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Background: Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous
disease that can have profound differences in survival outcomes. A variety of powerful
prognostic factors andmodels have been constructed; however, the development of more
accurate prognosis prediction and targeted treatment for DLBCL still faces challenges. An
explosion of research on super-enhancer (SE)–associated genes provide the possibility to
use in prognostication for cancer patients. Here, we aimed to establish a novel effective
prognostic model using SE-associated genes from DLBCL.

Methods: A total of 1,105 DLBCL patients from the Gene Expression Omnibus database
were included in this study and were divided into a training set and a validation set. A total
of 11 SE-associated genes (BCL2, SPAG16, PXK, BTG1, LRRC37A2, EXT1, TGFBR2,
ANKRD12, MYCBP2, PAX5, and MYC) were initially screened and identified by the least
absolute shrinkage and selection operator (Lasso) penalized Cox regression, univariate
and multivariate Cox regression analysis. Finally, a risk score model based on these 11
genes was constructed.

Results: Kaplan–Meier (K–M) curves showed that the low-risk group appeared to have
better clinical survival outcomes. The excellent performance of the model was determined
via time-dependent receiver operating characteristic (ROC) curves. A nomogram based on
the polygenic risk score was further established to promote reliable prognostic prediction.
This study proposed that the SE-associated-gene risk signature can effectively predict the
response to chemotherapy in DLBCL patients.

Conclusion: A novel and reliable SE-associated-gene signature that can effectively
classify DLBCL patients into high-risk and low-risk groups in terms of overall survival
was developed, which may assist clinicians in the treatment of DLBCL.
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INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is the most common
type of non-Hodgkin’s lymphoma (NHL), accounting for
30%–40% of all newly diagnosed NHL cases (Armitage et al.,
2017; Siegel et al., 2017). DLBCL is an aggressive, severe, and
complex disease with broad genetic, phenotypic, and clinical
heterogeneities (Abramson and Shipp, 2005). The
heterogeneity of the disease results in different survival
outcomes in DLBCL patients receiving standard therapy
(rituximab, cyclophosphamide, doxorubicin, vincristine, and
prednisone (R-CHOP)) (Younes, 2015). About 30–40% of
patients do not respond well to standard treatment, with the
highest mortality rate in the first 2 years after diagnosis(Yin et al.,
2019).

In the era of rituximab, the International Prognostic Index
(IPI) is one of the most important tools for prognostic risk
stratification. The subsequent revisions have appeared to
improve the prognostic evaluation system in DLBCL patients.
Disappointingly, these prognostic indicators do not address the
underlying biological heterogeneity of DLBCL. Therefore, it is
urgent to explore novel and effective molecular markers for a
more accurate prediction of the prognosis of patients with
DLBCL.

Super-enhancers (SEs) have been described as a class of
regulatory domains with unusually strong transcription-
assisted activator binding capacity (Parker et al., 2013; Whyte
et al., 2013). SE is a cluster of enhancers that has a stronger ability
to promote transcription compared to the typical enhancers
(TEs). Compared with normal cells, tumor cells construct SEs
on oncogenes during tumorigenesis and recruit enhancer-
binding proteins to drive gene expression (Lovén et al., 2013).
SEs are generally occupied with abundant signals of H3K4me1,
H3K27ac, p300, Mediator, RNA polymerase II, BRD4, CDK7,
and other master transcription factors (Wang et al., 2019); among
them, H3K27ac is the preferred marker for the identification of
super-enhancers (Hnisz et al., 2013). The loss or gain of SEs has
been reported in various tumors (He et al., 2019); similarly, SEs
play a key role in the progression of DLBCL by activating the
expression of downstream oncogenes (Chapuy et al., 2013). In
addition, SE inhibitors (JQ1) used to treat DLBCL suppress the
expression of these genes (Li et al., 2021). Therefore, the
exploitation and identification of SEs-driven hub oncogenes
will provide novel insights into the diagnosis, prognosis, and
treatment of DLBCL.

The least absolute shrinkage and selection operator (Lasso)
penalized Cox regression is a variable selection and contraction
method in Cox’s proportional risk model proposed by Tibshirani
(1997). Lasso can reduce the number of variables compared to
traditional stepwise regression because less influential variables
will be regularized by shrinking their coefficients to zero (Zhang
et al., 2018). Currently, Lasso is widely used to build survival
prediction models based on complex, high-throughput genomic
data. Wu et al. (2021) identified ten important immune-related
genes most associated with the overall survival of DLBCL patients
among the 26 immune-related genes by using Lasso regression
analysis. Similarly, using group Lasso, an 11-SE-related-gene

signature effectively predicted overall survival in DLBCL.
Thus, we applied the Lasso regression method to construct a
prognostic model of DLBCL.

