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Background: The mortality rate associated with sepsis in elderly individuals is

higher than that in younger individuals. The intestinal microbiota has been

demonstrated to play an important role in the occurrence and development of

sepsis. The purpose of this study was to investigate the differences in the

intestinal microbiota between aged and adult mice with sepsis.

Methods: Thirty male C57BL mice were randomly divided into two groups: 15

in the adult group (AD group) and 15 in the age group (Age group). All the mice

underwent caecal ligation and puncture to induce sepsis. Mice faeces were

collected, and analysed using 16S rRNA sequencing. The liver and colon tissues

were collected.

Results: There were significant differences in intestinal microbiota composition

between the two groups. Compared with adult sepsis mice, the diversity of

intestinal microbiota in the aged group was significantly reduced and the

structure of dominant intestinal microbiota was changed. In the Age group,

the microbiota associated with inflammatory factors increased, and the

microbiota associated with the production of SCFAs (Ruminiclostridium,

Prevotellaceae_UCG-001, Rikenella, Parabacteroides, Oscillibacter,

Odor ibacter , Mur ibaculum, Lachnoclostr id ium, Intest in imonas,

Faecalibaculum, Anaerotruncus, Alloprevotella and Absiella) decreased. The

metabolic pathways related to the microbiota also changed. Moreover, the

proportion of inflammatory factors in Age group was higher than that in AD

group.

Conclusion: Our results showed that there were significant differences in the

abundance and structure of microbiota between aged and adult sepsis mice,
Abbreviations: SCFA, short-chain fatty acid; PICRUSt, Phylogenetic Investigation of Communities by

Reconstruction of Unobserved States.
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Aged sepsis mice have more severe intestinal microbiota destruction and liver

tissue inflammation than adult sepsis mice.
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Introduction

Sepsis is a life-threatening organ dysfunction caused by the

maladjusted response of the host to infection (Shankar-Hari

et al., 2016). Failure of regulatory mechanism during sepsis may

lead to uncontrolled inflammation, and excessive activation of

inflammatory reaction may lead to organ damage (Rittirsch

et al., 2008). Sepsis is associated with a high mortality rate,

approximately one-quarter of the global mortality rate (Vincent

et al., 2014; Haak and Wiersinga, 2017). Sepsis is regarded as a

“typical disease of the elderly” (Brakenridge et al., 2019). Age is

an independent predictor of mortality in severely sick patients

with sepsis, especially those over the age of 65, and sepsis

morbidity and in-hospital mortality rates have increased

exponentially (Milbrandt et al., 2010). Therefore, studying the

difference between elderly patients and young patients with

sepsis and identifying how the mechanism of sepsis differs in

elderly patients is a problem to be solved.

Destruction of intestinal microbiome predisposes to sepsis,

and has a negative impact on the results of sepsis (Fay et al.,

2017; Agudelo-Ochoa et al., 2020; Sun et al., 2022). There are

abundant bacteria in the intestinal microbiota of healthy people.

The Bacteroidetes and Firmicutes are the most abundant,

accounting for more than 90% of the intestinal microbiota

(Adak and Khan, 2019). It is generally believed that the ratio

of Firmicutes to Bacteroidetes is strongly correlated with health

and disease (Mariat et al., 2009). Bacteroidetes and Firmicutes

are major producers of short chain fatty acids (SCFAs), which

can promote the antibacterial activity of macrophages and

regulate the immune function of T cells (Smith et al., 2013;

Schulthess et al., 2019; Miller et al., 2021). Butyric acid plays an

important role in maintaining the integrity of the colon

epithelium, and butyric acid is the main raw material for the

utilization of the colon epithelium (Nava et al., 2011; Leonel and

Alvarez-Leite, 2012; Morrison and Preston, 2016; Tanca et al.,

2017). Propionate and its receptor GPR41 regulate Ang II levels

and myocardial I/R injury (Deng et al., 2022). The intestinal

microbiota and their metabolites are closely related to immunity,

endocrinology and inflammation (Belkaid and Hand, 2014; Lin

and Zhang, 2017; Deng et al., 2022). The imbalance in gut

microbiota will cause a series of diseases, such as obesity, fatty

liver and inflammatory diseases (Turnbaugh et al., 2006; Frank
02
et al., 2007; Liu et al., 2018). The intestinal microbiota is an

important part of the intestinal barrier. The breakdown of

intestinal barrier function and microbiota translocation hasten

the progression of sepsis or lead to sepsis (Sun et al., 2022).

