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Abstract: Electrochemical devices convert chemical reactions into electrical energy or, vice versa,
electricity into a chemical reaction. While batteries, fuel cells, supercapacitors, solar cells, and sensors
belong to the galvanic cells based on the first reaction, electrolytic cells are based on the reversed
process and used to decompose chemical compounds by electrolysis. Especially fuel cells, using an
electrochemical reaction of hydrogen with an oxidizing agent to produce electricity, and electrolytic
cells, e.g., used to split water into hydrogen and oxygen, are of high interest in the ongoing search for
production and storage of renewable energies. This review sheds light on recent developments in the
area of electrospun electrochemical devices, new materials, techniques, and applications. Starting
with a brief introduction into electrospinning, recent research dealing with electrolytic cells, batteries,
fuel cells, supercapacitors, electrochemical solar cells, and electrochemical sensors is presented. The
paper concentrates on the advantages of electrospun nanofiber mats for these applications which
are mostly based on their high specific surface area and the possibility to tailor morphology and
material properties during the spinning and post-treatment processes. It is shown that several
research areas dealing with electrospun parts of electrochemical devices have already reached a
broad state-of-the-art, while other research areas have large space for future investigations.

Keywords: electrolytic cells; batteries; fuel cells; supercapacitors; electrochemical solar cells; sensors

1. Introduction

Electrochemical devices have been part of our lives for a long time. They enable
storing energy in batteries [1–3], supercapacitors [4–6], or fuel cells [7–9], can be used as
sensors in healthcare and biotechnology [10–12], or gain solar energy [13–15].

One of the possibilities to increase the efficiency of such electrochemical devices is
increasing the contact area between the different parts of the electrochemical devices, typi-
cally electrodes and electrolyte, by nanostructuring the electrodes [16–18]. Besides diverse
physical and chemical methods, such a nanostructure can be achieved unambiguously by
the textile technology of electrospinning.

Electrospinning belongs to the primary spinning techniques and enables spinning
continuous nanofibers with typical diameters in the range of some ten to some hundred
nanometers [19–21]. Recently, the needleless and needle-based electrospinning techniques
are becoming more and more sophisticated, with modifications of both electrodes as
well as with the support of other physical processes, such as Corona-electrospinning or
magnetic-field-assisted electrospinning [22–25].

Typical applications of electrospun nanofiber mats can be found in the areas of biotech-
nology and biomedicine [26–29], implant scaffolds [30], micropollutant elimination [31],
nanoparticle delivery [32], oil/water separation [33,34], air and water filtration [35–38],
and electrochemical cells [39]. This review gives an overview of the aforementioned kinds
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of electrochemical cells in which electrospun nanofiber mats are applied. As Figure 1
shows, publications about electrospun nanofiber mats used in these electrochemical cells
are increasing from year to year for most sub-topics. Batteries including nanofiber mats are
apparently most often investigated, while electrolytic cells based on electrospun nanofiber
mats are relatively scarce and most recently did not show increasing numbers anymore.
Unexpectedly, in spite of the recent ongoing discussions on fuel cells, supercapacitors
have outpaced them in research during the last years. Electrochemical solar cells are only
scarcely investigated. Electrochemical sensors, finally, are steadily increasing on a rela-
tively low level. This short overview already shows that electrochemical devices based on
nanofiber mats still belong to the topics in which there is much space left for new research
approaches, especially in the area of electrolytic cells.
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Figure 1. Publications reporting on electrospun nanofiber mats applied in electrochemical cells, 
found in the Web of Science during the last decades. Data accessed on 18 March 2021. 
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The electrospinning technique has been identified as a versatile and highly efficient 

method for fabrication of continuous nanofibers from polymer solution or melt. Gener-
ally, an electrospinning set-up contains a high voltage power supplier, a feeding pump, a 
spinning apparatus (such as spinneret), and a rotational/constant collector. In electro-
spinning procedure, ultrathin fibers are fabricated in an electrical field created between 
the collector and spinneret by applying a high voltage. The applied voltage, the distance 
between the spinneret and collector, the feeding rate, the spinneret inner diameter, and 
the collector speed belong to the common electrospinning parameters which can influ-
ence morphology of the electrospun membranes as well as fiber diameters. Fiber orien-
tation, pore size distribution, and membrane porosity are significant morphology fea-
tures of the electrospun membranes. Apparently, the morphology characteristics and fi-
ber diameter should be tuned to obtain the most appropriate electrospun fibrous struc-
ture for the considered application [40–42]. As an example, fiber orientation may lead to 
production of an electrochemical biosensor with high sensitivity, while it can reduce 
ionic conductivity of an electrospun electrolyte applicable in lithium ion batteries [43,44]. 

Optimum electrospinning parameters should be determined for each polymer sys-
tem as they vary from polymer to polymer. Overall, increasing the applied voltage up to 
a critical point causes formation of finer fibers due to more stretching of the electrospin-
ning jet resulting from higher repulsion forces in it. On the other hand, thicker or beaded 
electrospun fibers can be obtained by exceeding the critical voltage as a result of higher 

Figure 1. Publications reporting on electrospun nanofiber mats applied in electrochemical cells,
found in the Web of Science during the last decades. Data accessed on 18 March 2021.

2. Electrospinning Process

The electrospinning technique has been identified as a versatile and highly efficient
method for fabrication of continuous nanofibers from polymer solution or melt. Gener-
ally, an electrospinning set-up contains a high voltage power supplier, a feeding pump,
a spinning apparatus (such as spinneret), and a rotational/constant collector. In electro-
spinning procedure, ultrathin fibers are fabricated in an electrical field created between
the collector and spinneret by applying a high voltage. The applied voltage, the distance
between the spinneret and collector, the feeding rate, the spinneret inner diameter, and
the collector speed belong to the common electrospinning parameters which can influence
morphology of the electrospun membranes as well as fiber diameters. Fiber orientation,
pore size distribution, and membrane porosity are significant morphology features of the
electrospun membranes. Apparently, the morphology characteristics and fiber diameter
should be tuned to obtain the most appropriate electrospun fibrous structure for the con-
sidered application [40–42]. As an example, fiber orientation may lead to production of an
electrochemical biosensor with high sensitivity, while it can reduce ionic conductivity of an
electrospun electrolyte applicable in lithium ion batteries [43,44].

Optimum electrospinning parameters should be determined for each polymer system
as they vary from polymer to polymer. Overall, increasing the applied voltage up to a
critical point causes formation of finer fibers due to more stretching of the electrospinning
jet resulting from higher repulsion forces in it. On the other hand, thicker or beaded
electrospun fibers can be obtained by exceeding the critical voltage as a result of higher
velocity as well as smaller size of the Taylor cone [45]. The electrospinning distance should
be recognized regarding the evaporation rate and deposition time of the electrospinning jet
to gain a uniform membrane. A short electrospinning distance may lead to formation of
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ribbon-like nanofibers with large diameters, whereas thick fibers are fabricated through
a high electrospinning distance [46]. In addition, a critical flow rate is essential to obtain
homogenous and beadless electrospun fibers. By increasing the feeding rate beyond the
critical point, defective fibers with high diameters in a wide range and large pore sizes
may be obtained [47]. Moreover, the receiver type and collector speed mainly influence
the fibers’ orientations and so the pore sizes. As the collector speed increases, fibers with
higher orientation and less porosity and pore sizes are obtained [48].

Besides the apparatus adjustments, features of the polymer solution or melt influence
the membrane morphology and fibers’ diameter. The role of polymer solutions on various
features of the electrospun membrane depends on their concentration, viscosity, and
conductivity. Enhancement of the solution concentration up to a critical point provides
more entanglement between the polymer chains which results in formation of beadless
fibers with higher uniformity. Nevertheless, beaded and defective fibers can be obtained
beyond the critical point due to drying of the polymer solution on the applied spinneret
tip. Notably similar trends have been observed for the viscosity impact on the obtained
electrospun fibers by numerous researchers. Furthermore, the electrospinning process
highly depends on the Coulomb forces between the electrical field and accumulated charges
on the solution surface. Therefore, a polymer solution with very low conductivity cannot
be electrospun due to lack of charges which are essential for formation of the Taylor cone.
In contrast, polymer solutions with conductivity beyond the critical point cannot also be
processed because of spreading of the fibers in the electrospinning environment [49,50].

3. Electrolytic Cells

Electrolytic cells use electrical energy to decompose chemical compounds by electrol-
ysis. They can be set up in different forms, e.g., with two-dimensional electrode stacks,
spaced without a membrane and connected in a bipolar way [51]. Alternative designs
include rotating electrodes to enhance mass transfer without pumping and porous, i.e.,
three-dimensional electrodes [51]. Possible applications include, e.g., electrochemical CO2
reduction [52–54], heavy metal removal from wastewater by electrodeposition [55–57], ni-
trogen reduction [58], nitrate removal [59,60] or depolymerization of lignin into renewable
aromatic compounds [61], to name just a few.

