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Sudden cardiac death (SCD) remains an unsolved problem in the twenty-first century.

It is often due to rapid onset, ventricular arrhythmias caused by a number of different

clinical conditions. A proportion of SCD patients have identifiable diseases such as

cardiomyopathies, but for others, the causes are unknown. Viral myocarditis is becoming

increasingly recognized as a contributor to unexplained mortality, and is thought to be a

major cause of SCD in the first two decades of life. Myocardial inflammation, ion channel

dysfunction, electrophysiological, and structural remodeling may play important roles in

generating life-threatening arrhythmias. The aim of this review article is to examine the

electrophysiology of action potential conduction and repolarization and the mechanisms

by which their derangements lead to triggered and reentrant arrhythmogenesis. By

synthesizing experimental evidence from pre-clinical and clinical studies, a framework

of how host (inflammation), and viral (altered cellular signaling) factors can induce ion

electrophysiological and structural remodeling is illustrated. Current pharmacological

options are mainly supportive, which may be accompanied by mechanical circulatory

support. Heart transplantation is the only curative option in the worst case scenario.

Future strategies for the management of viral myocarditis are discussed.

Keywords: viral myocarditis, cardiac arrhythmia, mouse model, viral-induced cardiomyopathy, conduction,

repolarization

INTRODUCTION

Viral myocarditis is myocardial inflammation due to a viral infection. It is thought to be
a major cause of sudden cardiac death (SCD) in the pediatric and adolescent population
(Steinberger et al., 1996). Indeed, one study found that infants who suffered from SCD had
mild fever and insomnia several days prior to their deaths, suggesting infection as a major
contributor in this group (Gaaloul et al., 2016). At least 20 viruses have been implicated in
myocarditis, but the commonest virus involved are Parvovirus B19 (PVB19), human herpes
virus 6, adenovirus and coxsackievirus B3 (CVB3; Gaaloul et al., 2012). Table 1 summarizes the
known virus strains, gene/protein targets, and estimated prevalence. Not all viral infections are
the same: cardiotropic viruses are known to infect >90% of the human population, yet only
1–5% of these will develop viral myocarditis as proven histologically (Andreoletti et al., 2009).
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TABLE 1 | The prevalence of different viruses was obtained from Kühl et al. (2005) and Andreoletti et al. (2009).

Virus Type Host target Estimated prevalence References

Adenovirus dsDNA Common Coxsackievirus

B-adenovirus receptor

8–23% Bergelson et al., 1997; Bowles et al.,

2003; Kühl et al., 2005; Andreoletti et al.,

2009

Coxsackievirus ssRNA CD55, Common Coxsackievirus

B-adenovirus receptor

2 to 50% (Up to 46% after

transplantation)

Arbustini et al., 1992; Bergelson et al.,

1997; Martino et al., 1998; Bowles et al.,

2003; Andreoletti et al., 2009

Cytomegalovirus dsDNA Heparan Sulfate Proteoglycans,

PDGFRα, EGFR, and integrin

heterodimers

0.8–3% Bowles et al., 2003; Chan et al., 2012

Echovirus ssRNA Human very late antigen 2 (VLA-2) 10.5% Hughes et al., 2003; Kühl et al., 2005

Enterovirus ssRNA Enteroviral protease 2A directly

cleaves dystrophin

8–32.6% Badorff et al., 1999; Bowles et al., 2003;

Kühl et al., 2005

Epstein-Barr virus dsDNA Increased latent membrane protein 1

is expressed in EBV latent cells

0–6% Karjalainen et al., 1983; Bowles et al.,

2003; Chimenti et al., 2004

Hepatitis B virus dsDNA Enters injured endothelium <1% Reis et al., 2007; Rong et al., 2007

Hepatitis C virus ssRNA CD68 (monocytes and macrophages) 2.9–3.8% Matsumori et al., 2000; Reis et al., 2007;

Matsumori, 2012

Herpes simplex

virus

dsDNA <1% Bowles et al., 2003

Human herpes

virus 6

dsDNA ?NK cells; infects endothelium 8–10.5% Yoshikawa et al., 2001; Caruso et al.,