Patients with sepsis have less fecal SCFAs, which may worsen

intestinal epithelial integrity and immune dysfunction in sepsis

(Shimizu et al., 2006; Hotchkiss et al., 2013; Yamada et al., 2015).

Furthermore, some studies have shown that patients with

decreased microbial diversity and increased abundance of

pathogenic bacteria are more susceptible to sepsis (Shimizu

et al., 2006; Hotchkiss et al., 2013; Yamada et al., 2015; Adhi

et al., 2019; Adelman et al., 2020). In this study, we studied the

differences in intestinal microbiota between adult and aged mice

with sepsis.
Materials and methods

Animal experiments

Thirty male C57BL mice (6–8 weeks) obtained from Beijing

Vital River Laboratory Animal Technology (Beijing, China) were

kept in a specific-pathogen-free (SPF) animal laboratory with

unlimited access to food and water in a temperature-controlled

and light-regulated environment (20-25°C, 1:1 light dark cycle).

The mice were randomly categorized into two groups: the adult

(AD) group (n = 15) and the aged group (n = 15). The mice in the

aged group were fed until 20-21 months. Sepsis was induced in

both groups by caecal ligation and puncture (CLP). The

establishment of CLP model was based on our previous

research (Cui et al. 2020; Liang et al. 2022). The mice were

anaesthetized with an intraperitoneal dose of pentobarbital (30

mg/kg). Half of the caecum was ligated, and the caecum was

punctured twice with a No. 21 needle. The contents of the caecum

were extruded, treated and put back, and two layers of sutures

were used to close the incision (muscle layer and skin). In

addition, normal saline (37°C; 1 ml/100 g) was injected

subcutaneously into the mice. The mice were rewarmed for 1 h

and then returned to the cage. The mice were watered, fed and

maintained on a light/dark (12/12 hours) cycle. At 24 hours after

CLP treatment, 5 mice in the aged group and 8 mice in the AD

group were alive. We chose to collect the feces of surviving rats of
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the two groups, 24 hours after operation. All the experiments in

this study were approved by the Life Science Ethics Review

Committee of Zhengzhou University.
16s rRNA gene sequencing

16s rRNA gene sequencing is a high-throughput sequencing

method for all bacteria in specific environmental (or specific

habitat) samples and is used to study the composition of

microbial populations in those samples, interpret the diversity,

richness and population structure of microbial populations, and

to explore the relationship between microorganisms and the

environment or host. The faeces from both groups of mice were

collected and kept at -80°C. DNA was extracted from various

samples using the E.Z.N.A. ®Stool DNA Kit (D4015, Omega,

Inc., USA). Total DNA was eluted in 50 L of elution buffer and

stored at -80°C until PCR assessment. To eliminate the

possibility of false-positive PCR results from the negative

control, ultrapure water, instead of sample solution, was used

throughout the DNA extraction process. AMPure XT beads

(Beckman Coulter Genomics, Danvers, MA, USA) were used to

purify the PCR products, and Qubit was used to quantify them

(Invitrogen, USA). The amplicon pools were prepared for

sequencing, and the size and quantity of the amplicon library

were determined using an Agilent 2100 Bioanalyzer (Agilent,

USA) and the Library Quantification Kit for Illumina (Kapa

Biosciences, Woburn, MA, USA). The libraries were sequenced

on the NovaSeq PE250 platform. After computer sequencing, the

dual terminated data were patched by overlap, and a quality

check and chimaera filtering were conducted to obtain high-

quality clean data. The Divisive Amplicon Denoising Algorithm

2 (DADA2) was used to obtain representative sequences with

single base accuracy, calculated using the QIIME2 microbiome

bioinformatics platform. We used the SILVA (Release 132,

https://www.arb-silva.de/documentation/release-132/) and NT-

16S databases for species classification and subsequent analysis.
Quantification of mRNAs by RT–PCR