Due to their large surface-to-volume ration, electrospun nanofiber mats could be used
in several of these electrolytic cells. Unexpectedly, this is not fully reflected by the recent
literature which shows only few combinations of these two techniques amongst large
numbers of papers dealing with one of the topics. Manesh et al. prepared poly(vinylidene
fluoride)/poly(aminophenylboronic acid) (PVdF/PAPBA) electrospun composite nanofiber
mats to be inserted into electrolytic cells; however, these were used to detect glucose, i.e.,
they worked as sensors and not as electrodes [62]. Many papers report about using an
electrolytic cell to measure the conductivity of the spinning solution (e.g., [63–65]) or apply
an electrolytic cell to perform electrochemical deposition on a nanofiber mat [66,67]. As
most of the authors mention, the fiber and mat morphologies play an important role for
this application. Usually, finer nanofibers, providing a higher specific surface, are pre-
ferred [62,63]. In addition, some electrospinning processes allow for producing nanofibers
with pores or even with additional dendrite-like structures on the fiber surface [64] which
further increases the specific surface and thus the contact area to the surrounding material.

Electrolysis based on electrospun nanofibers mats can, e.g., be found in some dye-
degradation applications. Sun et al., for example, used activated carbon nanofibers modi-
fied with carbon nanotubes (CNTs) as electrodes for the electrochemical degradation of
methyl orange (Figure 2) [68]. Li et al. prepared poly(acrylonitrile) (PAN) and Fe/PAN
electrodes by electrospinning and reported an increase of the electrochemical degradation
due to the higher specific surface area (SSA) and higher amount of mesopores [69]. Hwang
et al. showed that carbon nanofibers, prepared by electrospinning followed by stabilization
and carbonization, supported the toluene removal efficiency by electrolysis when used as
cathodes or anodes [70].
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Degradation of organic particles was examined by Kim et al., using bisphenol A as
a model substance. They prepared Sb-doped SnO2 nanofibers by electrospinning SnCl2
and SbCl3 with polyvinylpyrrolidone (PVP) dissolved in a dimethylformamide (DMF)
solution, partly with a shell containing RuO2, followed by calcination of the polymer. These
materials were investigated as anodic materials for anodic oxidation of bisphenol A and
found highly suitable for this application, with an eleven-fold faster organic oxidation than
the reference of pure RuO2 nanofibers combined with low noble metal content [71].

Recently, Chen et al. used electrospun polyethylene oxide (PEO)/ionomer/graphene
oxide (GO) nanofiber mats for water dissociation and found high stability under repeated
cycling, even for high current densities. These findings let the authors suggest such three-
dimensional bipolar membranes for the application in CO2 electrolysis devices where high
current densities are applied [72].

The electrocatalytic activity of Pt-IrO2 electrospun nanofibers in water electrolysis
was investigated by Wang et al. [73]. They found that, for different ratios of Pt to Ir, these
nanofiber mats showed better catalytic performance than commercial IrO2 catalysts and at
the same time reduced the amount of expensive Ir.

Mugheri et al. used NiO nanostructures deposited on MoS2 nanofiber mats for
water splitting. For electrospinning, the NiO nanostructures were inserted together with
ammonium phosphomolybdate hydrate and PVP into a spinning solution. The nanofiber
mat was afterwards calcinated at 500 ◦C to remove the polymer. This electrocatalyst
nanofiber mat showed good stability, durability, and high efficiency in the hydrogen
evolution reaction [74].

Similarly, diverse other materials were electrospun by using different polymers as
spinning agents and different metals to form the final nanofiber mat after calcination, and
applied for electrocatalytic water splitting, i.e., hydrogen or oxygen evolution reaction.
Some of these metals or metal oxides are Co3O4 [75], Co/Mo2C [76], and Ni3V2O8 nanocube
decorated nanofibers [77].

Other applications of nanofiber mats in electrolytic cells are, e.g., disinfection of water
from bacteria by combining electrolysis with physical filtering through a PAN/polyurethane
(PU)/polyaniline(PAni) nanofiber mat with embedded single-walled carbon nanotubes [78];
elimination of urea from wastewater by electrospun Ni/C nanofiber mats [79]; and N2 fixa-
tion to NH3 by the electrocatalytic nitrogen reduction reaction, e.g., by carbon nanofibers
with embedded MnO nanocrystals [80].

As these examples show, electrospun nanofiber mats are mostly applied in electro-
catalytic water splitting and degradation of dyes and other contaminants. This recent
restriction on a relatively small range of research topics within the field of electrolytic cells
suggests broadening the possible range of applications of nanofiber mats from diverse
materials by further research in neighboring regions.



Polymers 2021, 13, 1741 5 of 41

4. Batteries

Rechargeable or secondary batteries are electrochemical power sources commonly
utilized in portable devices such as camcorders, mobile phones, laptops, and electric trans-
portations. In general, batteries are comprised of one or more electrochemical cells. Positive
electrode (cathode), negative electrode (anode), porous separator membrane, and ionic
conductive electrolyte are the essential components for fabrication of each electrochemical
cell. Lead-acid, nickel cadmium, and lithium ion belong to the well-known secondary
batteries. However, lithium ion batteries (LIBs) have shown superior advantages compared
with the other rechargeable ones. High specific energy density as well as small size and
low mass are outstanding and distinctive characteristics of the LIBs [81,82].

Increasing progress in technology has forced researchers to design batteries with
higher energy density, lighter weight, and more flexible structure. A basic LIB comprises of
a lithium metal oxide electrode as cathode, a graphite-based anode, a porous polypropylene
(PP) or polyethylene (PE) film as separator, and a lithium salt/solvent solution as elec-
trolyte (Figure 3). Charge/discharge procedure of the LIBs is performed through chemical
reactions. During the charge process, free lithium ions migrate from the cathode toward
the anode, via diffusion into the ionic conductive electrolyte. Simultaneously, the electrons
travel toward the anode through the external circuit and form LiC6 compound in the anode
material. Apparently, the reverse behavior takes place in the discharge step [81,82]. Over
the past decades, most research in advanced development of LIBs has emphasized the use
of electrospun fibers for fabrication of versatile and highly efficient components [83,84]. Re-
cent progresses in the fabrication of electrospun cathode, anode, separator, and electrolyte
are provided in the following section.
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4.1. Electrospun Cathode Materials

Electrochemical performance of the batteries, such as potential window and storage
capacity, is mostly affected by the cathode material. In fact, the number of extracted lithium
ions from the cathode electrode determines the battery capacity. The energy could be stored
in the cathode materials through two various conversion and intercalation techniques. In
the conversion mechanism, lithium insertion and extraction are associated with changes
in the crystalline structure of the applied cathode material, while the cathode structure
acts as a host in the intercalation mechanism. So, the lithiation/delithiation can reversibly
occur in the intercalation cathode materials. Notably, low electron conduction as well
as high volume expansion have been reported as challenges linked with the conversion
cathode materials. Therefore, the intercalation cathode structures have received more
attention from numerous researchers. Among various types of intercalation structures
(transition metal oxides, chalcogenides, and poly anions), transition metal oxides and
poly-anionic compounds have displayed superior characteristics such as higher energy
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storage and greater operating voltage, while development of chalcogenide materials has
been influenced by their irreversible structure [86,87].

Layered structures have been identified as the most widely applied electrode materials
in the commercial LIBs. They are commonly presented by the chemical formula of LiXO2,
where X could be Co, Mn, or Ni. This group of cathode materials was first introduced
by discovering of LiCoO2 in the 1990s. During discharging, LiCoO2 hexagonal cells are
formed in layered structures, whereas Li1−xCoO2 monoclinic phases are created as a result
of Li+ ion removal during the charging procedure. The structural instability of LiCoO2
cathode material is a major drawback associated with these materials which has resulted
in lower practical capacity (140 mAh·g−1) compared with the reported theoretical capacity
(280 mAh·g−1). So, LiNiO2 was introduced to address the low experimental storage
capacity. However, poor thermal stability, along with low electrochemical activity restricts
practical usage of the layered LiNiO2. Therefore, LiNi0.5Mn0.5O2 was presented by Ohzuku
et al. as a modified compound. Based on various analyses, this cathode material has
revealed appropriate structural stability due to the existence of Mn4+ cations. In addition, it
has represented a stable structure up to 300 ◦C, which is a crucial function for being applied
in commercial batteries. Moreover, it has shown superior storage capacity (200 mAh·g−1)
compared with the LiCoO2 layered structure, although limitation of Li+ ion extraction
due to presence of Ni in the cathode material has caused synthesis and evaluation of
LiCoxNiyMn1−x−yO2 ternary compound materials such as LiCo1/3Ni1/3Mn1/3O2 [85,88].

Spinel oxides with the general chemical formula of LiM2O4 (e.g., LiMn2O4) are an-
other group of cathode materials. Compared with layered structures, they are safer and
more affordable. Three-dimensional paths in such structures facilitate Li+ ion diffusion
and therefore enhance the rate capability. Nevertheless, capacity fading is a critical disad-
vantage associated with these materials. To overcome the aforementioned obstacle, doping
mechanism has been widely reported to reduce Jahn-Teller active Mn3+ ions and thus to
enhance the electrochemical characteristics. Mg, Ni, Cr, Al, and many more metal elements
belong to the applied dopant materials. As an example, LiNi0.5Mn1.5O4 compound has
illustrated superior rate capability and wider potential window compared with LiMn2O4
spinel oxide structure [89,90].

Poly-anionic compounds, with the general chemical structure of (XO4)3− (X = P, Si, S,
etc.), have also received much attention as cathode material of Li-ion batteries. LiFePO4 and
LiMnO4 are of the well-known poly-anionic cathode materials. This could be linked with
their great power capability and proper structural stability. Nevertheless, low conductivity
of the aforementioned materials has restricted their applications [91,92].

