep

Eq
, (2)

where p≠q; p= 1, 2, 3, 4, 5; q= 1, 2, 3, 4, 5; Ep and Eq correspond
to energies of pth and qth bands of a frame of EEG data, respective-
ly. The calculated features are then cascaded to form the final
feature vector.

Energy contents of EEG signal vary in various frequency bands.
Lower-frequency bands contain the major percentage of energy
during sound sleep (non-apnea event). During apnea, the energy
contents in various frequency bands change significantly with
respect to non-apnea events. It is found that during apnea events,
higher-frequency bands have greater relative energy contribution
than that of lower-frequency bands. A hypothesis can be developed
based on this observation that energy contents of lower-frequency
bands are shifted to higher-frequency bands during apnea events.
With a view to investigate this property of energy shift in apnea
frames, it is proposed to use all the inter-band energy ratios as fea-
tures. Ratio feature offers robustness against random energy
changes in different frames.

Since energy is mainly shifted from lower- to higher-frequency
bands, the energy ratios involving lower- and higher-frequency
bands are supposed to be more significant. Hence five ratios,
namely d− u, d− a, d− s, d− b and u− a are proposed as a
reduced feature set. In the proposed method (Prop.), all the ten
energy ratios are taken as features and in the proposed method
with reduced feature dimension, termed as PRF method, the previ-
ously mentioned five significant energy ratios are used as features.

To present the quality of energy ratio features, 100 EEG frames
for each of the apnea and non-apnea classes obtained from a par-
ticular subject are taken into consideration. Fig. 2 represents the
box plot of five energy ratio values (d− u, d− a, d− s, d− b
and u− a) of the above-mentioned EEG frames. It is vivid from
this figure that majority of the apnea (labelled as ‘A’) and non-apnea
(labelled as ‘N’) frames have distinct energy ratio values. The first
four ratios have much better distinguishability between ‘A’ and ‘N’
cases. It has been observed that distinguishability tends to decrease
for the other ratios.

The frame-wise variation of a particular energy ratio value,
namely d− b ratio, is illustrated in Fig. 3 for 121 apnea and
83
This is an open access article published by the IET under the

Creative Commons Attribution License (http://creativecommons.
org/licenses/by/3.0/)



Fig. 3 Variation of delta-beta energy ratio values for apnea and
non-apnea events

Table 1 Information of the subjects considered in the experiment

Fig. 2 Box plot to show the variation of five energy ratio values for apnea
and non-apnea events
non-apnea frames for a particular subject. It is noted from this figure
that most of the apnea and non-apnea frames possess distinct d− b
energy ratio values. For some EEG frames, overlaps are also
observed in Fig. 3, which are within admissible limit. Depending
on the shifting of energy, apnea and non-apnea frames having
analogous values for a particular energy ratio are supposed to
exhibit distinguishable values for other energy ratios. It is expected
that the proposed inter-band energy ratio features can provide satis-
factory classification performance because of their good feature
quality.
Subject number AHI Total number of frames

UCDDB003 51 788
UCDDB011 8 88
UCDDB020 15 198
UCDDB024 24 390
UCDDB026 14 242

Table 2 GSI and AUC values of different methods

Subject number GSI value AUC value
2.4. Classification: The KNN classifier is used for classification
purpose. Features of the EEG pattern of the test set and
K neighbouring EEG patterns in the training set are used for
computing distance function for the classifier. On the basis of
the K closer patterns’ class labels in the train set, the test set is
classified. Out of several distance functions, in the proposed
method, cosine distance is used. The K value is changed within
a wide range and consistent performance is achieved for all
K values because of better feature quality. A suitable value of
K is selected for classification purpose. M-fold cross-validation
technique is employed for the purpose of performance evaluation.
Prop. PRF Prop. PRF

UCDDB003 0.85 0.85 0.95 0.94
UCDDB011 0.90 0.92 0.95 0.94
UCDDB020 0.95 0.94 0.99 0.99
UCDDB024 0.91 0.92 0.97 0.96
UCDDB026 0.82 0.83 0.92 0.91
mean 0.89 0.89 0.96 0.95
standard deviation 0.05 0.05 0.02 0.03
interquartile range 0.08 0.08 0.03 0.04
3. Results and discussion
3.1. Database and simulation setup: The task of apnea detection
is performed on the publicly available Physionet database [13]
related to some sleep-disordered breathing subjects diagnosed
formerly. In this database, EEG recordings from two channels
(C3–A2 and C4–A1) are available. Both channels are considered
in this research. The sampling frequency of the EEG data is
128 samples/s. Onset time and duration of apnea events,
annotated by a sleep technologist, are mentioned in the database.
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Five subjects with large differences in AHI are considered in this
research for experimental analysis. The average height, weight and
age of the five subjects are 178.6 cm, 99.14 kg and 50.8 year,
respectively. Some more information about the subjects and
the number of frames considered for each subject are shown in
Table 1. For a particular subject, all the apnea frames and equal
number of non-apnea frames are taken into consideration for the
purpose of evaluating the classification performance. Duration of
apnea event is found to vary between 10 and 25 s in most of the
cases. To ensure the fact that a frame consists of only apnea or non-
apnea condition, a frame duration of 10 s is considered in this
experiment.