We extracted total RNA from liver tissue using TRIzol reagent

(Takara, Tokyo, Japan) and determined the RNA concentration and

purity by ultraviolet spectrophotometry. A TaqMan reverse

transcription kit (UE, Suzhou, China) was used to reverse

transcribed mRNA and synthesize corresponding cDNA. Gene

expression was normalized using reduced glyceraldehyde-

phosphate dehydrogenase (GAPDH) expression. The gene primers

were TNF-a forward primer, CCACCACGCTCTTCTGTCTAC,

reverse primer, AGGGTCTGGGCCATAGAACT;

IL-6 forward primer, TGATGCACTTGCAGAAAACA,

reverse primer, ACCAGAGGAAATTTTCAATAGGC; ccl2

forward primer, CCTGCTGTTCACAGTTGCC, reverse
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primer, ATTGGGATCATCTTGCTGGT; ccl3 forward primer,

ACCATGACACTCTGCAACCA , r e v e r s e p r ime r ,

GTGGAATCTTCCGGCTGTAG; ccl4 forward primer,

CATGAAGCTCTGCGTGTCTG , r e v e r s e p r ime r ,

GAAACAGCAGGAAGTGGGAG; ccl5 forward primer,

CCACTTCTTCTCTGGGTTGG , r e v e r s e p r im e r ,

GTGCCCACGTCAAGGAGTAT; ccl7 forward primer,

CTGCTTTCAGCATCCAAGTG , r e v e r s e p r im e r ,

TTGCCTCTTGGGGATCTTTTG; ccl8 forward primer,

TCTTTGCCTGCTGCTCATAG , r e v e r s e p r im e r ,

GAAGGGGGATCTTCAGCTTT; CXCL1 forward primer,

ACCCAAACCGAAGTCATAGC , r e v e r s e p r ime r ,

TCTCCGTTACTTGGGGACAC; CXCL10 forward primer,

CTCATCCTGCTGGGTCTGAG , r e v e r s e p r ime r ,

CCTATGGCCCTCATTCTCAC; and GAPDH forward

primer, TGACCTCAACTACATGGTCTACA, reverse

primer, CTTCCCATTCTCGGCCTTG.
Statistical analysis

Species difference tests were performed using Fisher’s exact

test, the Mann–Whitney U test, or the Kruskal–Wallis test. We

defined P < 0.05 as significantly different species. Alpha and beta

diversity indexes were calculated using QIIME2 and plotted using

the R package. Linear discriminant analysis (LDA) effect size

(LEfSe) was carried out; the purpose of which is to compare two or

more groups and uncover species with significant abundance

differences. All distinctive species were detected using the

Kruskal–Wallis rank sum test. To acquire significantly distinct

species, the difference in species abundance between various

groups was detected. The Wilcoxon rank sum test was used to

determine whether all subspecies of the significantly distinct

species from the previous stage converged to the same

categorization level. Finally, LDA was used to obtain the final

differential species (biomarker). PICRUSt2 was used for

functional prediction (https://github.com/picrust/picrust2).

According to the t test, the threshold value of P value < 0.05

was considered a significant difference. The results showed that

there were statistically significant differences in the abundance

data in the functional database (confidence interval 95%).

Statistical analysis was performed using R-package and

GraphPad Prism version 5.0 (GraphPad Software, La Jolla, CA,

USA).T-tests and Mann-Whitney test were used for two-group

comparisons. P < 0.05 was considered statistically significant.
Results

Mortality of mice with sepsis

To explore the difference in mortality between aged mice

and adult mice, we recorded the mortality of the two groups 24
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hours after modelling. In this experiment, we raised thirty mice

and generated a CLP model. After 24 hours of modelling, 8 mice

survived in the AD group, and 5 mice survived in the Age group.

The 24-hour mortality rates of the two groups were 47% and

67%, respectively(Supplement Table 1).
Changes in inflammatory factors

To study the changes of inflammatory factor levels between

two groups, The mRNA expression of inflammatory factors in

liver and colon tissue were measured. In colon tissue, the mRNA

expression of inflammatory factors in the aged mice were higher

than those in the adult mice. The levels of TNF-a, IL-6, ccl3, ccl5,
ccl8, CXCL10, and ccl4 increased in Age group (Figure 1). We