Synthesis of highly efficient cathode materials is considered as a key building block
toward progress of energy storage systems with high power and proper capacity in the
future. Numerous researchers have illustrated great potential of the electrospun structures
as cathode material of the Li-ion batteries. Besides storage capacity, cycling stability is
considered as an important parameter for determination of the efficiency and capability of
a designed cathode material. Cycling durability is measured by calculation of the storage
capacity in various cycles. Apparently, a more ideal battery structure would be obtained
through increment of the cycling stability. Commercial LIBs normally show cycling stability
during first 300 to 500 cycles (or about 2 to 3 years) [93,94]. As an example, electrospun
LiCoO2 fibers (148 mAh·g−1) result in higher cyclic stability compared with the LiCoO2
powders (138 mAh·g−1) [95]. Notably, the enhanced capacity of the nanofibrous structures
could also be further improved through modification of the electrospun fibers by coating
methods. In addition, electrospun LiM2O4 structures provide faster diffusion of the lithium
ions as well as the promoted cycling stability. In fact, the highly porous structure of the
electrospun fibers leads to reduction of the degradation rate during charging/discharging
processes [96,97]. Moreover, presence of the carbon nanofibers in the poly-anionic com-
pounds such as LiFePO4 compensates the poor ionic conductivity of this category of
cathode materials and causes approaching a more appropriate rate capability [98]. The
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most recent approaches in fabrication of electrospun fibers applicable as cathode materials
are summarized in Table 1.

Table 1. The most recent approaches toward fabrication of nanofibrous cathodes.

Material Capacity (mAh·g−1) Cycling Stability Autor (Year) Ref.

Li2CoTi3O8/TiO2 82 at 0.1 C 83% after 25 cycles Kap et al. (2020) [99]
LiFePO4 nanocrystals/carbon nanofibers (CNFs) 152 at 0.5 C 98.2% after 500 cycles Cao et al. (2020) [100]

V2O5/GO 342 at 0.5 C 80% after 20 cycles Ahmadian et al. (2020) [101]
Li2MnTiO4+z 210 at 0.1 C 95.3% after 100 cycles Vu et al. (2020) [102]

LiFe0.8Mn0.2PO4/C 169.9 at 0.1 C 160 after 200 cycles Chen et al. (2020) [103]
LiFe0.4Mn0.6PO4/CNFs 133.5 at 1 C 138.8 after 100 cycles Yang et al. (2020) [104]

4.2. Electrospun Anode Materials

Intercalation-, conversion-reaction-, and alloying-reaction-based materials are various
categories which have been applied as anodes of LIBs. In the intercalation group, the
Li+ ions are placed between the layers of the utilized anode material. Graphite is the
most well-known intercalation-based anode structure. In the low voltage range (<0.25 V),
high capacity of 360 mAh·g−1 along with 100% discharge/charge efficiency have been
recorded for this anode structure, whereas most of the electrolyte solvents (e.g., ethylene
carbonate (EC), propylene carbonate (PC), and so on) are decomposed between 0.5 and
0.7 V, resulting in the formation of a solid–electrolyte interface (SEI) layer. It is worth
noting that proper ionic conductivity, low electrical conductivity, and great stability are the
essential characteristics of the ideal SEI layer. Overall, poor capacity is a major drawback
associated with the graphite anode materials [105,106].

Surface-to-volume ratio enhancement of the applied anode material is an effective
method toward providing more accommodations for the Li+ ions. Therefore, various
studies have been devoted to fabrication of carbonaceous nanomaterials. PAN is the
most common precursor for synthesis of electrospun carbon fibers. This could be linked
with the simple fabrication procedure, proper mechanical characteristics, and affordable
cost. However, environmental concerns associated with DMF, an essential solvent for
dissolving PAN polymer, has led to investigation for new precursor resources including
lignin, polyvinyl alcohol (PVA), and many more [105,106]. Kim et al. [107] reported a
large capacity of 450 mAh·g−1 derived from the electrospun PAN nanofibers. In another
attempt, Chen et al. [108] introduced a large capacity of 1150 mAh·g−1 at 0.1 A·g−1 for a
hollow CNT/CNF composite. In addition, Culebras et al. [109] claimed a high capacity of
611 mAh·g−1 after 500 cycles for a CNF mat obtained from lignin/polylactic acid (PLA)
precursor. Moreover, Nan et al. [110] revealed a large capacity of 841 mAh·g−1 for a carbon
nanofiber membrane synthesized from a PVA precursor. Notably, fabrication of porous and
hollow CNFs could result in enhancement of the discharge capacity through increment of
the Li+ ions’ spaces. Further, it causes easier interaction between electrode and electrolyte
components by reduction of the distances between ions and electronics [111].

Conversion-reaction-based anode materials work based on the faradic reaction. Metal
oxides (e.g., Co3O4, Cu2O, etc.), metal nitrides (MxNy, where M is Ni, Fe, Mo, etc.), metal
sulfides (MxSy, where M is Ni, Fe, Mo, etc.), and metal phosphides (LixMyP4, where M is V,
Cu, Ti, etc.) are of the conversion-reaction-based structures. These kinds of anode structures
are able to provide capacity in the range from 350 mAh·g−1 (Cu2S) to 1800 mAh·g−1 (MnP4).
Despite the high capacity, the conversion-reaction-based materials suffer from low potential,
poor cycling durability, and high volume changes during extraction and insertion of the Li+

ions. In order to suppress volume changes of the conversion-reaction-based anode struc-
tures, fabrication of porous nanomaterials has received wide attention. Existence of pores
in such materials manages the volume changes during lithiation/dilithiation processes
through providing sufficient spaces for extraction and contraction of the applied anode
material. In addition, combination of these materials with the carbonaceous structures
has been claimed as another effective method for control of the volume changes [105,106].
Zhang et al. [112] reported a large capacity of 835 mAh·g−1 at 0.2 A·g−1 after 100 cycles
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for a Mn3O4/CNF composite membrane. In addition, a CoO/CNF three-dimensional mat
revealed large discharge capacity of 853.5 mAh·g−1 after 100 cycles [113]. Moreover, elec-
trospun NiO fibers have exhibited a discharge capacity of 784 mAh·g−1 at 0.08 A·g−1 [114].

Alloying-reaction-based materials have been considered as the third category of anode
structures. Various metals which are able to be alloyed with lithium (such as Se, S, etc.)
are classified in this group. During the charging procedure, lithium ions make an alloy
with the applied alloying-reaction-based structures. The aforementioned class of anode
structures could reveal various capacities based on the applied alloying metal ranging
from 660 mAh·g−1 (Sb) to 4200 mAh·g−1 (Si). The major drawback linked with this
materials are volume changes during insertion and extraction of the lithium ions, which
could be suppressed by size reduction of the applied particles as well as combination
with the carbonaceous materials [105,106]. Jang et al. [115] revealed a discharge capacity
of 560 mAh·g−1 after 80 cycles for an electrospun Co-Sn/CNF composite. In addition, a
high discharge capacity of 830 mAh·g−1 at 0.4 A·g−1 after 100 cycles was claimed for the
Si/CNF three dimensional structure [116]. Furthermore, a SnS/CNF composite membrane
presented 648 mAh·g−1 discharge capacity at 0.2 A·g−1 after 500 cycles [117]. Table 2
describes some of the most recent advancements carried out for the fabrication of highly
efficient electrospun anodes.

Table 2. Summarization of some of the most recent approaches toward fabrication of nanofibrous anodes.

Material Energy Storage Mechanism Capacity (mAh·g−1) Autor (Year) Ref.

CNF Intercalation 294 at 0.2 A·g−1 Li et al. (2020) [118]
MnCo2O4

Conversion reaction

701 at 0.5 A·g−1 Zhu et al. (2020) [119]
TiO2/CNF 399 Su et al. (2020) [120]

Fe3O4/CNF 1635 at 1 A·g−1 Liu et al. (2020) [121]
Sn4P3/CNF 710 Ran et al. (2020) [122]

P/CNF Alloying reaction 730 at 0.1 A·g−1 Liberale et al. (2020) [123]
Si/PCNF 1033 at 5 A·g−1 Tian et al. (2020) [124]

SnP0.94/CNF
Conversion/Alloying reactions

750 at 0.1 A·g−1 Yadav et al. (2020) [125]
SnSe/CNF 405 at 1 A·g−1 Xia et al. (2020) [126]

SnSe/N-doped CNF 460 at 0.2 A·g−1 Shaji et al. (2020) [127]

4.3. Electrospun Separator

The separator is another essential key component of LIBs. Prevention of the contact
between positive and negative electrodes and transportation of the Li+ ions between
the electrodes, along with retaining the liquid electrolyte are apparent responsibilities of
this crucial element. Regarding the role of a separator part in LIBs, an ideal separator
must provide sufficient ionic conductivity, wettability, and permeability. In addition,
dimensional, thermal, and electrochemical stabilities are other vital characteristics of
an appropriate separator. Porous PP or PE membranes are common structures utilized
as separators in LIBs. However, poor conductivity as well as low wettability are the
most well-known downsides associated with these kinds of separators. Among various
techniques applied for the fabrication of ideal separators, electrospun membranes have
revealed more appealing features. The highly porous structure of the nanofibrous mats,
interconnected pores, and large surface-to-volume ratios of the electrospun fibers provide
proper wettability and permeability for separators [128,129].