3.2. Feature quality analysis: The quality of the proposed feature
is analysed on the basis of geometrical separability index (GSI)
which is a standard parameter to understand class separability.
The fraction of a set of data points, having the same classification
labels as those of their nearest neighbours, is defined as GSI. It is
defined as [14]

s =
∑N

i=1 (f (xi)+ f (x′ i)+ 1) mod 2

N
, (3)

where N is the number of points and x′ denotes the nearest
neighbour of x. It is clear that s will approximate to 1 when a set
of data points having opposite classification labels reside in
clusters which are well-separated. The index will decrease when
the data points having opposite classes start to overlap defining
poorly-separated clusters. Hence, higher GSI value defines better
quality feature.

GSI values of the proposed method (Prop.) and PRF method are
represented in Table 2. It is clearly observed from this table that
both the proposed method and PRF method have higher GSI
values. Thus, the proposed feature performs better in classifying
apnea and non-apnea events. The area under the receiver operating
characteristic (ROC) curve (AUC) is a measure of how well a par-
ameter can distinguish between two diagnostic groups (diseased/
normal). Higher AUC value indicates better classifier performance.
The AUC values computed for the methods with the KNN classifier
are represented in Table 2. It is observed that both the methods have
higher AUC values.
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3.3. Classification result: The performance of the proposed method
is evaluated using standard measures such as accuracy, sensitivity
and specificity, which are defined as

accuracy = TP+ TN

TP+ TN+ FP+ FN
× 100 (4)

sensitivity = TP

TP+ FN
× 100 (5)

specificity = TN

TN+ FP
× 100, (6)

where TP is the true positive (apnea detected as apnea); FP is the
false positive (non-apnea detected as apnea); TN is the true
negative (non-apnea detected as non-apnea); and FN is the false
negative (apnea detected as non-apnea).
Table 3 Comparison of apnea detection results for different channel data

Channel number Sensitivity,% Specificity,% Accuracy,%

Prop. PRF Prop. PRF Prop. PRF

C3–A2 84.96 84.63 90.88 91.61 87.92 88.12
C4–A1 89.37 88.46 92.20 90.69 90.78 89.57
average data 90.39 89.70 94.04 93.22 92.21 91.46

Table 4 Comparison of classification results for different classifiers

Classifier Prop. PRF

Sens. Spec. Acc. Sens. Spec. Acc.

KNN 90.39 94.04 92.21 89.70 93.22 91.46
support vector machine 91.10 84.81 87.95 90.76 80.99 85.87
linear discriminant
analysis

90.74 89.42 90.08 93.39 72.73 83.06

Naïve Bayes 90.74 89.42 90.08 91.28 82.31 86.80

Table 5 Comparison of classification results for different distance types

Distance Average accuracies,%

Prop. PRF

Euclidean 89.11 89.75
Cityblock 89.45 89.54
Cosine 92.21 91.46
Correlation 92.21 88.06

Table 6 Performance comparison among various methods of apnea event detectio

Subject number Sensitivity,%

[8] [11] [12] Prop. [8]

UCDDB003 87.31 79.19 81.22 87.56 88.58
UCDDB011 86.36 90.91 86.36 88.64 72.73
UCDDB020 82.83 84.85 86.87 96.97 94.95
UCDDB024 85.13 92.31 91.28 92.82 90.77
UCDDB026 85.95 80.99 85.95 85.95 90.08
mean 85.52 85.65 86.34 90.39 87.42
standard deviation 1.70 5.83 3.57 4.47 8.55
interquartile range 2.05 10.72 3.20 6.70 7.20
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Classification results obtained by averaging the individual
sensitivity, specificity and accuracy of the five mentioned subjects
for different channel data for the proposed method (Prop.) and
PRF method are reported in Table 3 for leave-one-out cross-
validation scheme. It is observed from this table that, instead of
considering single channel, if the average (avg.) data of the two
channels (C3–A2, C4–A1) are considered for feature extraction,
better classification performance is achieved. In method PRF,
only five features are used compared with the ten features of the
proposed method. Hence, the computational complexity is
reduced a bit which can be helpful in real-time application. It is
observed from Table 3 that the performance of the PRF method
is slightly better in one case and descends slightly for the other
two cases with respect to the proposed method.