also analysed inflammatory factors in liver tissue. The mRNA

expression of inflammatory factors in the age group was higher

(Supplementary Figure 1). The results showed that the Age

group had higher levels of inflammatory factors, which may be

associated with the poor prognosis and high mortality rate in

elderly patients with sepsis.
Differences in microbiota diversity

To study the differences in diversity of the intestinal

microbiota between the two groups, we first used a Venn

diagram to visually describe microbiota abundance differences

between two groups. According to obtained eigenvalue

abundance table, the number of common features of each
Frontiers in Cellular and Infection Microbiology 04
group was calculated, and the number of common and unique

features of each group was intuitively presented through a Venn

diagram (Supplement Figure 2A). The abundance curve was also

plotted. It assess the richness and variety from each sample,

the number of features in various samples were compared at the

same sequencing depth. If the curve steeply increases, the

amount of sequencing data is insufficient. If the curve is flat,

the amount of sequencing data has reached its limit. The

Shannon curve was flat, indicating that the amount of sample

sequencing data was sufficient (Supplement Figure 2B). The rank

abundance curve was used to explain both the abundance and

uniformity of species in a sample. The results showed that the

abundance and uniformity of species were reliable

(Supplement Figure 2C).

The similarity of operational taxonomic units (OTUs) was

97%. Each OTU is usually considered a microbial specie. The

two groups of observed OTUs were compared and analysed by

using the Wilcoxon method. The results showed that compared

to the AD group, the Age group showed a decreasing trend but

the difference was not statistically significant (Figure 2A). Alpha

diversity is used to reflect species richness, homogeneity, and

sequencing depth within a certain area or ecosystem. The species

diversity between distinct environmental communities is

referred to as beta diversity. Beta diversity and alpha diversity

describe an environmental community’s overall variety or

biological heterogeneity. We analysed alpha diversity, and the

findings revealed that, when compared to the AD group

(Figures 2B–D), the diversity of the microbiota in the Age

group showed a decreasing trend and the Shannon and

Simpson index were statistically significant. However, chao1
A B D

E F G

C

FIGURE 1

Inflammatory factors. RT–PCR showed that in colon tissue, the Age group exhibited increased levels of inflammatory factors (TNF-a, IL-6, ccl3,
ccl5, ccl8, cxcl10 and ccl4) when compared with the AD group *P< 0.05, **P< 0.01, ***P< 0.001
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index was not statistically significant. (Shannon P=0.0016,

Simpson P=0.0016, Chao1P=0.17). We used Non-metric

multidimensional scaling (NMDS) for beta diversity,

unweighted unifrac and weighted unifrac were used to

evaluate the analysis. (Figures 2E, F). There were considerable

microbial differences between two groups and structure of the

intest inal microorganisms in the two groups were

significantly different.
Frontiers in Cellular and Infection Microbiology 05
Differences in abundance of the
dominant microbiota

We analysed the microbiota structure at the phylum and

genus levels to evaluate the differences in the microbiota structure

between the adult mice and the agedmice. The results showed that

the microbiota structure of the adult mice was significantly

different from that of the aged mice. At the phylum level
A B

C D

E F

FIGURE 2

Microbial diversity. (A–D) The main purpose of alpha diversity is to reflect species richness, evenness, and sequencing depth. To reflect richness
and uniformity, we used the Chao1, observed species, Shannon, and Simpson indexes. (E, F) b diversity reflects the microbial richness within and
between groups. We used NMDS to observe the differences between samples. As shown in the figure, the two samples are far apart. The two
groups of microbiota differ significantly, and the difference is statistically significant. *P< 0.05, **P< 0.01, ***P< 0.001
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(Figures 3A, B), Bacteroidetes, verrucomicrobia, Firmicutes and

Proteobacteria account for the main part. Compared with AD

group, Bacteroides in the Age group decreased and

verrucomicrobia increased (Supplement Figure 3). At the Genus

level (Figures 3C, D), the microbiota associated with

inflammation, such as Robinsonie l la , Eubacter ium

Coriobacteriaceae-Ucg-002, Clostridioides, Akkermansia and

other microbiota increased significantly when compared with

the AD group, while the microbiota related to the production of

short chain fatty acids(SCFAs), such as Ruminiclostridium,

Rikenella, Prevotellaceae Ucg-001, Parabacteroides, Oscillibacter,

Odoribacter, Muribaculum, Lachnoclostridium, Intestinimonas,

Faecalibaculum, Anaerotruncus, Alloprevotella and Absiella

decreased significantly. We performed relative abundance

analysis in Supplementary Figure 3. The findings suggested

substantial differences in dominant microbiota between two

groups. In addition, we analyzed the correlation between

intestinal microbiota and inflammatory factors. In liver and

colon tissue, the correlation analysis between inflammatory

factors and microbiota showed that all inflammatory factors

were positively correlated with Verrucomicrobia, Robinsonella,
Frontiers in Cellular and Infection Microbiology 06
Firmicutes, Eubacterium, Coriobateriaceae_ UCG-002,