The electrospun separators are mainly divided into four classes, including: mono-
layer, multilayer, modified, and composite membranes. Monolayer separators are mainly
fabricated from one polymeric precursor such as PVDF [130], polyimide (PI) [131,132],
PAN [133,134], and so on, while multilayer membranes are obtained by sequential fabrica-
tion of various polymer precursors. In this method, appropriate advantages of the various
polymers (such as thermal stability, dimensional stability, electrochemical performance, etc.)
could be attained in one separator membrane. PVDF/poly(m-phenylene isophthalamide)
(PMIA) [135], PVDF/polyethylene terephthalate (PET) [136], PVDF/PI [137], and poly-
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sulfonamide (PSA)/PET [138] are some of the reported multilayer electrospun separators.
Post-treatment of the electrospun fibrous membranes is a great technique for modification
and improvement of various characteristics. Dip-coating [139,140], in situ polymeriza-
tion [141,142], and atomic layer deposition [143] are significant modification methods. In
such procedures, a material is introduced into the electrospun separator, which results in
improvement of its final properties. Direct electrospinning of the combination of two poly-
mer solutions (e.g., PAN/PU [144], PAN/Lignin [145], PSA/PVDF-HFP [146], and so on) or
filler-loaded polymer solution (e.g., PAN/SiO2 [147], PI/Al2O3 [148], Nylon6,6/TiO2 [149],
etc.) leads to the fabrication of composite separator membranes with enhanced hydrophilic-
ity and heightened thermal stability. Besides the role of the polymer type, the morphology
of the electrospun fibers also influences the obtained electrochemical behavior. As an exam-
ple, fabrication of finer fibers results in increment of electrolyte uptake and so enhancement
of the ionic conductivity. Therefore, the morphology of the electrospun fibers should
be tuned to approach appropriate electrospun separators with proper electrochemical
characteristics [150]. A summary of the recent progresses in the fabrication of electrospun
separators is provided in Table 3.

Table 3. Recent approaches toward fabrication of electrospun separator applicable in Li-ion batteries.

Material Porosity (%) Tensile
Strength (MPa)

Electrolyte
Uptake (%)

Ionic Conductivity
(mS·cm−1) Autor (Year) Ref.

PAN 67.7 11.3 478.2 1.97 Dong et al. (2020) [151]
PAN/PBS 59.3 7.66 665 2.1 Wei et al. (2020) [152]
PVA/ZrO2 78 14.5 350 2.19 Xiao et al. (2020) [153]
PI/Al2O3 81 - 912 - Iaritphun et al. (2020) [154]

PVDF-HFP/SiO2 89.7 5 483 - Xu et al. (2020) [155]
PVDF-HFP/PI 85.9 9.76 483.5 1.78 Cai et al. (2020) [156]

PVDF-HFP/LAGP - - 215 3.18 Liang et al. (2021) [157]
PVDF/TPP/CA 90 6.9 301 4.4 Chen et al. (2020) [158]
PAN/HCNFs@
PVDF/UiO-66 77.61 24.77 570.97 1.59 Fa et al. (2021) [159]

4.4. Electrospun Electrolyte

Cycle life, power density, and safety of LIBs are influenced by their electrolyte elements.
In batteries, the electrolyte component transports the Li+ ions between the electrodes to
complete the charge and discharge cycles. In the commercial LIBs, liquid electrolytes,
consisting of an organic solvent and a lithium salt, are mainly utilized to fabricate the
electrochemical cells. However, flammability of the applied solvents requires metallic
sealing for the battery, which results in the production of heavy, inflexible, and expensive
cells. Solvent-free electrolytes have been widely recommended as a solution toward
fabrication of lightweight, safe, and cost-effective batteries. In such electrochemical cells,
the solid electrolyte structure supports the role of both electrolyte and separator. In fact,
it prevents the contact between electrodes and transports the Li+ ions between them. All-
solid-state electrolytes are generally synthesized based upon polymeric structures and
inorganic solid materials [160,161].

Polymeric solvent-free electrolytes are synthesized based on dispersion of a lithium
salt (LiBF4, LiClO4, LiTFSI, etc.) in a polymer matrix (e.g., PAN, PVDF, PEO, poly(methy
lmethacrylate) (PMMA), etc.). They are mainly fabricated in the formation of casted films.
Poor ionic conductivity has been claimed as the main drawback of the polymeric elec-
trolytes. Formation of polymer/salt crystalline phases has been introduced as one of
the inhibitor parameters for Li+ ion movements during cycling processes. In such com-
binations, Li+ ions are transported between the electrodes through polymer chain local
motions or hopping mechanism. So, reduction of the glass transition temperature as well
as increment of the amorphous regions are key solutions for enhancement of the ionic
conductivity of the polymer films [161,162]. Therefore, introduction of particulate fillers
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(such as SiO2 [163], Al2O3 [164], TiO2 [165], and many more) and plasticizer molecules
(such as EC, PC, etc.) into the polymer matrix have been reported as influential methods for
enhancement of the ionic conductivity. Particulate fillers placed between polymer chains
of the utilized polymer matrix cause reduction of the crystalline phases. Thus, the polymer
chains would be able to move easily and so accelerate transportation of the Li+ ions. In
addition, inserted fillers enhance ion pair dissociation of the applied lithium salts, which
obviously influences the ionic conductivity [163–165]. In 2017, Freitag et al. reported higher
conductivity of the electrospun solvent-free electrolytes in comparison with that of the
casted ones. Based on this research, PEO/SN/LiBF4 electrospun electrolyte could exhibit a
high ionic conductivity of 0.2 mS·cm−1 [166]. In a similar research, they showed a high
ionic conductivity of 0.1 mS·cm−1 for the electrospun PEO/SN/NaBF4 membrane [167].
Higher ionic conduction of the solvent-free electrospun structures compared with that of
the solution-casted membranes are linked with two main issues. First, small pores between
the electrospun fibers are excellent pathways for transportation of the Li+ ions. Second, fast
evaporation of the solvent during electrospinning procedure does not allow the polymer
chains and lithium salts to form polymer/salt crystalline regions. So, concentration of
the free lithium ions increases in the electrospun membranes, leading to enhancement
of the ionic conductivity [43,168]. It is worth noting that electrochemical behavior of the
electrospun mats highly depends on the morphology of the fabricated fibers. Based on
the obtained results, ionic conductivity could be enhanced by reduction of the average
fiber diameter to an optimum range. This may be linked with formation of tiny pores
and so more ideal pathways for fast transportation of the Li+ ions. Nevertheless, further
decrement in average diameter of the fabricated fibers could result in reduction of the ionic
conductivity. This trend is attributed to formation of more crystalline regions in the struc-
ture of finer fibers as well as superior density of the electrospun fibrous mats containing
thinner fibers [43,169]. A comparison between ionic conductivity of the electrospun and
solution-casted electrolytes with similar chemical compositions is provided in Table 4.

Table 4. Ionic conductivity of the electrospun and solution-casted membranes with similar chemical compositions.

Material Fabrication Method Ionic Conductivity (mS·cm−1) Author (Year) Ref.

PEO/PC/LiClO4
Casting 1.7 × 10−3

Banitaba et al. (2019) [170]
Electrospinning 5 × 10−2

PEO/Li(TFSI)
Casting 1 × 10−3

Walk et al. (2018) [171]
Electrospinning 4.4 × 10−3

PEO/EC/LiClO4
Casting 8 × 10−3

Banitaba et al. (2020) [169]
Electrospinning 1.72 × 10−1

PEO/EC/LiClO4/Al2O3
Casting 4.4 × 10−3

Banitaba et al. (2019) [172]
Electrospinning 5.9 × 10−2

Inorganic solid materials have also been evaluated as applicable all-solid-state elec-
trolyte in the LIB structures. Crystalline structure of such materials facilitates fast migration
of the Li+ ions between the positive and negative electrodes. Garnet-type, LISICON-like,
NASICON-like, and Argyrodite are well-known inorganic solid structures which are able
to reveal high ionic conductivity as high as the liquid electrolytes. As an example, lithium
germanium phosphorous sulfide (Li10GeP2S12), classified in the LISICON-like category,
has shown a high ionic conductivity of 10 mS·cm−1 at room temperature. Nevertheless,
the existence of rare and expensive elements in the structure of inorganic solid materials,
along with low flexibility, has restricted their practical usage. To overcome the aforemen-
tioned obstacles, several researchers have suggested applying electrospun inorganic solid
materials as fillers in the polymeric membranes [173–175]. So, a high ionic conductivity
of 0.25 mS·cm−1 has been reported for a PEO-based polymeric membrane incorporated
with the electrospun Li6.4La3Zr2Al0.2O12 fillers [173]. In addition, ionic conductivity of
a PAN-based casted film was enhanced up to 0.24 mS·cm−1 through introduction of
Li0.33La0.557TiO3 nanofibers (Figure 4) [174]. Moreover, Liu et al. [175] have reported that



Polymers 2021, 13, 1741 11 of 41

dispersion of well-oriented ceramic nanowires instead of random nanowires in a host
polymer matrix could cause more ionic conductivity resulting from faster transportation of
the Li+ ions. Hence, morphological features play a key role to obtain ideal electrochemical
nanofibrous components.
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So far, lithium secondary batteries have been widely utilized as energy storage devices
in various applications. Regarding progress and development of technology, production
of storage power tools with superior efficiency and improved function has been crucial.
In order to achieve this significant aim, all battery components, including anode, cathode,
separator, and electrolyte should be enhanced and augmented. In recent decades, the
electrospinning technique has shown a great potential to approach versatile and highly
efficient fibrous structures for designing advanced LIBs. Despite the reported advantages
of electrospun components of LIBs, several drawbacks, such as poor mechanical strength,
low electrical conductivity, and poor ionic conduction, have restricted their practical
applications. Meanwhile, such downsides could be eliminated through further evaluation
and modification of electrospun membranes. By addressing the mentioned challenges,
fabrication of all-solid-state electrospun batteries comprising of nanofibous electrodes
along with nanofibrous electrolyte could be considered as the main trend in the near future.