In this study, Lasso penalized Cox regression analysis was
performed using 521 SE-associated genes. A gene cluster
containing 11 SE-related genes (BCL2, SPAG16, PXK, BTG1,
LRRC37A2, EXT1, TGFBR2, ANKRD12, MYCBP2, PAX5, and
MYC) was screened. Subsequently, a risk score model based on
these 11 genes was constructed, which was helpful for risk
stratification and prognosis. Finally, based on the model, an
interactive nomogram containing 11 gene risk groups and
clinical characteristics was established, which provides a tool
to predict the overall survival (OS) of DLBCL patients
clinically. The workflow of our study is shown in Figure 1.

MATERIALS AND METHODS

Data Source
The microarray data and corresponding clinical information
from GSE31312 as the training data and the two other
independent datasets, GSE10846 and GSE80371, as the
external validation datasets were obtained from Gene
Expression Omnibus (GEO) database. 470 DLBCL samples
were enrolled in GSE31312, 414 in GSE10856, and 221 in
GSE80371.

Identification of
Super-Enhancer–Associated Genes
The 521 SE-associated genes identified from the DLBCL cell line
OCY-LY1 were obtained from the website http://dbcorc.cam-su.
org. H3K27ac chromatin immunoprecipitation sequencing
(ChIP-seq) signal was used to screen SE-associated genes in
the OCY-LY1 cell line. The biological function of these genes
was revealed by Gene Ontology (GO) enrichment and Kyoto

FIGURE 1 | The procedure workflow used to establish and certify the
SE-associated gene-based prognostic model for patients with diffuse large
B-cell lymphoma.
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Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis. To get the final expression matrix, we
retained the genes that overlapped between GSE31312 datasets
and the SE-associated genes in OCY-LY1.

Lasso Penalized Cox Regression Analysis
To screen the important and potential prognostic genes, Lasso
penalized Cox regression analysis was performed to establish a
predicting model using the R package “glmnet”. We identified the
optimal lambda (λ) value based on ten-fold cross-validation. Two
best-fit values (λmin and λlse) were chosen by minimizing the
mean cross-validated error to construct the Lasso models.
Subsequently, we performed the Wilcoxon test and ROC curve
analysis to compare the two parameters.

Development of the Prognostic Signature
To construct an optimal prognostic prediction model, we
integrated the candidate genes’ expression levels weighted by
their regression coefficients and calculated the risk score for each
patient, according to the forum RiskScore = ∑βi * Xi. Here, Xi is
the gene expression level, and βi is the regression coefficient.
Regarding the value obtained from the maximally standardized
long-rank statistics as a cutoff point, DLBCL patients were
separated into high- and low-risk groups.

Cox Proportional Hazard Regression
Analyses
The univariate and multivariate Cox proportional hazard
regression models were utilized to identify the correlation
between the gene expression level of the candidate genes and
OS, which was accomplished by R packages “survival” and
“survimer”. The results were shown on the forest plot. The
analyses were also applied to verify the independence of the
constructed prognostic model with other clinical features. The
parameters included the prognostic risk score and some
important clinicopathological factors, such as age, gender,
clinical stage, the situation of extranodal invasion, Eastern
Cooperative Oncology Group (ECOG) score, lactate
dehydrogenase (LDH), and IPI score. The p-value, hazard
ratio (HR), and 95% confidence interval (CI) of each factor
were calculated.

Kaplan–Meier Analysis and
Time-dependent Receiver Operator
Characteristic Curve Analysis
The Kaplan–Meier analysis method was used to compare the
differences in OS and progression-free survival (PFS) between
low- and high-risk groups, and the log-rank tests were
performed to measure the statistical significance (p-value of
less than 0.05). The R packages “survival” and “survimer”
were used to execute the analysis. Moreover, we depicted the
time-dependent ROC curve to assess the predictive capability
for different factors by figuring out the area under the ROC
(AUC) (p < 0.05).

Predictive Nomogram
In total, seven prognostic predictors (six clinical features and the
11-genes risk score) were enrolled to build the predictive
nomogram, which was used to forecast the 1-year, 3-year, and
5-year OS of the patients via R package “rms”. We calculated the
concordance index (C-index) by package “Hmisc” to evaluate the
discrimination of the nomogram. Furthermore, calibration
curves were plotted for intuitionistic comparison of the
predicted against the actual survival probabilities. Data of one
randomly selected patient from GSE31312 were used to validate
the probability of 1–5-year OS, based on the predictors in the
nomogram. Total points were calculated using the R package
“nomogramEx”. Finally, the interactive nomogram was
developed and visually displayed by the R package “regplot”.