Clostridioides and Akkermania (Supplementary Figure 4).

In addition, we explored the correlation between the

microbiota and calculated the correlation between species

through the abundance and changes in the different species in

each sample. The results showed that Akkermansia was

positively correlated with the Lachnospiraceae-NK4A136-

group, Bilophil group, and Eubacterium coprostanoligenes

group and negatively correlated with Bacteroides, Helicobacter,

and Muribaculaceae_ Unclassified (Figure 4A). Figure 4B

describes the taxonomic information of the two groups, and

the results showed that the Age group was significantly

correlated with the Akkermansia, while the AD group was

significantly correlated with the Muribaculaceae-Unclassified.

To investigate the microbial changes between the AD group

and the Age group, we used LEfSe (LDA Effect Size) to analysis.

The cladogram showed that the taxa of the Age group differed

the most from the AD groups. We set the linear discriminant

analysis (LDA) threshold to 4 and to explore microbial species

with significant differences between the AD and Age groups. A

total of 13 enriched species were identified. Among them, 7
A C

B D

FIGURE 3

Relative abundance. Relative microbiota distribution between the two groups. (A, B) phylum level. (C, D) genus level.
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species were enriched in the AD group and 6 species were

enriched in the aged group (Figure 5). The results showed that at

the species level, Lachnospiraceae NK4A136 group unclassified

and Akkermania muciniphila were significantly enriched in Age

group, and Desulfovibrio sp and Muribaculeae unclassified were

significantly enriched in AD group.
Function prediction of microbiota

We used PICRUSt to link the microbiota to different

functions. The differences of functional annotation results

among the groups were compared by PICRUSt analysis

(Figure 6). The picture shows the threshold value of P value

<0.05 according to t-test difference test. The functions with

statistically significant differences in abundance data in the

functional database are shown in the results (95% confidence

interval) (Table 1). As illustrated in the figure, compared with

the Age group, the microbiota function of the AD group was

primarily related to PWY-6147, PWY-7539, PWY-6519, PWY0-

1241 , P124-PWY, BIOTIN-BIOSYNTHESIS-PWY,

GLUCONEO-PWY, P122-PWY, PWY-5154, HISDEG-PWY,

HOMOSER-METSYN-PWY, PENTOSE-P-PWY, PWY-7199,

PWY-7323, GLYCOLYSIS-E-D, PWY-5347, PWY-6263 and

MET-SAM-PWY pathways. They Participate in carbohydrate,

amino acid, protein and other metabolic pathways of the body.
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In conclusion, the aged mice exhibited not only changes in the

dominant microbiota and reduced relative abundance of

beneficial microbiota but also changes in the metabolic

pathways of the microbiota.
Discussion

This article discusses the microbiome differences and the

changes in inflammatory indexes between aged and adult mice

during sepsis. It provides a theoretical basis for studying the

effect of aging on the intestinal flora of sepsis

Our results show the following: 1. The mortality of old mice

is higher than that of adult mice. 2. We analysed the levels of

inflammatory factors in the liver and colon of the AD group and

Age group. The results suggested substantial changes in the

levels of inflammatory factors in the two groups. 3. Compared

with the AD group, the intestinal microbiota of the aged group

showed a downward trend, the structure of the dominant

microbiota changed, and the microbiota related to

inflammation increased. 4. Due to the change in the dominant

microbiota structure, the functional pathways of the microbiota

of the aged mice with sepsis also changed.