5. Fuel Cells

Fuel cells are based on electrochemical reactions with an external source for the
reacting material [176,177]. They have efficiencies around 40–85%, which is higher than
those of turbine generators or a diesel engine and a capacity range comparable with
photovoltaics or a turbine generator, making them highly interesting for rural areas with
limited access to the public grid or for uninterruptible power supplies [177].

Technologically, they work by a reversed electrolysis reaction, creating electricity and
heat by the reaction of oxygen and hydrogen to water. A fuel cell consists in principle
of two electrodes, i.e., cathode and anode, separated by an electrolyte, and the external
electric circuit used to gain energy from the cell. Depending on the kind of electrolyte, fuel
cells are separated into alkaline, phosphoric acid, solid oxide, molten carbonate, direct
methanol, and proton exchange fuel cells [178].

Similar to the aforementioned batteries, fuel cells can contain electrospun nanofiber
mats for different purposes which will be presented in this section.

5.1. Electrospun Cathode Materials

Diverse studies investigated possibilities to prepare cathodes for fuel cells from elec-
trospun nanofiber mats.

In proton exchange fuel cells, for example, the problem occurs that the water gen-
erated at the cathode is not properly transported at high current densities, resulting in
so-called water flooding, and can in addition support corrosion of the carbon electrode, in
this way reducing also the long-term stability [179]. To reduce this problem, Chung et al.
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suggested introducing hydrophobic graphitized carbon nanofibers, achieved by annealing
electrospun PAN nanofibers up to temperatures of 1000–2500 ◦C, into the cathode layer,
resulting in water-free regions in the electrode, as depicted in Figure 5 [180]. They found
highest peak power densities for a concentration of 45 wt.% graphitized carbon nanofibers
by reducing water flooding [180]. Slack et al. suggested PVDF as a binder for Pt/C cathodes
to reduce carbon corrosion accelerated stress [181]. They compared electrospun nanofiber
cathodes with Nafion/PVDF and Nafion/poly(acrylic acid) (PAA) binders with a slurry
cathode with neat Nafion and Nafion/PVDF binder and found that the presence of the
hydrophobic PVDF reduced carbon loss and increased the binder strength [181]. In an
earlier investigation, the group studied PtCo/C and Pt/C catalyst powders integrated in
electrospun nanofibrous mats in comparison with conventional sprayed cathode mem-
branes, again using Nafion/PAA as a binder, and found a higher initial performance as
well as a superior long-term stability for the electrospun cathodes [182]. Similarly, Khan-
davalli et al. used PAA to reduce agglomerations of platinum on carbon catalyst particles
in catalyst inks [183]. In another earlier work, Zhang et al. showed the advantages of
electrospun nanofiber cathodes under low and high feed gas humidification with similar
fiber composition [184]. Wei et al. used graphene-doped electrospun nanofiber mats for
both cathode and anode and found high conductivity and great porosity of these electrodes,
making them well suitable for fuel cells after Pt loading [185].
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Cathodes in direct methanol fuel cells can also be prepared by electrospinning. Mem-
branes used in these fuel cells must combine high proton conductivity with low methanol
permeability to avoid fuel from anode reaching the cathode, which is a problem for the
typically used Nafion membranes [186]. Liu et al. compared sulfonated poly(ether ether
ketone) (SPEEK) membranes, Nafion membranes, and SPEEK membranes doped with
sulfonated carbon nanofibers (SCNFs) [187]. They found increased mechanical strength,
proton conductivity, and decreased methanol permeability for SPEEK/SCNF composites,
as compared to the other membranes. In a microfluidic fuel cell, working on formic acid as
fuel and KMnO4 as oxidant, Jindal et al. applied a CNx nanofiber mat as cathode catalyst
and found a power density similar to gold or platinum catalysts [188]. Electrospinning
of CNx nanofibers was performed by producing CNx nanoparticles and spinning them
with PAN, Nafion and carbon black powder from a DMF solution. In this way, usually
a CNx layer on PAN nanofiber was produced, bound by the Nafion dispersion, while
sometimes nodes in the PAN nanofibers stemming from CNx nanoparticles supported on
carbon black were found [189]. Using an electrospun Fe-N/C nanofiber mat as catalyst
for a direct methanol fuel cell, Mei et al. found the multi-scaled porous structure to be
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beneficial for the cathode catalyst in a fuel cell [190] They concluded that while micropores
helped accommodating active sites, the meso- and macropores supported oxygen supply
to the active surfaces. In their study, high oxygen reduction reaction was found in acid
media, combined with good stability and methanol tolerance.

While molten carbonate fuel cells scarcely contain electrospun nanofibrous cathodes,
solid oxide fuel cells use them often. One of the problems of solid oxide fuel cells is the
high operating temperature of typically 800 ◦C and higher when preparing solid oxide
fuel cells based on an electrolyte from yttria-stabilized zirconia, resulting in relatively low
lifetimes and high costs. To solve this problem, Zhi et al. suggest using a 3D nanofiber
network as the cathode to reduce operation temperature to 750 ◦C [191]. They used
an electrospinning solution of PAN in DMF, blended with La0.58Sr0.4Co0.2Fe0.8O3, and
heat treated the electrospun nanofibers at 800 ◦C to reach nanofibers with a perovskite
structure. Further improvement was obtained by adding gadolinia-doped ceria into the
3D nanoporous network. In an earlier study, the group investigated yttria-stabilized
zirconia nanofiber networks infiltrated with La0.8Sr0.2MnO3 and found reduced polar-
ization resistance in comparison to bulk cathodes from the same materials [192]. En-
rico et al. used water instead of DMF for electrospinning a sol–gel solution to prepare
La0.6Sr0.4Co0.2Fe0.8O3−δ nanofibers [193]. After heat treatment of the nanofibers, they were
applied on a Ce0.9Gd0.1O1.95 electrolyte disk to prepare a symmetrical fuel cell which was in-
vestigated at temperatures of 550–950 ◦C and found to have low performance reduction for
operation at 750 ◦C. A lower working temperature of 650 ◦C was achieved by using a com-
posite cathode from electrospun La0.8Sr0.2Co0.2Fe0.8O3−δ nanotubes/Ce0.8Gd0.2O1.9 [194].
Different materials were suggested by Ahn et al. who prepared Sm0.5Sr0.5CoO3−δ and
Gd0.2Ce0.8O1.9 composite nanofibers by electrospinning and found a significant increase
of the electrode performance as compared to pure Sm0.5Sr0·5CoO3−δ cathodes [195]. The
precursor-based one-step electrospinning process was found to be advantageous to prepare
increased grain boundary density and maximum hetero-interfaces between both phases
(Figure 6), which supports oxygen reduction reaction at the cathode and thus an increased
fuel cell performance.
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Phosphoric acid fuel cells belong to the most often used ones. Here, the electrolyte
mainly contains phosphoric acid (H3PO4), a proton conductor delivering protons from
the anode to the cathode [196]. In phosphoric acid fuel cells, again electrospun nanofiber
mats can be applied as cathodes. Skupov et al., for example, modified cathodes for
medium-temperature phosphoric fuel cells based on polybenzimidazole membranes [197].
They prepared PAN nanofiber mats from DMF, blended with carbon black and partly
PVP, stabilized them in air and subsequently carbonized them at 900–1100 ◦C in vacuum.
Afterwards, the nanofiber mats were partly loaded with Pt or Ni. These cathodes were
found to show improved polarization values and increased catalytic activity due to the
increased specific surface of the more porous nanofibers. Previously, the same group
reported on gas diffusion electrodes for fuel cells, prepared by sequential oxidation and
pyrolysis of electrospun nanofiber mats prepared from PAN, decorated with Pt [198].
Besides these few examples, phosphoric acid fuel cells are normally not prepared with
nanofibrous cathodes.

Similarly, there are only few reports available on nanofibrous cathodes for alkaline fuel
cells which use typically potassium hydroxide in water or nowadays an alkaline polymer
membrane as the electrolyte. As an example, Uhm et al. prepared CNFs with embedded
non-precious metals for the oxygen reduction reaction in alkaline ethanol fuel cells by
electrospinning and subsequent carbonization [199]. They found that the Fe and Co metals
supported nitrogen and oxygen incorporation on the CNF surface instead of directly being
part of the oxygen reduction reaction.

Besides the possible applications of electrospun nanofiber mats as cathodes in fuel cells,
the next sub-section gives a brief overview of applying nanofibrous materials as anodes.