Chemotherapy Response With
Super-Enhancer-Associated Genes
Signature
In order to predict the chemotherapy response in the low- and
high-risk groups, the R package “pRRophetic” was applied for
profiling. We straightforwardly compared the estimated half-
maximal inhibitory concentration (IC50) between low- and
high-risk groups among the different chemotherapeutics,
which exactly proved the hypothesis that the low-risk group
was likely more sensitive to the chemotherapy.

Protein–Chemical Interactions Analysis and
Chromatin Immunoprecipitation
Sequencing Profile for H3K27ac Signal
Tracks
We established an interactive network of the hub genes and
chemicals to probe into the chemicals correlated to these genes by
“NetworkAnalyst 3.0”, based on the data from the Comparative
Toxicogenomics Database (CTD). In the end, we used H3K27ac
as SE biomarkers based on the ChIP–seq profiles data from
Cistrome to visualize the location of the SEs regions and their
target genes.

RESULT

Establishment of the Lasso Penalized Cox
Regression Model
A 20,174-gene expression matrix of GSE31312 and the
corresponding clinical information of 470 DLBCL patients
were downloaded from the GEO database under the accession
number GSE31312, as described in Supplementary Table S1. In
total, 521 SE-associated genes identified from the DLBCL cell line
OCY-LY1 were obtained from the website http://dbcorc.cam-su.
org. Pathway enrichment analysis indicated that these SE-
associated genes were closely related to lymphocyte activation
and small GTPase mediated signal transduction (Supplementary
Figures S2A and C). We extracted 417 genes that
overlapped between GSE31312 datasets and the SE-associated
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genes in OCY-LY1 to construct the expression matrix. The lasso
penalized Cox regression analysis was applied to screen some
potential and vital prognostic genes. We calculated the coefficient
values at different levels of penalty (Figure 2A). First, we
identified the optimal lambda (λ) value based on ten-fold
cross-validation. Two best-fit values (lambda.min and lambda.
1se) were chosen by minimizing the mean-square error to
construct the Lasso models, and we selected two groups of
genes (48-gene group of λmin and 16-gene group of λ1se;
Figure 2B). As shown in Figure 2C, the lasso models were
reconstructed according to the λmin and λlse, and both models
performed well to separate the survival and death events
(Wilcoxon test, p < 2.2e-16). The result of the ROC curves
analysis for the two predictive models showed the AUCs were
0.808 (λ1se) and 0.886 (λmin), suggesting that both models had a
promising performance in predicting the probability of overall

survival (Figure 2D). Considering that there was no significant
difference in the predictive performance of the two models
according to AUC and Wilcoxon tests, we further studied the
16-gene model.

Association Between Candidate Genes and
Prognosis
We utilized multivariate Cox regression analyses to explore
whether each of the candidate genes is associated with the
overall survival. As the outcome of the multivariate Cox
regression analysis shown in Figure 3A, the global p-value of
the predictive model was 1.8483e-30, with the Akaike
information criterion (AIC) of 1768.55 and C-index of 0.77.
Multivariate Cox regression showed that BCL2, SPAG16, PXK,
BTG1, LRRC37A2, EXT1, TGFBR2, ANKRD12, MYCBP2,

FIGURE 2 | Lasso penalized Cox regression analysis of SE-associated 512 genes. (A) Lasso coefficient profiles of the 512 SE-associated genes. (B) The
identification of the best Lambda value. The left solid vertical line is the logarithm of lambda.min (48-gene group), and the right solid vertical line is the logarithm of
lambda.1se (16-gene group). (C) The scatter plot of survival status of patients with diffuse large B-Cell lymphoma based on the 48-gene model (left, lambda.min, p <
2.2e−16) or the 16-gene model (right, lambda.1se, p < 2.2e−16) by the Wilcoxon test. (D) ROC curves are used to compare the predictive performance for prob-
min and prob-1se to predict patient survival.
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FIGURE 3 | The 11-gene risk score model for the GSE31312 dataset. (A) Multivariate Cox regression analysis of the 13 genes (*p < 0.05, **p < 0.01, and ***p <
0.001). Hazard ratio and 95% CI are shown in the figure. Global log-rank p, C-index, and AIC were also calculated and shown. (B) The identification of the cutoff value
(cutpoint=0.55) of the risk score. (C) DLBCL patients were divided into the high-risk group and low-risk group based on the cutoff value (upper). The survival status and
time in high-risk and low-risk groups (lower). (D) Kaplan–Meier survival curves showing the difference in OS (upper) and PFS (lower) between high- and low-risk
patients (log-rank test, p < 0.0001). (E) Time-dependent ROC curves for the 11-gene model to predict patient survival.
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PAX5, and MYC were significantly associated with the overall
survival of DLBCL patients. Among these genes, BCL2, SPAG16,
LRRC37A2, TGFBR2, ANKRD12, and MYC may appear to be
the risky factors (HR > 1), while PXK, BTG1, EXT1, MYCBP2,
and PAX5 seemed to act as the protective factors (HR < 1). To
optimize the predictive model, we selected these 11 SE-associated
genes to forecast the OS of DLBCL patients.