The intestine is a complex microbial ecosystem, and its

microbiome is strongly linked to human health. The

gastrointestinal tract is crucial in the pathophysiology of
A B

FIGURE 4

(A) Correlation network diagram: Different nodes in the network diagram represent different dominant genera. The connection between
nodes indicates that there is a correlation between the two genera. By default, we show the relationship pair of correlation coefficientsRho>
0.4. (B) Bubble plot: The species annotation information and relative abundance (circle size) at the genus level in various sample groups as
well as the species annotation information (circle colour) of the species-corresponding gate.
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sepsis. Studies have found that intestinal microbiota and its

metabolites play an important role in a variety of diseases, and

the occurrence and development of sepsis has also been proved

to be related to intestinal microbiota (Deng et al., 2021; Hu et al.,

2022). The imbalance of intestinal flora will breakdown

intestinal barrier function and induce mucosal immune

dysfunction (Wang et al., 2019). Sepsis leads to the destruction

of intestinal barrier function and flora displacement, which

aggravate the level of tissue inflammation and lead to organ

damage (Sun et al., 2022). We compared the levels of

inflammatory factors in the liver and colon between the AD

and Age groups in this study. The results revealed that

inflammatory factor levels were higher in the Age group. The

explanation for the high acute inflammation in elderly patients

includes that the low clearance efficiency of pathogens leads to

the prolongation of the stimulation time of immune response,

the increased susceptibility to inflammation during immune

aging, and the limited physiological reserves, leading to greater

feedback on the release of pro-inflammatory cytokines (Kale and

Yende, 2011; Leentjens et al., 2013; Ginde et al., 2014). This may

be related to the weakening of intestinal barrier function caused

by ageing (Fransen et al., 2017; Fulop et al., 2017; Lin et al.,

2019). The weakening of the intestinal barrier caused by ageing

may lead to systemic invasion of inflammatory microbiota

components. This may be connected to the poor prognosis

and high mortality among elderly sepsis patients.

Comparing the intestinal microbiota of the AD group and

the Age group, we found that the diversity of the intestinal
Frontiers in Cellular and Infection Microbiology 08
microbiota decreased significantly in the Age group. Research

shows that the microbial diversity of the elderly usually decreases

(Woodmansey, 2007). On the other hand, the decrease in

intestinal microbiota abundance may be related to sepsis.

According to certain research, sepsis can induce an imbalance

in the intestinal, decrease microbiota abundance and increase

opportunistic pathogenic bacteria (Alverdy and Krezalek, 2017;

Fay et al., 2017). In this study, the changes of intestinal

microbiota in sepsis mice caused by age were mainly

compared. Moreover, there were significant differences in the

intestinal microbial composition between the AD group and Age

group. We found that Bacteroidetes decreased significantly in the

Age group, while Verrucomicrobiota had a greater advantage in

the Age group. Woodmansey EJ’s study also showed that the

diversity and number of Bacteroidetes decreased significantly in

the intestinal flora of elderly individuals, (Woodmansey, 2007).

Verrucomicrobiota was increased in elderly patients with

Parkinson’s disease, and the abundance of Verrucomicrobiota

was correlated with plasma IFN g with a moderate correlation

between concentrations (Lin et al., 2019). At the genus level,

Akkermansia and Clostridioides increased significantly in the

Age group when compared with the AD group, while

Ruminiclostridium, Prevotellaceae_UCG-001, Rikenella,

Parabacteroides, Oscillibacter, Odoribacter, Muribaculum,

Lachnoclostridium, Intestinimonas, Faecalibaculum,

Anaerotruncus and Alloprevotella decreased significantly in the

Age group. Akkermansia is the only genus of Verrucomicrobiota

found in gastrointestinal samples, and in many studies,
FIGURE 6

PICRUSt analysis. Functional prediction pathways in microbial differences among the groups.
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Akkermansia bacteria have been shown to improve host

function, regulate immunity, reduce inflammation and

improve diseases (Geerlings et al., 2018; Zhai et al., 2019;

Zhang et al., 2019). Interestingly, our results showed that

Akkermansia increased significantly in the Age group and was

the dominant flora in the Age mice with sepsis. Mucin is the

energy source of mucin-degrading bacteria such as Akkermansia

(Crouch et al., 2020). The main barrier against intestinal

pathogens is the mucous barrier of the colon. The intestinal

microbiota relies on mucus glycoproteins secreted by the host as

a source of nutrition, resulting in the erosion of the colonic

mucus barrier (McGuckin et al., 2011; Johansson et al., 2013;

Crouch et al., 2020). Akkermansia is a beneficial bacterium, but

too much Akkermansia may be associated with depleted mucus

protein, resulting in the destruction of the intestinal mucosal
Frontiers in Cellular and Infection Microbiology 09
barrier. The destruction of the mucus barrier may be related to

the high inflammation of sepsis in elderly individuals.