5.2. Electrospun Anode Materials

An interesting application of nanofiber mats used as anodes in fuel cells is given by
microbial fuel cells in which the anodes mostly define the fuel cell performance [200,201].
These cells generate electricity by oxidizing biodegradable organic matter, such as glucose
or proteins, in the presence of microorganisms [202]. Garcia-Gomez et al. studied TiO2–
C/C nanofiber mats and found good electrical performance, combined with the ability
to host a dense biofilm of electro-activated Escherichia coli (Figure 7), which could be
used for the bioconversion to electricity in a microbial fuel cell [202]. The nanofiber
mats used in their experiments were prepared from co-electrospinning solutions of TiO2–
PVP–PAani and pure PAN in DMF through two syringes onto an aluminum collector
plate. After spinning, Ti(OiPr)4 hydrolysis was achieved in air, followed by thermal
stabilization and carbonization at 1000 ◦C. Cai et al. prepared a CNT/CNF anode by
electrospinning PAN/CNT from DMF, followed by heat pressing and carbonization [203].
They found only few bacteria, used to grow a biofilm, on pure carbon fiber anodes, and
a much thicker biofilm on the CNT/CNF anode, which was attributed to the increased
roughness and hydrophilicity of the anode due to the introduction of the CNTs. Another
material combination was suggested by Jung and Roh who used CNF/polypyrrole (PPy)
electrospun nanofiber mats as anodes in microbial fuel cells and found a nearly doubled
power density with their optimized anodes in comparison with commercial graphite
felt [204]. Massaglia et al. suggested N-doped carbon nanofibers as anodes for microbial
fuel cells [205], while Karra et al. investigated activated carbon nanofibers and found them
to be superior to anodes prepared from granular activated carbon or carbon cloth [206].

Besides these examples of biotechnological fuel cells, diverse others were shown to
be producible with electrospun anodes. Working with urea-contaminated wastewater,
Barakat et al. suggested carbon nanofibers with embedded NiSn nanoparticles as anodes
in direct urea fuel cells [207]. They showed that adding tin as a co-catalyst to nickel, a high
current density for urea oxidation could be achieved, and found an average carbonization
temperature of 850 ◦C to be advantages as compared to higher temperatures where the
graphite content decreased, leading to a decrease in the catalytic activity. Mohamed et al.
used a glassy-carbon electrode coated with electrospun Ni/Pd–C nanofibers as the anode
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for urea fuel cells, in which the nanofibers were prepared by electrospinning PVA with
nickel (II) acetate tetrahydrate and palladium (II) acetate, followed by calcination at a
temperature of 900 ◦C in argon atmosphere [208]. Ni/Cd-decorated electrospun carbon
nanofibers were investigated as anodes of urea fuel cells by Abdelkareem, who found a
significantly improved electrocatalytic activity for urea oxidation, as compared to anodes
without Cd [209].
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Perovskites were already described before as possible cathodes for solid oxide fuel
cells. Similarly, they can be used for the anodes in these cells. Hu et al. recently described
LaxSr1−xTiO3-GdyCe1−yO2−δ electrospun nanofiber mats as possible composite anodes
for these cells [210]. These nanofiber mats were prepared by dissolving PVP in DMF,
adding lanthanum nitrate, strontium nitrate, and tetrabutyl titanate in different molar
ratios, needle-based electrospinning the solution and calcinating it at 900 ◦C, before the
nanofibers were partly grinded to obtain nanoparticles. These nanofibers and nanoparticles
were mixed with terpineol solution and in this form coated on both sides of the electrolyte
wafers to form cathode and anode, before they were impregnated with GdyCe1−yO2−δ. In
this way, a La doping ratio of 0.4 was found to be optimal. Addition of GdyCe1−yO2−δ

was shown to significantly increase the electrochemical performance, with an optimum
Gd doping ration of 0.2. Besides, nanoparticle-based anodes showed a better electrochemi-
cal performance than nanofiber-based anodes if only LaxSr1−xTiO3 was used, while this
this was reversed for the GdyCe1−yO2−δ impregnated electrodes [210]. The optimized
electrodes were afterwards tested in H2 and CH4 fuel gases where they showed good
thermal and redox cycling stability [211]. Besides this type of composite [212,213], other
material systems as anodes for solid oxide fuel cells are, e.g., Ni-coated yttria-stabilized zir-
conia nanofiber mats [21–216], SrCe0.8Y0.2O3−δ-Ni nanofiber mats [217], and Sr2FeTiO6−δ

nanofiber mats [218].
For direct methanol fuel cells, Chen et al. suggested electrospinning a 3D anodic

catalytic layer (Figure 8) to improve catalyst utilization and to reduce charge transfer
resistance, in this way significantly increasing the electrochemical performance at simul-
taneously reduced platinum loading of the electrode [219]. Carbon–CeO2 composite
nanofiber mats were electrospun by Feng et al. who suggested them as a support for a
PtRu anode catalyst in direct methanol fuel cells [220]. Thamer et al. used Ni/C nanofibers
mixed with Nafion solution as a catalyst layer on glassy carbon anodes and found high
electrocatalytic activity in methanol oxidation which was enhanced by nitrogen doping,
while the latter also improved the stability of the catalyst [221]. Hanifah et al. suggested
electrospun PVDF/Pt-Pd/RGO-CeO2 nanocomposite nanofibers as anode catalyst in direct
methanol fuel cells [222]. These fibers were prepared from a solution containing graphite
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oxide, PdCl2 and H2PtCl6·6H2O, mixed with formic acid and Ce(NO3)3·6H2O to reach
Pt-Pd/RGO-CeO2. This was added to a PVDF solution in N-Methyl-2-Pyrrolidone to allow
for needle-based electrospinning. In this way, Pt-Pd/RGO-CeO2 nanocomposites in a
PVDF nanofiber matrix could be prepared which could be used as catalyst nanofibers for
direct methanol fuel cell anodes. Other materials used to prepare the anodes of direct
methanol fuel cells are, e.g., TiO2/C with platinum and ruthenium catalyst [223,224], PPy
nanofiber networks [225], and CeO2-C nanofibers decorated with Pt-Co nanoparticles [226].
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Figure 8. Scanning electron microscopy images of (A) a conventional gas diffusion electrode; (B) an
electrospun gas diffusion electrode; (C) transmission electron microscope image of electrospun PtRu-
C/Nafion/PVA nanofiber; (D) diameter distribution of the electrospun nanofiber mat. Reprinted
from [219], with permission from Elsevier.

Besides these types of fuel cells, electrospun nanofiber mats are only scarcely applied
as parts of anodes, e.g., Pt/SnO2 nanofibers as electrocatalyst in polymer electrolyte
membrane fuel cells to support hydrogen oxidation reaction and block oxygen reduction
reaction there [227]. Another often reported application of electrospun nanofiber mats is,
due to their tailorable porosity, the membrane of different fuel cells.

5.3. Electrospun Membranes

In H2/Br2 regenerative fuel cells, Park et al. applied Nafion perfluorosulfonic acid/
PVDF electrospun membranes, containing 2–5 nm fine fibril strands from Nafion and PVDF
aligned to the fiber axis [215]. The membranes were produced by hot-pressing and subse-
quent thermal annealing. With increasing PVDF content, a decrease in proton conductivity,
water/electrolyte swelling and permeability for Br2/Br3

− was found, making a membrane
with 20% PVDF suitable for H2Br2 fuel cells and showing nearly 50% higher power output
than with a common Nafion 212 membrane [228]. Nafion/polyphenylsulfone nanofiber
mats were produced by simultaneous electrospinning of both components and showed
good water swelling and mechanical performance as well as proton conductivity [229].
Many other nanofiber mats based on material blends including Nafion are reported in the
scientific literature [230–234].
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Besides these material combinations, several others are suggested for different fuel
cells. Bipolar membranes can be used, e.g., for self-humidifying H2/air fuel cells, besides
other electrochemical devices [235]. Combining a metal-organic framework (MOF) with
sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) was suggested by Wu et al.
as a possible membrane for high proton conductivity in proton exchange membrane fuel
cells, working at high temperatures and under anhydrous conditions [236]. The nanofibers
were highly oriented and showed thus high proton conductivity, combined with oxidative
stability and resistance of methanol permeability, making them well suitable for direct
methanol fuel cells. Similarly, Gong et al. suggested ordered SPPESK nanofiber mats
to reach high tensile strength and cell power density [237]. Another high-temperature
membrane was prepared by Muthuraja et al. who used poly(aryl sulfone ether benzimida-
zole) membranes for proton exchange fuel cells [238]. Electrospinning this material from
dimethyl sulfoxide (FDMSO) in a needle-based process, they found high proton conductiv-
ity and oxidative stability due to the sulfone and ether links in the polymeric backbones as
well as a highly porous structure, enabling high acid doping and increasing proton conduc-
tivity. Using highly oriented sulfonated PI nanofibers, Tamura and Kawakami produced
proton exchange membranes for fuel cells with high chemical and mechanical stability as
well as high proton conductivity parallel to the nanofibers [239]. Electrospun nanofibers
mats with pore size gradients were suggested by Balakrishan et al. for polymer-electrolyte
membrane fuel cells [240], who also studied degradation of such electrospun gas diffusion
layers [241], while Kallem et al. highlight some possible strategies for nanofiber-based
proton exchange membranes with aligned nanofiber mats [242].

Finally, a theoretical approach should be mentioned. DeGostin et al. developed a
fiber network model to predict the conductivity of electrospun nanofiber mats [243]. They
modeled the 3D nanofibrous morphology to approximate fiber layering and membrane
swelling in water. By translating the fiber network into a resistor network, as shown
in Figure 9, they found similar conductivity as experimentally measured in electrospun
proton and anion exchange membranes in fuel cells.
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In all aforementioned applications in the research area or electrospun elements for fuel
cells, the fiber and mat morphologies are again of high interest. Most of the aforementioned
papers investigate these properties by SEM, partly by TEM, and aim at providing porous
nanofiber structures to further improve the SSA of the corresponding nanofiber mats.