Establishment and Validation of the
11-Gene Risk Score Model
The risk scores predicted by the coefficient of these 11 candidate
genes from the multivariate Cox regression analysis (the equation
for risk scores is shown in Materials and Method) stratify the
patients into the low-risk (n = 345) and high-risk (n = 125)
groups, with the cutoff point of 0.55 (Figure 3B). As the outcome
shown, the number of alive events is significantly more in the low-
risk group, while the death events are obviously more frequent in
the high-risk group (Figure 3C). Subsequently, we conducted a
K–M analysis to compare the differences in OS and PFS between
low- and high-risk groups. The K–M survival curve of OS
demonstrated an inferior outcome in the high-risk group
(long-rank test, p < 0.0001), consistent with the analysis of
PFS (Figure 3D). Furthermore, the time-dependent ROC

analysis also showed a favorable outcome, where the AUC was
0.797 at 1-year, 0.801 at 3-year, and 0.804 at 5-year (Figure 3E),
indicating that the risk score model has a good performance to
predict the prognostic outcomes.

Independence of 11-Gene Risk ScoreModel
in Survival Prediction
Considering the effects of other important clinical indicators,
such as age, gender, clinical stage, the situation of extranodal
invasion, ECOG score, LDH level, and IPI score, we validated the
independence of the polygenic prognostic predictive model via
the univariate and multivariate Cox regression analyses. In the
univariate Cox regression analysis, the risk score correlated with
OS of the DLBCL patients (HR at 2.718, p < 0.001), similar to
other important clinicopathological factors (Figure 4A). As for
the multivariate Cox regression analysis, risk score appeared to be
an independent and harmful factor for prediction (HR at 2.640,
p < 0.001), while only Age and ECOG score among all clinical
features showed statistical significance (p < 0.001 and p = 0.009,
respectively) (Figure 4A; Table 1). The ROC curve analysis was a
complement for verifying the predictive capacity of these
indicators, which showed that the AUC of the risk score was
0.795, greater than other clinical indicators (Figure 4B). All these

FIGURE 4 |Univariate andmultivariate analysis shows the prognostic value of 11-SE-associated-gene signature. Univariate (A) andmultivariate (B)Cox regression
analyses of the association between clinicopathological factors and OS of DLBCL patients. (C) The receiver operator characteristic (ROC) curves to predict the sensitivity
and specificity of clinicopathological factors and 11-SE-associated-gene signature-derived risk scores in DLBCL patients.
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results sufficiently confirmed that our 11-gene risk score model
was an independent and robust predictor, which has promising
application prospects in comparison with other well-establish
indicators.

Stratification Analysis
A stratification analysis was carried out to assess the predictive
abilities of the risk score model within different clinical feature
subgroups. Patients from the entire cohort were factitiously
classified by age (>60 vs. <=60), gender (Male vs. Female),
disease clinical stage (stage I–II vs. III–IV), the situation of
extranodal invasion (extranodal sites >=2 vs. < 2), IPI score
(>2 vs. <=2), and disease classification based on
immunohistochemical (IHC) [activated B cell (ABC), germinal
center B cell (GCB), and unclassified (UC)] as different
subgroups. The risk score divided the patients in the same
stratum into the low- and high-risk groups. We observed that
the K–M curves could be distinguished by the risk score model
irrespective of the subgroup, where all the high-risk groups had
inferior survival outcomes (Supplementary Figure S1).