Clostridioides difficile can cause severe diarrhoea (Sandhu and

McBride, 2018), and increase susceptibility to sepsis and lead to

the loss of normal intestinal microbiome structure and function

(Shreiner et al., 2015).

Studies have shown that the intestinal flora and its

metabolites can decompose and metabolize polysaccharides to

produce SCFAs. SCFAs could maintain intestinal barrier

function, which is important for intestinal homeostasis. SCFAs

not only maintain the cell barrier but also prevent the

translocation of LPS from the intestinal barrier (Kelly et al.,

2015; Zhou et al., 2017). Butyrate could improve the barrier

function of intestinal epithelial cells by regulating IL-10,

occludin, zonulin and claudins (Wang et al., 2012; Zheng
A

B

FIGURE 5

Linear discriminant analysis (LDA) integrated with effect size (LEfSe). (A) The circle radiating from inside to outside represents the taxonomic
level from phylum to genus, and the species with no significant difference are yellow. (B) LDA value distribution histogram.
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et al., 2017). Ruminiclostridium, Prevotellaceae_UCG-001,

Rikenella, Parabacteroides, Oscillibacter, Odoribacter,

Muribacu lum, Lachnoc lo s t r id ium, Inte s t in imonas ,

Faecalibaculum, Anaerotruncus and Alloprevotella have been

proven to be related to the formation of SCFAs (Bui et al.,

2016; Koh et al., 2016; Shi et al., 2017; Van den Abbeele et al.,

2020; Yao et al., 2020; Nogal et al., 2021). Ruminiclostridium

degrades polysaccharides by producing multienzyme complexes

(including xylan endonuclease and acetylxylan esterase) to

produce SCFAs, such as acetate and butyrate, that can inhibit

the inflammatory response (Wang et al., 2018; Xiao et al., 2020).

Furthermore, Odoribacter and Rikenella are effective anti-

diarrhoea probiotics that are negatively correlated with the

diarrhoea index (Xu et a l . , 2020) . Prevote l la and

Muribaculaceae have positive effects on the intestine via

immune regulation and intestinal homeostasis regulation

(Zhang et al., 2015; de la Cuesta-Zuluaga et al., 2017).

Parabacteroides can reduce tumour occurrence and reduce the
Frontiers in Cellular and Infection Microbiology 10
level of inflammatory markers in mice (Koh et al., 2020). The

above conclusions show that the flora related to the formation of

SCFAs in elderly individuals with sepsis is significantly reduced.

In terms of functional prediction, themetabolic pathways of AD

group and the Age group were significantly different. The functional

pathways related to energy generation, antioxidation and amino

acid production were relatively reduced in the aged group. For

example, AD group promoted L-arginine biosynthesis. L-arginine is

catabolized by various enzymes to finally produce urea, proline,

glutamate, polyamines, nitric oxide, creatine or agmatine (Wu and

Morris, 1998). Agmatine has anti diabetes effect on diabetic

animals. Agmatine can not only increase b-Insulin secretion of

pancreatic cells but can also inhibit hyperglycemia and reduce

insulin resistance in rats (Zhang et al., 2021). In addition, a

systematic review and meta-analysis showed that L-arginine could

significantly reduce triglyceride (TG) levels (Sepandi et al., 2019).

Bifidobacterium shunt is a special pathway involving

phosphoketolase activity. Hexose, such as glucose or fructose, is
TABLE 1 The functional pathway.