Generally, electrospun nanofiber mats can be applied as cathodes, anodes, or mem-
branes of fuel cells. The possibilities to tailor the morphology of nanofibers and mats, in
this way creating the desired nano- and micropores to reach a high SSA, and the physical
and chemical material properties, e.g., by varying the carbonization/calcination process,
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offer a broad range of available properties which can be optimized towards the respec-
tive applications.

6. Supercapacitors

Supercapacitors, also called electrochemical capacitor, double layer capacitors and
ultra-capacitors, are considered as one of the novel electrical energy storage methods.
Compared to batteries, they deliver higher power rates and life times. However, they
suffer from lower stored energy than batteries. So, their practical usage is limited by their
poor energy density (4–5 Wh·kg−1), whilst batteries display energy output in the range of
100 to 200 Wh·kg−1. Supercapacitors could be applied in different electronic equipment,
including hybrid vehicles, portable devices, and many more. They are mainly comprised of
active and inert components. Electrode and electrolyte are classified as the active materials,
whilst current collector, binder, and separator are categorized as the inactive ones [175,244].
Figure 10 schematically illustrates the basic structure of various supercapacitors.
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Electrospun Fibers as Supercapacitor Electrode Materials

Based upon the operational mechanism, supercapacitors can be classified into electro-
chemical double layer capacitance (EDLCs) and pseudo capacitance classes. In the EDLC
category, physical accumulation of the charge carriers and ions on the electrode-electrolyte
interfacial layer results in the energy storage. Carbon-based materials such as carbon
aerogel, graphene, CNT, and many more belong to the EDLC materials, whereas metal
oxides and conducting polymers have shown pseudo capacitance behavior as they store
energy through physio-chemical reactions [245,246].

Carbon-based materials are frequently described for fabrication of the EDLC elec-
trodes. These materials have revealed numerous advantages such as great electrical con-
ductivity, proper specific surface area, appropriate chemical stability, low cost, and so
on. According to their operating mechanism, surface area and morphology parameters
influence the capacitor performance. In addition, existence of the functional groups on
the carbon-based materials increases the ion adsorption, stemming from the wettability
enhancement. Therefore, numerous researches have illustrated that optimized pore size
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and surface area factors as well as the existence of functional groups on the material surface
could lead to performance enhancement of the carbon-based electrodes. However, contact
resistance of the carbon particles is a serious weakness associated with the carbon-based
materials. The reason is attributed to increment of the electrode resistance and therefore
reduction of the capacitance efficiency [245,246].

Recent evidences suggest that carbon-based nanofibrous materials can enhance ion
migration into the active surfaces and improve interfacial charge transportation. This could
be linked with the highly porous structure of the nanofibrous materials and their great
electrical conductivity. As an example, carbon nanofibers (CNFs) display high electrical and
thermal conductivities as well as excellent mechanical and chemical stabilities. Commonly,
CNFs are fabricated through electrospinning of a host polymer followed by a carbonization
procedure at high temperatures. PAN, PVP, and PI belong to the notable host polymers.
Moreover, several guest polymers such as PMMA and polystyrene (PS) could be applied
to fabricate porous CNFs. The porous CNF structures are produced as a result of guest
polymer removing after the heat treatment step [245,246]. Figure 11 displays the applied
procedure for fabrication of hollow-porous CNF by He et al. [247]. It is worth noting that
increasing the calcination temperature leads to a reduction of the obtained carbon fiber
diameter and results in superior electrochemical behavior as it is declared by Pech and
Maensiri [248]. Several attempts applied for synthesis of the CNF structures by using the
electrospinning procedure are listed in Table 5.
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Table 5. Electrospun carbon nanofibers as supercapacitor electrode material.

Host [Guest]
Components Thermal Treatment SSA (m2.g−1)

Electrochemical Performance
Author
(Year) Ref.Specific Capacity

(F·g−1)
Energy Density

(Wh·kg−1)
Capacity

Retention

PAN

Stabilized at 280 ◦C
for 1 h, carbonized at

700–800 ◦C, and
activated by N2 and

steam for 30 min

1230 173 at 0.01 A·g−1 - - Kim &
Yang (2003) [249]

Polybenzimidazole
Activated by N2 and
steam at 750–850 ◦C

for 30 min
1220 178 at 0.007 A - - Kim et al.

(2004) [250]

PVDF/PVP

Dehydrofluorinated
at 60 ◦C for 1 h and

heated to 800 ◦C
in N2

1084 331 F·g−1 at
1 A·g−1 13.1 89.2% after

2000 cycles
Ma et al.
(2019) [251]
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Table 5. Cont.

Host [Guest]
Components Thermal Treatment SSA (m2.g−1)

Electrochemical Performance
Author
(Year) Ref.Specific Capacity

(F·g−1)
Energy Density

(Wh·kg−1)
Capacity

Retention

PAN/PMMA
Stabilized at 250 ◦C

for 4 h and
carbonized at 800 ◦C

for 1 h in N2

224 210 F·g−1 at
1 A·g−1 - 100% after

2000 cycles
Lai et al.
(2015) [252]

PAN/PVP

Stabilized at 300 ◦C
for 2 h, carbonized at
300 to 970 ◦C for 3 h
in N2, and activated

by CO2 at 850 ◦C
for 1.5 h

531 220 F·g−1 - - Niu et al.
(2011) [253]

Polyamic acid
(PAA)/PVP

Stabilized at 280 ◦C
for 2 h, carbonized at
280 to 900 ◦C for 7 h
in Ar, and activated
by KOH at 850 ◦C

for 2 h

743.5 211.7 F·g−1 23.1 - He et al.
(2020) [254]

poly(styrene-co-
acrylonitrile)/

PAN/PVP

Stabilized at 250 ◦C
for 2 h and

carbonized at 800 ◦C
for 1 h in N2

26 239 F·g−1 at
1 A·g−1 15 92.33% after

10,000 cycles
Kim et al.

(2020) [255]

Lignin/PVA
Stabilized at 250 ◦C

in N2 for 2 h and
carbonized at 900 ◦C

for 2 h in N2

2005 205 F·g−1 at
1 A·g−1 - 83% after

1500 cycles
Ago et al.

(2016) [256]

PAN [PVP/
Silicone oil]

Stabilized at 300 ◦C
for 2 h, carbonized at
300 to 970 ◦C for 3 h
in Ar, and activated
by KOH at 850 ◦C

for 1.5 h

1120.3 231.6 F·g−1 15.1 99.7% after
2000 cycles

Ishita &
Singhal
(2020)

[257]

PAN [PS]
Stabilized at 280 ◦C

for 2 h and
carbonized at 800 ◦C

for 1 h in N2

432 271.6 F·g−1 at
0.5 A·g−1 18.8 100% after

5000 cycles

Ishita &
Singhal
(2020)

[257]

High electrical conductivity, wide operational potential window, and low cost belong
to the main advantages of conducting polymers. In such electrode materials, energy is
stored through oxidation or reduction reactions. PAni, PPy, poly(3,4-ethylenedioxythio-
phene) (PEDOT), polyindophenine, and p-phenylenevinylene (PPV) are common examples
of conducting polymers. However, poor cycling performance and mechanical degradation
are the major drawbacks associated with these electrode materials. The reason may be
linked with the surface area reduction and thus specific capacitance decrement by increment
of the mass loading. Therefore, porous conducting polymers with improved specific surface
area could be great candidates for being applied in such electrochemical devices. Obtained
data from several researches has illustrated that the nano-sized conducting polymers could
reveal boosted electrochemical behaviors caused by their highly porous structures and
superior surface-to-volume ratios. In fact, ion diffusion into the bulk of the electrode
material is accelerated in the nanostructured conductive polymers as a result of stronger
participation of the applied materials in the redox reactions [258,259]. Chaudhari et al.
demonstrated specific capacitance of 267 F·g−1 at a current density of 0.35 A·g−1 for the
electrospun PAni fibers. However, the synthesized PAni particles showed lower specific
capacitance of 208 F·g−1 [260]. In addition, Maio et al. reported specific capacitance of
601 F·g−1 at a current density of 1 A·g−1 for the fabricated hollow PAni nanofibers [261].
Sahoo et al. reported the highest specific capacitance of 284 F·g−1 at a current density of
1 A·g−1 for the PPy nanofibers [262]. Moreover, Liu et al. presented a specific capacitance
of 463 F·g−1 for the synthesized Ppy nanotubes at a current density of 0.3 A·g−1, while the
electrospun PAni exhibited much lower specific capacitance of 243 F·g−1 at similar current
density [263]. Furthermore, the enhanced electrochemical performance of other electrospun
conductive polymers such as PPV [264], polyindophenine [265], and PEDOT [266] has been
widely reported.
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Compared with the carbon-based materials and conducting polymers, metal oxides
have illustrated superior energy storage efficiency, along with higher cycling stability. These
materials are able to store energy through both physical accumulation and redox reaction.
RuO2, MnO2, NiO, and CoOx are of the widely studied electrode metal oxides. However,
several challenges such as low electrical conductivity and high cost have restricted their
development. As claimed by numerous researchers, the mentioned drawbacks could
be addressed through synthesis of the nano-sized transition metal oxides [267,268]. For
example, Hyun et al. displayed high specific capacitance of 889 F·g−1 and 30% capacity loss
after 2000 cycles for the fabricated RuO2 nanofibers [269]. Kolathodi et al. reported higher
ionic and electrical kinetics as well as improved capacity retention for the MnO2 transition
metal oxide in the nanofiber formation due to higher surface-to-volume ratio [270]. NiO
nanofibers also exhibited a specific capacitance of 182 F·g−1 at a current density of 2 A·g−1

and maintained 98.2% of their capacity after 5000 cycles [271]. In addition, high specific
capacitance of 700 F·g−1 and great cycling stability of 96% were illustrated by applying
electrospun hollow NiO fibers as the supercapacitor electrode [272]. Moreover, electrospun
Co3O4 fibers have shown a specific capacitance of 407 F·g−1 and retained 94% of their
capacitance after 1000 cycles [273].