2002; Kühl et al., 2005; Andreoletti et al.,

2009

Human

immunodeficiency

virus 1 and 2

ssRNA Gp120 Common in HIV positive patients Shaboodien et al., 2013

Influenza virus ssRNA Ectopic trypsins 1.7–10% (up to 10% patients in

influenza pandemics)

Bowles et al., 2003; Rezkalla and Kloner,

2010; Pan et al., 2011; Ukimura et al.,

2012

Mumps virus ssRNA Up to 15% of mumps cases before

introduction of vaccine (associated

with endocardial fibroelastosis)

Rosenberg, 1945; Arita et al., 1981

Parvovirus B19 ssDNA B19 receptor (erythrocyte P antigen) 1–36.6% Porter et al., 1988; Bowles et al., 2003;

Kühl et al., 2005; Andreoletti et al., 2009

Polio virus ssRNA Up to 40% of cases of poliomyelitis Laake, 1951

Rabies virus ssRNA Invasion of neural tissue or blood cells ? Ross and Armentrout, 1962; Cheetham

et al., 1970; Venkat Raman et al., 1988;

Liao et al., 2012

Respiratory

syncytial virus

ssRNA ? <1% Huang et al., 1998; Bowles et al., 2003;

Eisenhut, 2006

Rubella virus ssRNA ? ? Ainger et al., 1966; Kriseman, 1984

Vaccinia virus

(smallpox vaccine)

dsDNA ? <1–9.5% Karjalainen et al., 1983; Casey et al.,

2005

Varicella virus dsDNA ? ? Woolf et al., 1987; Rich and McErlean,

1993; Alter et al., 2001; Biocic et al.,

2009; De et al., 2011

? - Information not available.

Patients can take a varied clinical course, from acute to
chronic inflammation involving focal or diffuse areas of the
myocardium (Fung et al., 2016). Figure 1 illustrates demonstrates
the histology from a case of viral myocarditis due to PVB19,
characterized by diffuse interstitial myocardial inflammatory
infiltrate composed of CD68 positive macrophages, CD3
lymphocytes in an interstitial and perivascular distribution with
minimal necrosis (Tavora et al., 2008). Some have insidious onset
with limited inflammation, others undergo fulminant course with

overwhelming inflammation or develop chronic heart failure
from an autoimmune-mediated process (Heymans, 2006). There
are some genetic predispositions, making some individuals more
susceptible to viral myocarditis. For example, the commonest
polymorphism for the KCNQ1 gene encoding for the slow
inactivating K+ channel in Asians, appears to be protective
against viral-induced arrhythmias (Steinke et al., 2013). Not
all viruses are the same: some viruses such as CVB3 and
adenovirus serotype 5 can induce more severe viral myocarditis
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FIGURE 1 | Histopathological findings in parvoviral myocarditis. (A) Diffuse interstitial myocardial inflammatory infiltrate more prominent around interstitial

capillaries and composed of macrophages and lymphocytes (20×). (B) Hematoxilin-eosin stain showing vasocentric inflammation (40×). (C,D) CD68 positive

macrophages were the most abundant cells present. (C-10X D-20X; E) Rare CD3 positive lymphocytes. (F) Essentially negative CD20 immunohistochemical stain.

Figure and figure legends reproduced from Tavora et al. (2008) with permission.

(Savon et al., 2008; Valdes et al., 2008). For the post-mortem
of infants suffering from SCD, only a minority of cases showed
features of myocardial inflammation (Gaaloul et al., 2012),
suggesting contributing factors, such as signals initiated by the
viruses leading to ion channel dysfunction or electrophysiological
and structural remodeling, to arrhythmogenesis. Fundamentally,
viruses must have somemeans of subverting the host’s machinery
for their replication to ensure their own survival. This can
be achieved by using the host’s signaling mechanisms or the
mircroRNA (miRNA) system to target the host’s messenger

RNAs for translational repression and degradation (Tomari
and Zamore, 2005). The aim is to shut down the host’s
protein translation machinery and enhance viral pathogenicity
or replication (Orom et al., 2008; Hemida et al., 2013; Tong
et al., 2013; Ye et al., 2013). As we shall see later, altered
cellular signaling, such as activation of kinases and enzymes, and
upregulation of miRNAs, can lead to ion channel remodeling
that can potentially reduce the threshold for arrhythmogenesis.
Thus, the host’s immune response or viral factor can induce
electrophysiological or structural remodeling, resulting in action
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potential (AP) conduction or repolarization abnormalities to
promote arrhythmogenesis (Figure 2; Tse and Yeo, 2015).