Development of Predictive Nomogram for
Prognosis Prediction
There were seven prognostic predictors enrolled for building the
predictive nomogram to forecast the 1-year, 3-year, and 5-year
OS for the patients. The predictors of the nomogram involved the
11-genes risk score and the other six clinical indicators: age,
clinical stage, ECOG, IPI, LDH, and extranodal sites (Figure 5A).
Calibration curves were plotted for intuitionistic comparisons of
the predicted against actual survival probabilities. The calibration
curves of 1- to 5-year all appeared very close to the grey lines,

suggesting a powerful predictive ability of this nomogram
(Figure 5B). In order to evaluate the predictive effect of the
11-genes risk score based on the nomogram, we randomly
selected one specific patient from the entire cohort. We added
up all the points from these clinical indicators and the 11-gene
risk group; the total point was 551, compared with the total point
of 382 when only considering the clinical variables. The
probability of 1-, 3-, and 5-year OS were 0.335, 0.618, and
0.716, respectively, while taking both the clinical indicators
and risk group into account. In reality, the patient died at
910 days, while the predictive probability of death at that day
was 0.67. Meanwhile, when we only utilized the six clinical
indicators, the probability of 1-, 3-, and 5-year OS were 0.194,
0.372, and 0.445, respectively. The predictive probability of death
at 910 days was 0.408, obviously lower than the probability
forecasted in consideration of the 11-genes risk score, as
mentioned above (Figure 5C).

Validation of the 11-Genes Prognostic
Signature in the External Datasets
To further validate the effect of the prognostic predictive model,
we analyzed two independent external datasets, GSE10846 and
GSE87371, with a similar working procedure as mentioned above.
The detail of the clinical characteristics is also described in
Supplementary Table S1. The risk scores of each cohort were
calculated, which divided the patients into low- and high-risk
groups. As the consistent result of the two datasets shown in
Figure 6A, the overall survival was distinguished from different
groups in K–M analysis (long-rank test, p < 0.0001). In addition,
the time-dependent ROC curve analyses also performed favorable
outcomes, in which the AUC of 1-year at 0.719, 3-year at 0.708, 5-

TABLE 1 | Univariate and multivariate Cox regression analyses of the gene signature and overall survival of DLBCL patients in 3 independent datasets.

Variables Patients(N) Univariate analysis Multivariate analysis

HR (95%CI) p Value HR (95%CI) p Value

GSE31312
Age >60/<=60 270/200 1.027 (1.015–1.038) <0.001 1.025 (1.010–1.039) <0.001
Clinical stage III-IV/I-II 229/220 1.521 (1.324–1.747) <0.001 1.208 (0.990–1.474) 0.063
Extranodal sites >=2/<2 104/366 1.408 (1.234–1.605) <0.001 1.178 (0.987–1.407) 0.07
ECOG >=2/<2 96/374 1.506 (1.311–1.730) <0.001 1.257 (1.058–1.494) 0.009
LDH Evaluated/normal 278/148 2.129 (1.453–3.121) <0.001 1.387 (0.874–2.202) 0.165
IPI score >2/<=2 150/274 1.689 (1.487–1.920) <0.001 1.172 (0.923–1.487) 0.193
Risk score High/Low 125/345 2.718 (2.338–3.160) <0.001 2.640 (2.228–3.128) <0.001

GSE10846
Age >60/<=60 226/188 1.030 (1.018–1.041) <0.001 1.030 (1.016–1.045) <0.001
Clinical stage III-IV/I-II 218/188 1.508 (1.293–1.758) <0.001 1.313 (1.091–1.580) 0.004
Extranodal sites >=2/<2 30/353 1.206 (1.001–1.452) 0.049 0.956 (0.755–1.210) 0.707
ECOG >=2/<2 93/296 1.820 (1.551–2.136) <0.001 1.534 (1.273–1.847) <0.001
LDH Evaluated/normal 178/173 1.137 (1.095–1.181) <0.001 1.116 (1.059–1.177) <0.001
Risk score High/Low 126/288 2.718 (2.128–3.472) <0.001 2.039 (1.542–2.697) <0.001

