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Quantifying the future risk of
dengue under climate change in
Japan

Katsuma Hayashi, Marie Fujimoto and Hiroshi Nishiura*

School of Public Health, Kyoto University, Kyoto, Japan

Background: In metropolitan Tokyo in 2014, Japan experienced its first

domestic dengue outbreak since 1945. The objective of the present study was

to quantitatively assess the future risk of dengue in Japan using climate change

scenarios in a high-resolution geospatial environment by building on a solid

theory as a baseline in consideration of future adaptation strategies.

Methods: Using climate change scenarios of the Model for Interdisciplinary

Research on Climate version 6 (MIROC6), representative concentration

pathway (RCP) 2.6, 4.5, and 8.5, we computed the daily average temperature

and embedded this in the e�ective reproduction number of dengue, R(T), to

calculate the extinction probability and interepidemic period across Japan.

Results: In June and October, the R(T) with daily average temperature T, was

<1 as in 2022; however, an elevation in temperature increased the number of

days with R(T) >1 during these months under RCP8.5. The time period with

a risk of dengue transmission gradually extended to late spring (April–May)

and autumn (October–November). Under the RCP8.5 scenario in 2100, the

possibility of no dengue-free months was revealed in part of southernmost

Okinawa Prefecture, and the epidemic risk extended to the entire part of

northernmost Hokkaido Prefecture.

Conclusion: Each locality in Japan must formulate action plans in response to

the presented scenarios. Our geographic analysis can help local governments

to develop adaptation policies that includemosquito breeding site elimination,

distribution of adulticides and larvicides, and elevated situation awareness to

prevent transmission via bites from Aedes vectors.

KEYWORDS

flavivirus, global warming, temperature, arbovirus, mathematical model, basic

reproduction number

Introduction

Dengue fever is a mosquito-borne infectious disease found in most tropical and

subtropical areas, which causes an estimated five million confirmed cases and several

thousand deaths each year worldwide (1). Dengue is endemic in tropical areas where the

disease is present throughout the year, as well as in other regions where the disease is

not seen in the winter season and only sporadic minor outbreaks occur during warm

and wet seasons via imported infections (2). Owing to climate change, dengue fever is

expected to spread to previously unaffected areas (3). Dengue virus is transmitted by
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Aedes albopictus and Aedes aegypti, and these vector insects

increase their activity in response to temperature (4). Many

entomologic, virologic, andmodeling studies have demonstrated

that climate change would increase the impact of dengue across

the globe (2, 3, 5), contributing to an elevated disease burden (6).

Climate change is a major public health concern. At its

most recent conference, the Intergovernmental Panel on Climate

Change established the goal of limiting the increase in global

average temperature by the end of the twenty-first century to

1.5◦C (7). Forecasting the burden of dengue infections at the

global level is essential; however, forecasting at the regional level

is even more critical when considering adaptation policies (8).

Currently, Japan is not a dengue-endemic country, and prior

to the COVID-19 pandemic, ∼50–300 confirmed imported

dengue cases were reported annually in Japan (9). However, the

years 2013–2014 were an exception. In 2013, a German tourist

returning from Japan who had no recent history of travel to

any dengue-endemic country was diagnosed with dengue fever

upon her return to Germany. The possibility of autochthonous

dengue transmission at a local level in Japan was suspected (10).

Subsequently, in 2014, the first domestic outbreak since 1945 was

reported in Tokyo, involving a total of 160 confirmed cases of

dengue fever from August to October (11). However, there have

been no subsequent reports of domestic infections as of June 1st,

2022 (12).

Numerous studies have predicted the increase in dengue

owing to climate change in dengue-endemic countries (13).