ARRHYTHMOGENESIS CAN ARISE FROM
AP CONDUCTION OR REPOLARIZATION
ABNORMALITIES

Mechanisms of arrhythmias can be divided into triggered activity
and reentry (Figure 3; Tse, 2015; Tse et al., 2016m). Triggered
activity arises from either early or delayed afterdepolarization
phenomena (EADs and DADs), which are depolarization events
occurring before the next AP. Normally the repolarization phase
is determined by a balance of inward currents mediated by the
Na+-Ca2+ exchanger (INCX) and L-type Ca2+ channels (LTCC,
ICa,L), and outward currents mediated by a number of K+

channels (IKr, IKs, IK1,IK,ATP; Nerbonne, 2000; Tse et al., 2016j).
Prolongation in action potential duration (APD) can result in
LTCC reactivation, typically during phase 2 or phase 3 of the AP,
leading to EADs (January et al., 1988). By contrast, DADs can
develop under conditions of intracellular Ca2+ overload (Priori
and Corr, 1990). This involves spontaneous release of Ca2+

from the sarcoplasmic reticulum via the ryanodine receptors
(RyRs) and subsequent activation of the Na+-Ca2+ exchanger
(NCX). Both EADs and DADs can therefore result in membrane
depolarization, and if these are of sufficient amplitude, triggered
activity can be elicited.

Reentry involves re-activation of the myocardium that has
recovered from refractoriness, and may involve an obstacle for
the circus-type, or without an obstacle in phase 2 reentry (Tse
et al., 2016d). Circus-type reentry requires three conditions:
reduced conduction velocity (CV) of the AP wave, so that

the tissue ahead remains excitable, unidirectional conduction
block to prevent APs traveling in opposite directions from
extinguishing, and an obstacle (which can arise dynamically
or be a fixed structural defect) around which the AP is able
to circulate (Tse, 2015). Thus, a decrease in the wavelength of
excitation (λ) given by the product of CV and reduced effective
refractory period (ERP), would predispose to reentry (Smeets
et al., 1986; Vaidya et al., 1999; Osadchii, 2010, 2014; Tse et al.,
2012, 2016e,f,g,k,o).

Of these parameters, CV of the APs traveling through the
myocardium, traditionally described by the core conductor
theory, depends on both passive and active membrane properties
(Tse and Yeo, 2015; Tse et al., 2016d). Passive properties
refer to the biophysical parameters of axial resistance (ri),
extracellular resistance (ro) and membrane capacitance (cm).
The existence of electrical communication pathways between
successive cardiomyocytes was shown, mediated by gap junctions
(Spray and Burt, 1990). Six connexin (Cx) subunits make up
a connexon and two connexons make up a gap junction.
Since the discovery of gap junctions, it has been assumed that
their electrical coupling is the primary mechanism by which
cardiac conduction occurs. However, this is in conflict with
experiments in heterozygous Cx43+/−− mice, which showed 45–
50% reduction in Cx43 expression, but CV was either unaltered
(Morley et al., 1999; Vaidya et al., 2001; van Rijen et al., 2004;
Stein et al., 2009, 2011; George et al., 2015) or reduced by 23–
44% (Guerrero et al., 1997; Thomas et al., 1998; Eloff et al., 2001).
This suggests other mechanisms, such as ephaptic coupling, may
have an important role in mediating cardiac conduction (Rhett
and Gourdie, 2012; Lin and Keener, 2013, 2014; Rhett et al.,
2013; Veeraraghavan et al., 2014a,b,c, 2015; George et al., 2015).
This is clinically relevant because interstitial edema can increase