GSE87371
Age >60/<=60 106/115 1.049 (1.025–1.072) <0.001 1.010 (0.984–1.036) 0.454
Gender Male/Female 116/105 1.499 (0.863–2.604) 0.151 1.336 (0.761–2.347) 0.313
Clinical stage III-IV/I-II 150/71 1.802 (1.297–2.503) <0.001 0.724 (0.441–1.186) 0.200
IPI score >2/<=2 102/119 2.029 (1.622–2.538) <0.001 1.666 (0.921–3.015) 0.092
Risk score High/Low 79/142 2.718 (1.991–3.711) <0.001 2.289 (1.690–3.099) <0.001
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FIGURE 5 |Nomogram predicting the probability of 1-, 3-, and 5-year OS in patients with DLBCL. (A)Nomogram adding up the points identified on the points scale
(the upward line) for each variable. The total points projected on the bottom scales indicate the probability of 1-, 3-, and 5-year OS. (B) Calibration plot for predicting the
1-, 3-, and 5-year OS. The dotted line represents the ideal condition. (C) Nomogram predicting the probability of 1-, 3-, and 5-year OS for the specific patient
GSM776084 based on the model containing or not containing the risk group in the GSE31312 dataset.
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FIGURE 6 | The 11-gene risk scoremodel for the validation datasets (GSE10846 andGSE87371). (A)Kaplan–Meier plots of overall survival in high-risk and low-risk
subgroups in the validation datasets derived via Log-rank testing. (B) The time-dependent ROC curve and AUC in the validation datasets. (C) The survival status and time
in high-risk and low-risk groups for the validation datasets. (D) The ROC curves to predict the sensitivity and specificity of clinicopathological factors and 11-gene
signature-derived risk scores in DLBCL patients for the validation datasets.
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year at 0.668 in GSE10846, and the AUC of 1-year at 0.709, 3-year
at 0.746, 5-year at 0.705 in GSE87371 (Figure 6B). When the
cutoff points were 0.32 and 0.27 in GSE10846 and GSE87371,
respectively, the patients were separated into low- and high-risk
groups subsequently. There were more death events in the high-
risk group from both datasets (Figure 6C). Moreover, we also
conducted the ROC curve analyses to evaluate the predictive
performance of the 11-genes risk score model and some other
clinical variables. The AUCs of the risk score were 0.724 in
GSE10846 and 0.710 in GSE87371, significantly greater than that
of any other clinical parameters (Figure 6D). The univariate and
multivariate Cox regression analyses were also used for the two
datasets, as shown in Table 1, and the outcome is consistent with
the training dataset.

Chemotherapy Response With
Super-Enhancer-Associated Genes
Signature
In addition, we conducted a prediction analysis to evaluate the
chemotherapy response in the low- and high-risk groups. Widely,
all high-risk groups possessed higher estimated IC50 for the
different chemotherapeutics, which exactly proved the
hypothesis that the high-risk group was not sensitive to the
chemotherapy as the low-risk group (Figure 7). We took 12
chemotherapy drugs into account: bleomycin, vinorelbine,
doxorubicin, gemcitabine, docetaxel, epothilone B, etoposide,
cisplatin, bortezomib, vinblastine, vorinostat, and bexarotene.

In order to better improve the tricky problem, we additionally
established an interactive network among these hub genes and
chemicals to probe into the chemicals correlated to these genes by
“NetworkAnalyst 3.0”. In total, six genes of these 11 hub genes
interacted with JQ-1, a well-recognized SE inhibitor, which
verified the regulating effect of SEs on these genes to some
degree (Supplementary Figure S2B). In the end, we profiled
the ChIP signal of H3K27ac-seq for these 11 genes (Figure 8).
The predicted regions of SE were plotted as the red bar upon the
signal tracks, and each of the predicted SEs located close to these
11 genes, suggesting that the SEs may play an influential role in
the expression of the 11 genes. In addition, the SE inhibitor JQ1
may regulate the expression pattern in OCI-LY1 cells.

DISCUSSION

DLBCL is the most common lymphoma with high heterogeneity
and invasiveness. It accounts for approximately one-third of the
non-Hodgkin lymphoma, and plenty of patients suffer from
insensitive to the typical treatment regimens (Lavacchi et al.,
2021). Researchers aspired to identify optimal biomarkers and
then establish various risk prediction models for predicting the
survival rate, which can be used to improve the prognosis of
DLBCL and contribute to personalized therapeutic decisions
(Merdan et al., 2021). Enhancer is an important epigenetic
regulatory element for DLBCL, which can determine the gene
expression. Super-enhancers (SEs) are a large cluster of active
enhancers critical for maintaining cell identity and driving the

FIGURE 7 | The IC50s of 12 common chemotherapeutic agents with 11-SE-associated-gene signature.
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expression of some oncogenes (Kai et al., 2021; Zhou et al., 2021).
However, the previous studies had rarely constructed a risk
prediction model based on SE-associated hub genes (Li, Duan
and Hao, 2021). In this study, we succeeded in building a superior
polygenic prognostic model by analyzing the data of the DLBCL
patients from the GEO database, taking some clinical indicators
into account as well, which was also rare in previous studies.