Most studies have involved time-series predictions using

approaches such as autoregressive models (e.g., ARIMA) (14)

or predictions using climate change parameters as variables in

the effective reproduction number, i.e., the average number of

secondary transmissions in humans produced by each primary

case of human infection via a mosquito vector (15). In addition

to mechanistic modeling studies that predict a future increase in

the risk of dengue, more thorough spatiotemporal projections

of dengue are needed, including regarding the probability of

a major epidemic given dengue virus importation (16). We

previously estimated the probability of an epidemic in Japan

using the time-inhomogenous branching process, focusing on

the risk around 2014 in Japan (17). Ishizaki recently developed a

climate change projectionmodel for devising adaptation policies

in Japan by regularly updating climate change scenarios in

the country. In that model, projected climatologic variables in

fine spatial scale are produced through the year 2100 (18).

Combining a stochastic model of dengue with climate change

scenarios, it becomes possible to evaluate the probability and

magnitude of future dengue epidemics in Japan, both spatially

and temporally.

The objective of the present study was to quantitatively

assess the risk of dengue in Japan based on climate change

scenarios in a high-resolution geospatial environment, building

on a solid theory as a baseline in consideration of future

adaptation strategies.

Materials and methods

Data source for climate model

In this study, we used bias-corrected climate scenarios across

Japan based on the cumulative distribution function-based

downscaling method using the Climate Model Intercomparison

Project Phase 6 (CMIP6) (18). The projection model is a bias-

corrected climate scenario for a 1-km area of Japan (covering

377,449 geographic sites on the Japanese landmass) and is

based on five global climate models [Model for Interdisciplinary

Research on Climate version 6 (MIROC6), MRI-ESM2-

0, ACCESS-CM2, IPSL-CM6A-LR, MPI-ESM1-2-HR] from

CMIP6 with historical data, that offers scenarios of SSP1-

representative concentration pathway (RCP)2.6, SSP2-RCP4.5,

and SSP5-RCP8.5. The SSP1-RCP2.6, SSP2-RCP4.5, and SSP5-

RCP8.5 scenarios are the climate change projection models

proposed in the CMIP, classified according to carbon dioxide

emissions and human socioeconomic activity (7). Historical data

comprise a simulation model based on observations from 1900

to 2015. A modified version of Iizumi et al. (19) (2010, 2011,

2012, 2014, 2017) was applied as the bias correction method.

This method is non-parametric, and error detection and

correction are performed using the monthly cumulative density

function. Daily data are available for eight variables (daily

minimum, maximum, and average temperature, precipitation,

total solar radiation, downward longwave radiation, wind

speed, and relative humidity) for 1900–2100. Of the available

scenarios, we specifically used the MIROC6 model, which was

cooperatively developed by a Japanese modeling community

to meticulously reflect the meteorological conditions in Japan

(20). All data are available from the National Institute for

Environmental website (18).

Quantifying the e�ective reproduction
number

The effective reproduction number of dengue virus, R(T),

given temperature in degrees Celsius,T, can be written as follows

(8, 21, 22):

R (T) =
ma2bc

rµ
e−µEIP , (1)

where µ is the mosquito vector mortality rate, r is the human

host recovery rate, m is the vector-to-host ratio, a is the vector

bite rate, b is the transmission coefficient from human to vector,

c is the transmission coefficient from vector to human, and EIP is

the extrinsic incubation period. All seven variables appearing in

Equastion 1 can be expressed as a function of mean temperature.

The respective parameters m = 0.37, r = 0.2, and µA =

0.02 are taken from our previous study (17), where µA is the

maximum adult mortality rate. The reproduction number R(T)
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takes the value 0 in the range T ≤ 14.6 and is an upward

convex function in the range 14.61 < T < 40.4. The analytical

solution for which R(T) = 0 at 14.61 < T < 40.4 is T = 28.5

(i.e. the derivative of R(T) being zero), where the maximum

value is R(T = 28.5) = 3.38, indicating that if the average

temperature is too high, the value of the reproduction number

in this particular model decreases; a past study supports this

phenomena (21). For simplicity, in the present study, we aimed

to avoid underestimation of the risk; thus, we did not adopt the

controversial decrease in R(T) over 28.5◦C. In other words, we

defined R(T) as:

R (T) =

{

ma2bc
rµ exp (−µEIP) , for T < 28.5

3.38, for 28.5 ≤ T
. (2)

Projection of dengue risk

Future temperature

Daily data are available for projected average temperatures

up to the year 2100. The method of uncertainty representation

in this study was based on a state-space model for the time

series of average temperatures. In particular, when representing

the long-term time series, a specific day in the year (e.g., July

1) was selected from 1990 to 2100, and we considered these

data to be observed values yt. The expected value of the average

temperature is αt, excluding the observation error εtwith mean

0 and variance H. In other words:

yt = αt + εt , εt ∼ N (0,H) , t = 1, 2, . . . , n, (3)

αt+1 = αt + ηt, ηt, ∼ N (0,Q) , t = 1, 2, . . . , n− 1, (4)

where ηt is the state disturbance term for the expected value

αt , assuming mean 0 and variance Q. We also assumed that the

initial state is

α1 = N (α1, P1) , (5)

and that the initial state follows a normal distribution according

to We also assumed that εt , ηt , α1 are all independent of

each other. Using Equations 3–5, the expected value of αt

and the 95% confidence interval (CI) of αt in the temperature

prediction model are estimated using the Kalman filtering and

smoothing algorithm. In this study, temperatures were assumed

to vary independently in the geospatial environment to reduce

computational complexity. The estimation was performed

using the R package “KFAS” (22, 23). The upper CI for the

reproduction number was obtained by substituting 2.5th and

97.5th percentile of the CI of temperature in Equation 2.

Extinction probability of dengue

The extinction probability of dengue was computed using

a branching process model (24–26). Assuming a negative

binomially distributed offspring distribution with R(T) as the

mean of the offspring distribution and k as the dispersion

parameter, the probability qti that an infected person will not

produce any secondary cases (that is, the extinction probability

at time t in mesh i) was formulated as follows:

qti =
1

(

1+ Rti
k
(1− qti)

)k
. (6)

For the computation presented in the main text, we assumed

that the dispersion parameter k→ 1, i.e., a special case of the

negative binominal distribution approximating the geometric

distribution. We also examined the case when k = 10, i.e., the

distribution is that is close to the Poisson distribution (k→ ∞),

and the case when k = 0.1, i.e., the distribution that has a long

tail. The extinction probability here is the conditional probability

of extinction given that a single infectious imported case entered

a specific geographic mesh.

Interepidemic period

We calculated the reproduction number and extinction

probability on a daily basis through 2100, and we counted the

number of days in a year in which the extinction probability

is 1 (i.e., R ≤ 1) and defined the total number of days without

an outbreak as the interepidemic period (IEP) (27). During

the IEP, theoretically, no large-scale epidemic will occur no

matter howmany infected people enter the country and whether

any infection declines to extinction. Therefore, virtually no

countermeasures need to be implemented during the IEP. The

time series data of IEP from 1990 to 2100 were visualized, and

the 95% CIs of the observed values are calculated using the

KFAS package.

Risk mapping

Geographic distributions of the extinction probability and

IEP were examined across Japan. Temperature and effective

reproduction number were modeled for each geographic mesh

i, mechanistically and thus independently, implying that our

model assumed that a dengue outbreak within a single

geographic mesh did not affect the risk in neighboring areas.

Results

Temporal distribution of daily average
temperature

Figure 1A illustrates the daily average temperature for a

specific geographic mesh in Tokyo that contains Yoyogi Park,

from 1990 to 2100, on July 1. From 2016 to 2100, RCP2.4,

4.5, 8.5 scenarios based on the MIROC6 model were used.