FIGURE 2 | Host and viral factors can induce structural and electrophysiological remodeling to induce cardiac arrhythmogenesis. These include ion

channelopathies, oxidative stress, inflammation, and altered intracellular signaling. Together, these act to alter intercellular coupling, produce interstitial oedema and

fibrosis, which would lead to conduction abnormalities. Abnormal Ca2+ handling and K+ channel downregulation lead to abnormal repolarization.
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FIGURE 3 | Mechanisms of cardiac arrhythmias in viral myocarditis

involves triggered activity and reentry. Prolonged repolarization leads to

development of early afterdepolarizations (EADs), whereas abnormal Ca2+

handling produces delayed afterdepolarizations (DADs). EADs and DADs can

elicit triggered activity. Reduced conduction velocity (CV), increased CV

dispersion and decreased refractoriness can increase the likelihood of

circus-type reentry. Prolonged repolarization and decreased refractoriness can

predispose to phase 2 reentry.

extracellular volume, thereby reducing CV (Veeraraghavan et al.,
2012).

Active properties refer to the voltage-gated conductance
responsible for the AP upstroke, namely the Na+ channels.
The effective refractory period (ERP) is the time over which
Na+ channels are inactivated and cannot open again. They
can be reactivated when the membrane potential is restored to
the resting value. Thus, APD usually approximates ERP, i.e., a
shorter repolarization time course usually leads to shorter ERP.
When APDs are prolonged, sudden increase in heart rate can
engage the steep portion of APD restitution curve, producing
APD alternans, unidirectional conduction block, wave break and
reentry (Hsieh et al., 2009, 2014, 2016; Tse et al., 2016m). Phase
2 reentry simply involves a difference in APD between two
electrically connected regions, where conduction of the action
potential dome from sites where it is maintained to sites where
it is abolished can then result in an extrasystole (Shimizu et al.,
2005). This is thought to underlie reentrant arrhythmogenesis
in Brugada syndrome, and may be relevant in patients suffering
from viral myocarditis with an unmasked Brugada phenotype.

HOST-MEDIATED AND VIRAL-INDUCED
INFLAMMATION AND CAN PROMOTE
ARRHYTHMOGENESIS BY INDUCING ION
CHANNEL ABNORMALITIES AND
CARDIAC REMODELING

All of the above factors governing conduction or repolarization
can be affected by myocardial inflammation or changes induced
by the viruses to promote arrhythmogenesis. Thus, in a rat model
of immune-mediated myocarditis, increased oxidative stress and
inflammation can increase the release of inflammatory cytokines
such as tumor necrosis factor-α and interleukin-6, leading
to Ca2+/calmodulin Protein Kinase II (CaMKII) activation.
This can phosphorylate the Ca2+ release channel, ryanodine
receptor 2 (RyR2), to increase abnormal Ca2+ release from
the sarcoplasmic reticulum (Tse et al., 2016n). Moreover, there

is greater Ca2+ entry from the extracellular space (Tominaga
et al., 1993). Both would lead to increased duration of Ca2+

transient, which would in turn prolong APD due to positive
Ca2+i -APD coupling (Park et al., 2014a,b). This led to triggered
activity, presumably via development of EADs, although DADs
are also possible due to abnormal Ca2+ release. Regional
differences in Ca2+ transients can also increase the heterogeneity
in repolarization and produce arrhythmogenic APD alternans.
In a rat model of autoimmune myocarditis, several ion channels
mediating the fast transient outward (Ito,f) and delayed rectifier
(IKr) currents were downregulated (Saito et al., 2002; Wakisaka
et al., 2004). This led to prolongations of both ERP and APD, the
latter being responsible for EADs and triggered activity. Similar
reduction of repolarizing currents leading to APD prolongation
has also been observed in mice with autoimmune myocarditis
(Tang et al., 2007). Inflammation can also promote changes in the
extracellular matrix (ECM). Thus, ECM composition is regulated
by matrix metalloproteinases (MMPs), which are normally
inhibited by tissue inhibitors of matrix metalloproteinases
(TIMPs; Pauschinger et al., 2004). MMP activation during acute
myocarditis can tip the balance toward ECM remodeling, in
turn causing fibrosis. This would reduce CV by disrupting
cardiomyocyte-cardiomyocyte coupling or increasing fibroblast-
cardiomyocyte coupling, increasing ri and Cm, respectively (Tse
and Yeo, 2015). Moreover, viral myocarditis predisposes to the
development of dilated cardiomyopathy (DCM), which itself is
arrhythmogenic. Interested readers are directed to this excellent
article here for further discussion on the mechanisms by which
myocardial infections by cardiotropic viruses lead to DCM and
heart failure (Baksi et al., 2015).