The average classification results for the proposed method and
PRF method using different classifiers are represented in Table 4
for leave-one-out cross-validation scheme. It is observed from
this table that the KNN classifier gives better performance.

The average classification results for different distance functions
of KNN classifier are reported in Table 5 for leave-one-out cross-
validation scheme. It is observed from this table that the classifica-
tion result does not depend much on distance function but the
cosine distance gives comparatively better result.

The performance comparison of the proposed method with the
existing methods reported in [8, 11, 12] is provided in Table 6
for leave-one-out cross-validation scheme. In [8], energy and
variance of each frequency band of EEG data are used as features
to distinguish between controls and patients. The method reported
in [11] utilises entropy values obtained from five frequency bands
of EEG data to detect apnea events. The method reported in [12]
utilises sub-frame-based feature extraction for apnea detection,
which involves huge computational burden in comparison
with the proposed method, where no sub-framing is performed.
Moreover, the number of features used in [12] is also much
higher in comparison with that used in the proposed method (four
times higher with respect to the proposed method). It is to be
noted that for fair comparison, frame duration of 10 s and KNN
classifier are used in all cases. In [12], for the database [13], 90%
overlap between two successive frames is considered, and sub-
frame duration is chosen as two-thirds of the original frame duration
(15 s). The same principle is applied on the 10 s frames for the
method in [12] for comparison purpose. It is observed from
Table 6 that the performance of the proposed method is better
than that of the existing methods with respect to all the standard per-
formance criteria. The confusion matrix of the classification for the
five subjects considered in this Letter for the proposed method for
leave-one-out cross-validation scheme is given in Table 7.

Comparison of mean classification results for leave-one-out,
ten-fold, five-fold and two-fold cross-validation methods are
reported in Table 8 to represent the regularity of the classification
results in case of random variation in the training and test set
n

Specificity,% Accuracy,%

[11] [12] Prop. [8] [11] [12] Prop.

81.73 87.31 88.58 87.94 80.46 84.26 88.07
88.64 84.09 97.73 79.55 89.77 85.23 93.18
90.91 95.96 97.98 88.89 87.88 91.41 97.47
91.79 93.85 93.33 87.95 92.05 92.56 93.08
86.78 90.08 92.56 88.02 83.88 88.02 89.26
87.97 90.26 94.04 86.47 86.81 88.30 92.21
4.00 4.80 3.93 3.89 4.65 3.66 3.72
5.62 7.87 6.22 2.39 7.31 6.72 5.30
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Table 7 Confusion matrix of classification

Subject number UCDDB003 UCDDB011 UCDDB020 UCDDB024 UCDDB026

Label Apnea Non-apnea Apnea Non-apnea Apnea Non-apnea Apnea Non-apnea Apnea Non-apnea

apnea 345 49 39 5 96 3 181 14 104 17
non-apnea 45 349 1 43 2 97 13 182 9 112

Table 8 Comparison of classification results for different cross-validation methods

Cross-validation Sensitivity,% Specificity,% Accuracy,%

[8] [11] [12] Prop. [8] [11] [12] Prop. [8] [11] [12] Prop.

leave-one-out 85.52 85.65 86.34 90.39 87.42 87.97 90.26 94.04 86.47 86.81 88.30 92.21
10-fold 85.74 85.12 86.22 90.84 88.09 87.43 91.25 93.69 86.59 86.36 88.90 92.02
5-fold 86.52 87.12 86.67 89.90 87.40 87.95 91.27 93.75 86.91 87.71 88.84 91.59
2-fold 84.67 79.31 86.99 89.46 85.90 85.14 88.67 89.40 85.23 82.12 87.44 89.37
data. It is observed that the proposed method gives better perform-
ance than the existing methods in all cases.

4. Conclusion: In this research work, an automatic efficient sleep
apnea event detection scheme is proposed based on inter-band
energy ratios of multi-band EEG signal. Features are extracted
from time-averaged data of two EEG channels, which helps
in reducing the effect of noise. Band energy of EEG data may
change randomly but inter-band energy ratio feature proposed
in this Letter offers robustness with better feature quality. The
proposed method offers superior subject-specific classification
performance compared with that achieved by some recent
methods in terms of sensitivity, specificity and accuracy for sleep
apnea subjects with wide variation in AHI index.
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