The mesh information for Yoyogi Park in Tokyo is located
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FIGURE 1

Daily average temperatures on July 1 from 1990 to 2100 in Tokyo based on the Model for Interdisciplinary Research on Climate version 6

(MIROC6) and a geographic snapshot of daily average temperatures in Japan. (A) Temporal distribution of daily average temperatures on July 1

in the specific mesh containing 35.6716◦N, 139.6967◦E, where Yoyogi Park in Tokyo is located. The years from 1990 to 2015 are historical data

and reconstructed estimates based on observations. The MIROC6 was used to predict the period from 2016 to 2100. The oscillating lines are the

model predictions. Thick lines are expected values estimated using Kalman filtering and smoothing. The shaded upper and lower lines are 95%

confidence intervals of the expected values. Red lines represent the representative concentration pathway (RCP) 2.6 scenario, green the RCP4.5

scenario, and blue the RCP8.5 scenario. (B) Geographic snapshot of the average temperature on July 1, 2030 in Japan. The darker the red color,

the higher the temperature. Japan is in the northern hemisphere, and temperatures are lower in the north. The snapshot shown is for July 1,

during the summer season; however, even on the same day, there is a temperature di�erence of more than 20◦C within Japan.

at latitude 35.6716◦ N and longitude 139.6967◦. The figure

displays the 95% CIs of mean values using Kalman filtering and

smoothing. Figure 1B depicts a snapshot of the daily average

temperature on July 1, 2030. Japan has a long north–south

axis, and there is a difference of more than 20◦C on the

same day between Hokkaido, the northernmost prefecture, and

Okinawa, the southernmost prefecture, which belongs to a

subtropical zone.

E�ective reproduction number in Tokyo

The effective reproduction number R(T) in Tokyo was

calculated using temperature T as an input variable. Figure 2

shows the predicted R(T) in theMIROC-6model onMay 1, June

1, July 1, August 1, September 1, and October 1 from 1990 to

2100 under the selected RCP scenarios. Little impact was seen

in August and September, the warmest summer months, as the

ceiling of R(T) was reached. During these months, the risk of

a dengue epidemic remained high in Tokyo. In July, the R(T)

increased as a function of time, steadily rising to above 1. In June

and October, the R(T) was <1, as in 2022, but elevation of the

R(T) during these months was more pronounced under RCP8.5

than under the other two scenarios, considerably influenced by

a marked increase in temperature. Our estimate in July, Tokyo,

2014 was estimated to be up to 3.4, while our published estimate

that analyzed the actual outbreak has shown that R(T) was

overall on the order of 2–5 (28).

Extinction probability

Figure 3 shows the temporal distribution of the extinction

probability in the selected mesh in Tokyo. The optimistic

RCP2.6 scenario showed no marked increase in the number

of days with R(T) >1 through 2100. However, under the

RCP8.5 scenario, our model showed that the risk period of

dengue transmission was markedly lengthened over the course

of time, gradually extending to late spring (April–May) and

autumn (October–November). Supplementary Figure 1 shows

the extinction probabilities for various dispersion parameters.

When k is small, that is, when the tail of the distribution is

long, the extinction probability becomes large even for the same

effective reproduction number, indicating that the epidemic

easily declines to extinction spontaneously. If the distribution

is close to the Poisson distribution (i.e. large k-value), the
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FIGURE 2

Projected e�ective reproduction number for each RCP scenario in Tokyo: May–October. The estimated e�ective reproduction number from

May 1 to October 1 based on the MIROC-6 model is shown. The thick line represents the expected value, and the upper and lower shaded areas

are the e�ective reproduction number with the 95% confidence interval based on the 95% confidence interval of daily average temperature. (A)

Red is the RCP 2.6 scenario, green is the RCP 4.5 scenario, and blue is the RCP 8.5 scenario; (A) May 1, (B) June 1, (C) July 1, (D) August 1, (E)

September 1, and (F) October 1. The maximum value of the e�ective reproduction number was 3.4 in the model, and there was little di�erence

in the impact between the scenarios for August and September, the summer season in Japan. Even in the most pessimistic scenario, RCP8.5, the

e�ective reproduction number was <1 on May 1, indicating that the risk of a dengue epidemic was low in Tokyo. However, in July, the e�ective

reproduction number steadily rose to above 1 in all scenarios whereas in June and October, the value was <1, as in 2022.

probability of a large epidemic from one infected case increases.