Viruses can also alter the function or expression of ion
channels or induce structural remodeling of the myocardium.
CVB3 can increase the ICa, leading to APD prolongation
(Steinke et al., 2013). It also increases IKr and IKs initially but
decreases them in the longer term, leading to APD shortening
and prolongation, respectively. CVB3 can upregulate miR-1,
which in turn disrupts cardiomyocyte-cardiomyocyte coupling
by translational repression of the gene GJA1, which encodes for
connexin-43 (Cx43; Xu et al., 2012). Together, these changes
induced by CVB3 would produce Ca2+ overload and induce
abnormalities in action potential repolarization and conduction,
predisposing to both triggered activity and reentry. The
cardiotropic PVB19 appears to target endothelial cells as opposed
to cardiomyocytes (Bultmann et al., 2003). Since endothelial
cells are found in the heart and can communicate with the
adjacent cardiomyocytes, endothelial dysfunction may indeed be
responsible for cardiac remodeling during inflammation. PVB19
a pro-apoptotic protein called viral protein NS1, which can
activate caspase 3, leading to the degradation of the Na+/H+

exchanger (Lupescu et al., 2009). Its B19 minor capsid protein
VP1 has intrinsic phospholipase A2 activity, which can increase
the activity of Ca2+ release-activated Ca2+ channel (ICRAC),
which is normally responsible for capacitative, store-operated
Ca2+ entry by increasing ICa (Lupescu et al., 2006). PLA2 activity
of VP1 is thought to underlie downregulation of Na+/K+-
ATPase and a number of K+ channels (mediating IKr and inward
rectifying currents, IKir; Almilaji et al., 2013; Ahmed et al., 2014,
2015).
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Finally, there may be interaction between genetic
predisposition of ion channel dysfunction and viral myocarditis
(Salerno et al., 2011; Juhasz et al., 2014). In a case series, patients
who suffered from viral myocarditis complicated by ventricular
fibrillation showed electrocardiographic features of Brugada,
early repolarization and short QT syndromes (Salerno et al.,
2011). Interestingly, not only were ventricular arrhythmias
observed during the acute phase of the myocarditis but persistent
ECG changes were observed after the inflammation has subsided,
suggesting underlying abnormalities in ion channel function,
predisposing to arrhythmogenesis during myocarditis. Indeed,
as pointed out by these authors (Salerno et al., 2011), this could
be due to temperature-dependent alterations in ion channel
function (Pasquié, 2005). This notion is consistent with previous
observations that infants suffering from SCD had mild fever
before their deaths (Gaaloul et al., 2016), which would suggest
fever as a trigger of the arrhythmia (Pasquié, 2005). This is also
in keeping with previous associations between exacerbation of
a Brugada pattern and a febrile state (Patane and Marte, 2010;
Patane et al., 2010).

CURRENT MANAGEMENT OPTIONS AND
FUTURE THERAPY

Diagnosis of viral myocarditis can be difficult, and requires
a series of investigations. Blood tests may reveal cardiac
damage as reflected in raised troponins and high sensitive C-
reactive protein assays (Guo, 2008). Polymerase chain reaction
(PCR) can be used to detect viral nucleic acid materials for
confirming a specific viral infection. Electrocardiography is
non-specific, but can reveal conduction block, ST segment
elevation or T wave abnormalities. Ventricular tachycardia
or fibrillation may be observed. Echocardiography is used to
determine ventricular function and rule out non-viral causes
of heart failure, and can distinguish between acute from
fulminant myocarditis (Felker et al., 2000). Cardiac magnetic
resonance imaging is excellent for characterizing structural
abnormalities, such as areas of fibrosis by late gadolinium
enhancement (Vassiliou et al., 2014; Tse et al., 2015a,b) It
is highly valuable in the diagnosis of myocarditis because it
can detect interstitial edema during acute inflammation and
fibrosis from a reparative process (Babu-Narayan et al., 2007;
Petryka et al., 2014; Baksi et al., 2015). Interstitial edema reflects
increased extracellular fluid volume, which would reduce CV
by an ephaptic mechanism. Traditionally, the confirmatory test
for diagnosing viral myocarditis was endomyocardial biopsy,
which can be guided by electro-anatomical mapping to reduce
the likelihood of false negatives. The criteria is a value more
than 14 leukocytes/mm2 and a T-lymphocyte count of more than
7 cells/mm2 (Basso et al., 2013). However, due to advances in
CMR technology, the use of biopsy is now limited when giant
cell myocarditis is suspected.