In the current study, Lasso penalized Cox regression was
conducted to identify the candidate SE-associated genes, as the
method has recently been prevalent in much research according
to its ability to minimize overfitting (Zhu et al., 2019). In addition,
we utilized univariate and multivariate Cox regression analyses to
narrow the range of the selected genes. Then, we successfully
constructed the gene risk score model for survival prediction.
Moreover, we integrated the risk score and some other clinical
indicators into developing the predictive nomogram and Cox
proportion hazards model, which validated the predictive efficacy
of the prognostic model. In our study, a total of 417 genes were
filtered out by the Lasso penalized Cox regression. Subsequently,
two best-fit values (lambda.min and lambda.1se) were chosen,
and then the 48-gene group of λmin and 16-gene group of λ1se
were initially screened out, respectively. Compared with the result
of the AUC and Wilcoxon test, both models performed well.
Furthermore, 11 genes were selected when statistically significant
both in univariate and multivariate Cox regression analyses. To
explore the influence of the 11 candidate genes on the OS and PFS
of DLBCL patients, the patients were classified into two groups
based on the 11-gene risk score model. The high-risk group had
prominent inferior outcomes both in the K-M survival curve and

AUC. Combined with some clinical indicators, the univariate and
multivariate Cox regression analyses and AUCwere conducted to
verify the independence of the risk score. Overall, the constructed
11-genes prognostic model demonstrated good predictive
performance in the training dataset GSE31312 and the other
two external validation sets, GSE10846 and GSE87371. In the
training set, BCL2, SPAG16, LRRC37A2, TGFBR2, ANKRD12,
and MYC appeared to be the risky factors, apparently
upregulated, while PXK, BTG1, EXT1, MYCBP2, and PAX5
were downregulated in high-risk DLBCL patients.

BCL2 is considered an apoptosis suppressor gene. BCL2 is a
cell survival protein that inhibits apoptosis by interacting with
Bax, Bak, and other pro-apoptotic sensitizer proteins (Nabar
et al., 2018) and also contributes to tumorigenesis by its
promotion for survival, which already has a long and in-depth
research history (Oltersdorf et al., 1998). Currently, many studies
have shown a tight correlation between BCL2 expression levels in
hematopoietic malignancies and drug resistance during therapy
(Stewart et al., 2021). Previous studies have shown that DLBCL
patients overexpressing the BCL2 protein may be strongly related
to inferior survival and resistance to the standard therapy (de
Jong et al., 2019). BCL2 is an important independent prognostic
factor for DLBCL, consistent with our finding that the expression
of BCL2 was significantly upregulated in the high-risk groups.

SPAG16 is a gene encoding sperm-associated antigen 16 that
plays a role in sperm flagella function and motile ciliogenesis
(Zhang et al., 2017; Alciaturi et al., 2019), correlated with the gene
expression machinery of germ cells (Nagarkatti-Gude et al.,
2011). Siliņa et al. (2011) have proposed that SPAG16 can be

FIGURE 8 | Signal tracks for H3K27ac ChIP–seq profiles of the 11-SE-associated hub genes visualized using IGV. The regions of SE are shown in a red bar upon
the signal tracks. ChIP–seq, chromatin immunoprecipitation–sequencing; SE, super-enhancer; IGV, Integrative Genomics Viewer.
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a novel autoantibody target and serologic biomarker for cancers.
Our study suggested that SPAG16 appears to be an independent
predictor, but the specific mechanism to mediate tumorigenesis
and its vulnerability to being an immunotherapeutic target
remain unknown.

LRRC37A2 is a member of the LRRC37 gene family which is
involved in the regulation of protein–ligand interactions and
mapped to chromosome 17q21.31-q21.32 (Giannuzzi et al.,
2013). Several studies suggested that LRRC37A2 is implicated
in epilepsy, epileptic encephalopathy, and Parkinson’s disease,
while the effect on DLBCL has never been reported (Yao et al.,
2021). In this study, high expression of LRRC37A2 corresponds
with an inferior survival outcome that merits further exploitation.

TGFBR2 encodes a protein named transforming growth
factor-beta (TGF-β) receptor type 2. This receptor can
transduce signals into the intracellular environment, triggering
various responses such as cell proliferation, differentiation,
motility, and apoptosis (Biswas et al., 2008). Previous studies
have shown that acquisition of TGFBR2 somatic mutation may
increase the risk of various tumorigenesis and different diseases
(Li et al., 2020). This is in line with our result that high-risk
patients have upregulated expression of TGFBR2 compared with
the low-risk group.

ANKRD12 encodes a 224 kDa nuclear protein ankyrin repeat
domain 12, also called ANCO-2. It has been reported that ANCO
proteins can inhibit the transcriptional activity of nuclear
receptors involved in carcinogenesis (Bai et al., 2013). As per
our result, ANKRD12 can predict survival outcomes for DLBCL
patients independently, but further investigation is needed to
validate.