The early period estimates in 1990 showed that R(T) was smaller

than or at least close to the value of 1, endorsing the fact that

Japan was dengue free for 70 years by 2014 outbreak.

Interepidemic periods

The temporal distribution of the IEPs for the selected mesh

in Tokyo is shown in Figure 4. Under the RCP8.5 scenario,

a total of 280 (95% CI: 260–302) days were considered the

IEP in 1990 whereas only 220 (95% CI: 190–240) days were

considered the IEP in the year 2100. Namely, under the RCP8.5

scenario, the dengue-free period was shortened by 2 months.

Under the RCP2.6 scenario, the IEP in 2100 was calculated

to be 260 (95% CI: 240–290) days, and the dengue–free

period would be shortened by 20 days in comparison with the

year 1990.

Snapshot of extinction probability and
days of IEP

Figure 5 shows how the extinction probability and IEP

behaved over space and time. Data for 377,449 geographic

locations (i.e., for each 1 km2 mesh) were examined, excluding

ocean areas. In Figures 5A–C, the extinction probability on July

1, 2030 was calculated to be 0% in Tohoku and Hokkaido.

However, the epidemic risk area had moved northward over

time; the geographic areas with a risk for dengue transmission

had also spread from coastal to inland areas in 2050. By the

year 2100, the epidemic risk extended to all of northernmost

Hokkaido Prefecture. Figures 5D–F shows the IEPs divided into
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FIGURE 3

Time-dependent changes in the dengue extinction probability in Tokyo. The horizontal axis shows the years 1990 to 2100. The vertical axis

measures the period from January 1 to December 31. The density of the purple area reflects the daily extinction probability in Tokyo’s Yoyogi

Park. The extinction probability at 100% is shown in white. (A) The RCP2.6 scenario, (B) RCP4.5 scenario, and (C) RCP8.5 scenario. Under the

most optimistic RCP2.6 scenario, there is little di�erence between the years 2022 and 2100. However, under the RCP8.5 scenario, the risk of a

large-scale dengue epidemic is gradually extended not only during the summer (June–September) but also in the autumn and spring to include

November and April.

FIGURE 4

Interepidemic periods in Tokyo for each RCP scenario. The

number of days in a year when the extinction probability is 100%

were counted and defined as the interepidemic period (IEP). The

temporal distribution of the IEP for the selected mesh, which

contains Yoyogi Park in Tokyo, is shown. The thick line shows

the expected IEP values, and the upper and lower shaded areas

are 95% confidence intervals (CIs), including the observation

error calculated using Kalman filtering and smoothing. In 1990,

IEP values were 280 (95% CI: 260–302) days per year, but this

decreased by ∼2 months to 220 days (95% CI: 190–240) under

RCP8.5 scenario in the year 2100.

six discrete categories and maps with the estimated values, with

a geographic resolution of 1 km2. Under the RCP8.5 scenario, a

part of southernmost Okinawa Prefecture would have an IEP of

fewer than 60 days by the year 2100. In southwest Hokkaido, the

yearly period with a high risk of dengue transmission continued

for more than 60 days in the year 2100.

Discussion

In the present study, we explored the future risk of dengue

under climate change scenarios over time and space in Japan,

a temperate zone country. Using MIROC6 climate change

scenarios RCP2.6, 4.5, and 8.5, we computed the daily average

temperature and embedded this in the effective reproduction

number of dengue to calculate the extinction probability and

IEP. In June and October, the effective reproduction number

of dengue, R(T), was <1, as in 2022; however, an elevation

of temperature increased the number of days with an R(T)

>1 during these months under RCP8.5. The time period

with a risk of dengue transmission gradually extended into

late spring (April–May) and autumn (October–November).