For arrhythmic risk stratification, using different indices based
on ECG parameters have been used for congenital arrhythmic
syndromes and heart failure (Tse, 2016a,b,c; Tse and Yan,
2016a,b), but not for viral myocarditis. CMR can be used for

stratifying patients into low and high risk group for developing
ventricular arrhythmogenesis by quantifying the amount of
interstitial edema and fibrosis, which would guide monitoring
and therapy (Strauss andWu, 2009; Mavrogeni et al., 2013; Baksi
et al., 2015; Kallianos et al., 2015; Neilan et al., 2015; Sanguineti
et al., 2015; Anzini et al., 2016).

The major problem of viral myocarditis is the limited number
of drugs available for modifying the course of the disease and
preventing the arrhythmic complications (Kindermann et al.,
2012). The current treatment is supportive, using medications
such as angiotensin converting enzyme inhibitors, beta blockers
and spironolactone. Anti-arrhythmic agents are used when
ventricular arrhythmias are observed. Mechanical circulatory
support is potentially life-saving by allowing an interval for
the return of heart pumping function or providing a bridge
to heart transplantation, which may be required in the worst
case scenario (Duncan et al., 2001). Other suggested approaches
are immunosuppression, immunoglobulin, immunoadsorption,
and anti-viral treatment (Jensen and Marchant, 2016). However,
immunosuppressive therapy should be limited to giant cell
myocarditis and lymphocyticmyocarditis. The use of intravenous
immunoglobulin is not recommended currently. There is a
pressing need for drug development, and novel therapeutic
agents that can reduce viral entry into cardiomyocytes,
and viral-induced or host-mediate myocardial inflammation,
which would reduce the arrhythmic burden in this patient
population.

The use of animal models has advanced our understanding
of the mechanisms of arrhythmias and provide a platform
for assessing the efficacy of pharmacological therapy (Chen
et al., 2016; Choy et al., 2016; Tse et al., 2016a,b,c,h,i,l). Thus,
pre-clinical mouse studies have demonstrated the efficacy of
Chinese medicinal extracts such as QiHong and Qishaowuwei
formula in suppressing viral attachment and penetration, which
significantly ameliorated CVB3-induced myocardium necrosis
(Song et al., 2007; Fengqin et al., 2010). The benefits of traditional
Chinese medicines in viral myocarditis thus warrant further
investigation. Other novel therapies include mutation of the
viral genome to induce the expression of cytokines, such as
interferon-gamma, which can modulate the immune responses
and prevent inflammation (Henke et al., 2008). Modulation
of ion channel function may be useful for anti-arrhythmic
therapy. Triggered activity can be suppressed by reversing APD
prolongation and/or Ca2+ overload. Thus, EADs can be inhibited
the late INa (Belardinelli et al., 2013), whereas DADs could be
abolished by blocking RyR2 (Savio-Galimberti and Knollmann,
2015) or NCX (Sipido et al., 2006). KATP channel openers such
as mexiletine, with previously demonstrated cardioprotective
effects during ischaemia, could suppress APD prolongation
during acute myocarditis and may therefor protect against
Ca2+ overload, DADs and spatial heterogeneities in APDs
(Niwano et al., 2012).

In conclusion, viral myocarditis is an important cause of
mortality especially in infants, adolescents and young adults,
predisposing to life-threatening cardiac arrhythmias. Current
drug options are inadequate and are mainly supportive.
More efforts need to be devoted to the development
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of novel pharmacological agents that can prevent viral
invasion of cardiac tissue as well as viral- or host-induced
inflammation, and reducing arrhythmic complications of the
myocarditis.
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