MYC, well-known as a key transcriptional effector that
modulates cellular proliferative and metabolism in stem cells
(MacDonald et al., 2010), is also involved in the diverse cellular
processes such as adhesion, apoptosis, and DNA damage
response, playing a role in the oncogenic effect (Finley et al.,
2015). There has been an explosion of molecular, cellular, and
animal experiments to illuminate the effect of MYC in the initial
development of neoplasms. As for DLBCL patients, MYC
rearrangement (MYC-R) may forebode poor prognostic.
Rosenwald A et al. have evaluated a large cohort suggesting
the adverse prognostic impact of MYC-R and the significant
therapeutic potential in DLBCL (Rosenwald et al., 2019). This
statement is corroborated again by our study.

As for the protective prognostic factors in our study, PXK
encoding protein is involved in ligand-induced internalization,
synaptic transmits, and degradation of epidermal growth factor
receptors associated with some autoimmunity diseases (Takeuchi
et al., 2010). B-cell translocation gene 1 (BTG1) belongs to an
anti-proliferative gene family, which regulates autophagy and the
cell cycle and is also implicated in DNA repair and mRNA
stability (Xue et al., 2021). BTG1 is a well-characterized tumor
suppressor for both solid tumors and hematopoiesis and recently
has been reported to have a novel role in genotoxic and integrated
stress responses. It is evident that the expression level of BTG1 is
regarded as a prognostic biomarker for diverse cancers (Yuniati
et al., 2019). EXT1 gene produces the protein exostosin-1, which
is found in the Golgi apparatus. This protein can modify newly

produced enzymes and some proteins, which are critical for
metastasis of cancer cells (Francannet et al., 2001). MYCBP2
encodes a ubiquitin (Ub) E3 ligase, which is essential for
neurodevelopment (Mabbitt et al., 2020). The antitumor effect
of this gene has been identified in various cancers. PAX5 is a
member of the paired-box family of transcriptional factors,
exclusively expressed in the B-cell lineage (Berek et al., 2008).
This gene correlates with a heterogeneous subset of B cell non-
Hodgkin lymphoma (B-NHL). The expression level and bio
function of Pax5 play a role in normal B lymphopoiesis and
prevent tumorigenesis (Medvedovic et al., 2011). The antitumor
effect of the above genes is consistent with this study; every gene
act as an independent protective prognostic factor, upregulated in
the low-risk group. However, the concrete bio function and
corresponding molecular machinery of each gene remain a
ripe area for further investigation.

Since BCL2, SPAG16, LRRC37A2, TGFBR2, ANKRD12,
MYC, PXK, BTG1, EXT1, MYCBP2, and PAX5 are SE-
associated genes, the roles of the genes SPAG16, LRRC37A2,
ANKRD12, PXK, and BTG1 have not been illuminated in
DLBCL, which merits further in-depth analysis in the wet
laboratory. In addition, to further assess the efficacy of the 11-
gene risk model, large-scale prospective cohorts are still needed.

CONCLUSION

In summary, we succeeded in constructing a novel and reliable SE-
associated-gene signature that can effectively classify DLBCL patients
into high-risk and low-risk groups and performwell in predicting the
overall survival. The prediction model can be used as a biomarker of
prognosis for DLBCL, which may be a potential therapeutic target
and can assist clinicians in the treatment of DLBCL.
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GLOSSARY

ABC activated B cell

AIC Akaike information criterion

AUC area under the ROC

B-NHL B cell non-Hodgkin lymphoma

ChIP-seq chromatin immunoprecipitation sequencing

CI confidence interval

C-index concordance index

CTD Comparative Toxicogenomics Database

DLBCL diffuse large B-cell lymphoma

ECOG Eastern Cooperative Oncology Group

GCB germinal center B cell

GEO Gene Expression Omnibus

GO Gene Ontology

HR hazard ratio

IC50 half-maximal inhibitory concentration

IGV Integrative Genomics Viewer

IHC immunohistochemical

IPI International Prognostic Index

KEGG Kyoto Encyclopedia of Genes and Genomes

K–M Kaplan–Meier

Lasso least absolute shrinkage and selection operator

LDH lactate dehydrogenase

MYC-R MYC rearrangement

NHL non-Hodgkin’s lymphoma

OS overall survival

PFS progression-free survival

R-CHOP rituximab, cyclophosphamide, doxorubicin, vincristine, and
prednisone

ROC receiver operating characteristic

SE super-enhancer

TE typical-enhancer

Ub ubiquitin

UC unclassified
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