Under the RCP8.5 scenario in 2100, a part of southernmost

Okinawa Prefecture exhibited the possibility of no dengue–free

months, and the epidemic risk extended to the entire part of

northernmost Hokkaido Prefecture.

To the best of our knowledge, the present study was the first

to assess the long-term risk of dengue in Japan under climate

change, specifically using projected RCP scenarios and high-

resolution geospatial mesh data. Under the most pessimistic

RCP8.5 scenario, dengue risk could be present in Tokyo during

May and November in 2100. For Okinawa Prefecture, the

warmest region of Japan, our results indicated possible year-

round dengue occurrence by 2100. Even in northernmost

Hokkaido, the dengue risk would develop into a serious one.
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FIGURE 5

Snapshot of the extinction probability and interepidemic period across Japan in 2030, 2050, and 2100 under the RCP8.5 scenario. (A,D) depict

the year 2030, (B,E) the year 2050, and (C,F) the year 2100. (A–C) The probability of extinction in the Tohoku region and Hokkaido on July 1,

2030. However, in 2050, the epidemic risk area had moved northward and from coastal to inland areas. Although merely a snapshot, our

mapping shows that the epidemic risk is extended over the entire Hokkaido region by 2100. In (D–F), IEPs are divided into six discrete categories

and Japan is mapped at a resolution of 1 km2. The darker the gray color, the shorter the IEP and the longer the period of dengue epidemic risk.

The RCP8.5 scenario for the year 2100 shows that parts of the Okinawa Islands will have IEPs of fewer than 60 days, and southwestern Hokkaido

will have dengue transmission risk periods longer than 60 days.

Overall, an increase in the average temperature of 2–4◦C would

considerably change the epidemiology of dengue and increase

the risk across Japan. The epidemic during 2014 in metropolitan

Tokyo should serve as a warning signal of ongoing elevation in

the risk of dengue transmission.

It is a scientific fact that climate change will increase the

average global temperature (29). In this study, we visually

depicted the risk of dengue epidemics in a geographic segment

with calculation of the extinction probability. On the basis

of such quantified scenarios, both mitigation and adaptation

strategies must be seriously considered. In particular, our

geographic analysis can help local governments to formulate

adaptation policies that include standing water elimination,

distribution of adulticides and larvicides, and elevated situation

awareness regarding how to prevent bites from Aedesmosquitos

(e.g., wearing long sleeves in the summer, using repellents

and avoiding spending time in areas with abundant mosquito

populations). The take-home message of the present study is

that each locality must formulate action plans in response to the

presented scenarios.

The question arises of when local authorities should begin

implementing countermeasures against dengue. We believe that

our calculation of the IEP will be of assistance in developing

seasonal interventions. When the risk of dengue becomes non-

negligible in warmer seasons, local authorities should begin

to recommend the use of insect repellents, such as those

containing DEET, for the local population (30). Additionally,

more stringent countermeasures, e.g., the use of insecticides

in public areas and intensive standing water management, can

be planned for areas with a high epidemic risk. By adding

evidence to existing studies reporting on the habitat areas of

Aedes albopictus in Japan (31), we believe that the present study

findings inform concrete ideas according to quantified risk that

will directly lead to appropriate local countermeasures. It should

be noted that this study calculated the conditional probability

of extinction given an introduction of single infected individual.
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Thus, assuming that the number of independently importing

cases is n, the probability of outbreak can be calculated as

1 − qti
n. This study can be further extended to account for the

number of importations by additionally using the number of

imported cases, e.g., by estimating the number of introductions

near airport or in touristic spot where many foreign visitors

gather (32).