Pathway Description

PWY-6147 6-hydroxymethyl-dihydropterin diphosphate biosynthesis I

PWY-7539 6-hydroxymethyl-dihydropterin diphosphate biosynthesis III (Chlamydia)

PWY-6519 8-amino-7-oxononanoate biosynthesis I

PWY0-1241 ADP-L-glycero-&beta;-D-manno-heptose biosynthesis

P124-PWY Bifidobacterium shunt

BIOTIN-BIOSYNTHESIS-PWY biotin biosynthesis I

GLUCONEO-PWY gluconeogenesis I

P122-PWY heterolactic fermentation

PWY-5154 L-arginine biosynthesis III (via N-acetyl-L-citrulline)

HISDEG-PWY L-histidine degradation I

HOMOSER-METSYN-PWY L-methionine biosynthesis I

PENTOSE-P-PWY pentose phosphate pathway

PWY-7199 pyrimidine deoxyribonucleosides salvage

PWY-7323 superpathway of GDP-mannose-derived O-antigen building blocks biosynthesis

GLYCOLYSIS-E-D superpathway of glycolysis and Entner-Doudoroff

PWY-5347 superpathway of L-methionine biosynthesis (transsulfuration)

PWY-6263 superpathway of menaquinol-8 biosynthesis II

MET-SAM-PWY superpathway of S-adenosyl-L-methionine biosynthesis

COBALSYN-PWY adenosylcobalamin salvage from cobinamide I

ARO-PWY chorismate biosynthesis I

ARGSYN-PWY L-arginine biosynthesis I (via L-ornithine)

ARGSYNBSUB-PWY L-arginine biosynthesis II (acetyl cycle)

PWY-5505 L-glutamate and L-glutamine biosynthesis

PWY4FS-7 phosphatidylglycerol biosynthesis I (plastidic)

PWY4FS-8 phosphatidylglycerol biosynthesis II (non-plastidic)

PYRIDOXSYN-PWY pyridoxal 5'-phosphate biosynthesis I

COMPLETE-ARO-PWY superpathway of aromatic amino acid biosynthesis

PWY-5840 superpathway of menaquinol-7 biosynthesis

PWY0-845 superpathway of pyridoxal 5'-phosphate biosynthesis and salvage

SULFATE-CYS-PWY superpathway of sulfate assimilation and cysteine biosynthesis
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metabolized into acetate and lactate through this pathway and used

for energy production (Lee and O'Sullivan, 2010; De Vuyst et al.,

2014). The pentose phosphate pathway (PPP) is required for

ribonucleotide synthesis and is a major source of

NADPH. NADPH plays a key role in the redox state of cells and

is also required for fatty acid synthesis (Patra and Hay, 2014). PPP

generates NADPH, which is critical for the reduction of oxidized

glutathione to GSH, thereby maintaining the redox homeostasis of

cells (Blacker and Duchen, 2016; Xiao et al., 2018). In addition, PPP

metabolic pathway can regulate the phenotype, function and

survival of inflammatory macrophages (Ma et al., 2020).

Our study has some limitations. First, the sample size of the

experimental groups was very small, and the results of this study

need to be confirmed by other similar studies. Second, we only

counted mortality after 24 hours and did not count longer-term

mortality. Third, our study only explored the difference of

intestinal microbiota between adult sepsis mice and aged

sepsis mice, and we did not include a control group before

modeling, which weakens the rigor of our study. In addition, the

analysis of fecal transplantation experiments are important for

future studies exploring the impact of the intestinal microbiota

in the host. Regarding Akkermansia, other studies have reported

that the abundance of Akkermansia decreases in elderly

individuals (Collado et al., 2007; Biagi et al., 2010), so the

relationship between Akkermansia and elderly individuals

needs to be studied further and discussed.
Conclusion

In conclusion, this study explored the differences in

intestinal microbiota diversity and dominant flora structure

between aged and adult mice with sepsis and it provided

theoretical basis for studying the effect of aging on the

intestinal flora of sepsis.
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SUPPLEMENTARY FIGURE 2

Species richness. (A) Venn diagram between the two groups. (B)
Shannon–Wiener index: The abscissa is the number of randomly

selected sequences, and the ordinate is the Shannon index of species

diversity. The saturation of the curve proves that the sequencing results
were sufficient. The results show that the curve tends to be flat, indicating

that the amount of sequencing data is sufficient. (C) The smoother the
decline of the curve, the more uniform the distribution of species.

SUPPLEMENTARY FIGURE 3

Relative abundance of intestinal flora. Abundance of specific intestinal

microbiota in two groups. *P<0.05.

SUPPLEMENTARY FIGURE 4

The correlation between microbiota and inflammatory factors. (A) colon
tissue (B) liver tissue.
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