An important role of the present work among studies

on the future dengue risk in Japan is to offer scenarios for

further analysis. Whereas, temperature was indeed useful in

capturing the forthcoming elevated dengue risk across Japan,

future interventions must account for additional climatologic

elements, especially precipitation. One key to dealing with

dengue infections is eliminating mosquito breeding sites and

larval habitats: i.e., a container-based model (33). Mosquito

larvae require pooled water such as that accumulated in

abandoned tires and gutters that have not been cleared or

treated insecticides (34). A correlation between precipitation

and mosquito larval populations has been observed in many

studies. Theoretically, if standing water sources are effectively

eliminated, the impact of precipitation on dengue infections

will be small (35). Because quantification of Aedes breeding

sites in Japan is inadequate compared with countries that

are heavily affected by dengue infections, such as those in

Southeast Asia and Latin America (33), in the present study,

we did not include precipitation as a parameter. Moreover,

precipitation has an essential interrelationship with temperature

(36). However, caution is needed in extrapolating the findings

from tropical countries to Japan, which has four distinct seasons

with only hot and humid summers.

The present study involved the following limitations. First,

the proposed model used only daily average temperature as the

input parameter. In addition to the average temperature, the

climate variability parameters associated with the magnitude

of dengue epidemics include maximum temperature (37),

minimum temperature (38), daily temperature range (4),

precipitation (36), humidity (39), and consecutive rainy days

(36). Although there are many studies on the interdependence of

these parameters in time-series models, no model fully accounts

for the dependence among variables and mechanistically

incorporates them into the R(T). At least, we have verified

in advance that published studies on the relationship between

temperature and the dengue outbreak have shown that daily

average temperature was most strongly correlated with the

incidence of dengue (40). Further research is deemed essential

to identify a model that can more accurately calculate the

extinction probability for Japan. Second, the proposed model

did not explicitly account for geospatial dependencies, assuming

that the mechanistic process was conditionally independent,

with a single geographic mesh. The imposed assumption

may be valid while the risk of dengue remains small, but

when the number of cases increases or when conditions

such as airports or tourist attractions can be taken into

consideration explicitly, geographically dependent models need

to be considered (41). That is, accounting for geographic

dependence is not necessarily required as long as the epidemic

risk is maintained small. However, once the major epidemic

becomes unavoidable, each geographic unit starts to interact

from each other, elevating the overall risk of epidemic.

Addressing geospatial dependence would be then vital. Third,

caution must be exercised as to the method used to quantify

uncertainty. In the present study, we used Kalman filtering and

smoothing for model predictions, representing uncertainty with

respect to climate change scenarios. Apart from the included

uncertainty, we performed deterministic calculations of the

effective reproduction number. One parameter for R(T), m,

which represents mosquito abundance, was fixed at 0.37, an

estimate for the 2014 outbreak in Yoyogi Park, Tokyo (17).

This value would vary according to the volume of standing

water, precipitation, and local population density. Further

studies are deemed essential for a rigorous assessment of

these uncertainties.

Despite the above limitations, in this study, we successfully

mapped the extinction probability of dengue fever in Japan

temporally and geographically using the branching process

model. The present results lay a foundation for future studies

to accurately calculate the dengue epidemic risk and develop

appropriate adaptation measures.
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SUPPLEMENTARY FIGURE 1

Extinction probability with di�erent dispersion parameters. (A–C)

Estimate on May 1; (D–F) show estimate on June 1; (G–I) show estimate

on July 1; (J–L) show estimate on August 1; (M–O) show estimate on

September 1; (P–R) show estimate on October 1. Extinction

probabilities are shown from 1990 to 2100. The left panels show results

with dispersion parameter k = 0.1 in equation (2), the middle panels with

k = 1, and the right panels show results with k = 10. The solid red line

indicates the RCP2.6 scenario, green indicates the RCP4.5 scenario, and

blue indicates the RCP8.5 scenario. Confidence intervals are calculated

by substituting the upper and lower limits of the 95% confidence interval

for the mean temperature using the variance estimated from equations

(3, 4) into (6).
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