It is extensively reported that graphene has the highest theoretical specific capacity in
comparison with the other carbon-based materials. Proper chemical stability, high surface
area, and low cost are some appealing characteristics of graphene-based electrodes, while
restacking of the graphene layers has blocked approaching to the reported theoretical
capacity value. In addition, the evaluated single-phased nanofibrous materials have not
been ideal for being applied in the practical usages. As an example, limited specific capacity
and low energy density are some of poor properties of nano-structured EDLC materials.
In the case of pseudocapacitive nanofibers, poor electrical conductivity and low cycle
stability are identified as the main disadvantages. So, nanocomposite materials, composed
of several electrode materials, such as carbon-based structures, metal oxides, conducting
polymers, etc., have been widely developed to enhance electrochemical performance
of the electrodes [245,246]. To date, numerous studies have been devoted to figure out
various electrochemical characteristics of the electrospun nanocomposites. For instance,
electrospinning of the combination of PAni with various carbon-based materials including
CNT [274,275], graphene [276,277], and CNFs [278,279] has resulted in the improved
specific capacity as well as enriched cycling durability. Table 6 summarizes recent attempts
for synthesis of electrospun nanocomposite materials as supercapacitor electrodes.

Table 6. Electrospun composites applied as electrode in supercapacitor devices.

Electrospun Hybrid
Materials Thermal Treatment

Electrochemical Performance
Author (Year) Ref.Specific Capacity

(F·g−1)
Energy Density

(Wh·kg−1)
Capacity

Retention

PAni/CNF
Stabilized at 280 ◦C for
4 h and carbonized at

800 ◦C in N2
439 at 1 mA·cm−2 68.6 90% after

5000 cycles Anand et al. (2020) [280]

PAni/heteroatom-
doped CNF

Annealed at 250 ◦C for
2 h and pyrolysed at
900 ◦C for 1 h in N2

680.8 at 0.5 A·g−1 27.7 93.5% after
3000 cycles Zhu et al. (2020) [281]

PAni/MnO2/CNF
Stabilized at 280 ◦C for
2 h and carbonized at
800 ◦C for 0.5 h in N2

937.66 at 1 A·g−1 66.12 97.6% after
5000 cycles Jalil et al. (2020) [282]

Graphene/CNT/CNF
Stabilized, maintained
at 500 ◦C for 1 h, and

kept at 700 ◦C
218 at 1 A·g−1 62.13 94.98% after

10,000 cycles Kshetri et al. (2020) [283]

MoS2/graphene/CNF
Pretreated at 450 ◦C for
1.5 h and carbonized at

800 ◦C for 2 h in H2
334 at 0.5 A·g−1 - 83.8% after

5000 cycles Fu et al. (2020) [284]

Nitrogen-oxygen
co-doped CNF

Stabilized at 200 ◦C for
1 h, annealed at 1000 ◦C

for 0.5 h in N2, and
maintained at 600 ◦C

for 1 h

320 at 1 A·g−1 17.92 94.5% after
5000 cycles Dai et al. (2020) [285]
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Table 6. Cont.

Electrospun Hybrid
Materials Thermal Treatment

Electrochemical Performance
Author (Year) Ref.Specific Capacity

(F·g−1)
Energy Density

(Wh·kg−1)
Capacity

Retention

PI/CNF Solvothermal treatment
at 200 ◦C for 12 h 1139 at 5 A·g−1 94 90% after

10000 cycles Zhang et al. (2020) [286]

Co3O4/C/CNF
Stabilized at 250 ◦C for
4 h and carbonized at

950 ◦C for 1 h
1632 at 5 A·g−1 36.6 82.5% after

7000 cycles Mukhiya et al. (2020) [287]

MnO2/TiO2
Calcinated at 500 ◦C

for 1 h 111.5 at 1 A·g−1 62 87.2% after
5000 cycles

Kolathodi et al.
(2020) [288]

MnO2/porous CNF
Oxidized at 280 ◦C for 1

h and carbonized at
280 ◦C for 1 h in N2

228 at 1 A·g−1 25.3 94% after
10,000 cycles Jeong et al. (2020) [289]

ZnFe2O4/carbon
Stabilized at 250 ◦C,

carbonized at 600 ◦C,
and annealed at 280 ◦C

237 at 1 A·g−1 - 93.1% after
10,000 cycles Yang et al. (2020) [290]

Fe2MoC/carbon
Stabilized at 250 ◦C for
2 h and carbonized at
800 ◦C for 2 h in Ar

347 at 1 A·g−1 14.5 93% after
5000 cycles Hao et al. (2020) [291]

PAni/MnO2/CNF
stabilized at 280 ◦C for
5.5 h and carbonized at

700 ◦C for 2 h
289 at 1 A·g−1 119 91% after

1000 cycles Dirican et al. (2020) [292]

NiCo2S4/graphite Carbonized at 2000 ◦C 1175.2 at 10 A·g−1 52.3 94.7% after
10,000 cycles He et al. (2020) [293]

NiCo2O4/CNF Carbonized 111 at 1 A·g−1 40.3 92% after
5000 cycles Yang et al. (2020) [294]

To date, supercapacitors have been recognized as high power density energy stor-
age devices. Nevertheless, synthesis of appropriate electrodes for commercialization of
supercapacitors has remained as a challenge. Electrospun structures have widely shown
their great potentials as electrode materials of supercapacitors due to providing higher
conductivity as well as appropriate structural stability and great porosity. Despite nu-
merous successful efforts in the field of electrospun supercapacitor fabrication, there are
several downsides (e.g., nonsufficient electrical conductivity) that must be addressed in
the future. Evaluation of selenides/CNF and tellurides/CNF composites for conductivity
enhancement, synthesis of metal oxides with complex interior for improvement of electro-
chemical behavior, and synthesis of one-dimensional porous electrospun fibers for boosting
the electrical conductivity could be valuable explorations for elimination of drawbacks
associated with supercapacitors.

7. Electrochemical Solar Cells

Remembering the definition from the abstract section that electrochemical devices
convert chemical reactions into electrical energy or vice versa, actually all solar cells could
be described as electrochemical solar cells. Indeed, there are several different definitions
of electrochemical solar cells. Most often, however, solar cells are differentiated into solid
state solar cells [295,296] and photoelectrochemical solar cells in which chemical reaction
with ions or water take place [297,298]. In the latter, the contact potential between a
semiconductor and an electrolyte leads to the separation of charge carriers which were pho-
toinduced [299,300], or in other words, the potential barrier which is necessary for charge
separation in solar cells is realized here by the semiconductor-electrolyte junction [301].
The principle of such cells is depicted in Figure 12 [302].

Recently, dye-sensitized solar cells (DSSCs) and perovskite solar cells belong to the
often investigated so-called third-generation photovoltaic cells which can be described
as electrochemical solar cells. This is why diverse review papers are available, giving a
good overview of DSSCs [302–306] as well as perovskite solar cells [307–311]. Nevertheless,
research on other electrochemical solar cells and specialized devices is still going on.
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Figure 12. (a) Electrochemical solar cell design for protruding emitter noble metals in the electrolyte; (b) exemplary solar
conversion efficiency at the redox electrolyte contact under an illumination of 100 mW cm−2 after different pre-treatments:
(1) after photocurrent oscillation in 0.1 M NH4F followed by electrochemical pore deepening in 1 M NaOH; and (2) after
emersion at the decreasing branch of a photocurrent oscillation only. Reprinted from [300], with permission from Elsevier.

Vijayaraghavan et al., for example, used spray pyrolysis to deposit CdTe thin films
on a TiO2 nanoparticle layer as photo-active semiconductor in combination with io-
dine/triiodide electrolyte and found an efficiency of 0.4% for an optimized CdTe layer
thickness [312]. A CdSeS composite film was applied by Hazra et al. in their electrochemi-
cal cell, leading to reduced photo degradation which is a severe problem in electrochemical
cells [313]. The ternary alloy Cd1−xZnxSe was suggested by Kissinger to prepare an elec-
trochemical solar cell with Na2S-S-NaOH as redox electrolyte, reaching efficiencies of up
to 4.5% [314]. Another often reported material is WSe2 which was shown to have high
efficiencies of about 14–17% [315–317].

Aljafari et al. suggested combining an electrochemical solar cell with a supercapacitor
into a single device, including a PVA/hydrochloric acid-based gel electrolyte, multi-walled
CNT, and fluorine-doped tin oxide as counter and working electrodes, respectively, where
the working electrode consists of a composite of a conducting polymer and synthetic
dyes, such as methylene blue, methyl orange, or Prussian blue [318]. They reported
strong photo-electrochemical reaction especially for methylene blue. In the aforementioned
papers, crystallinity of the active components is regarded as more important than the
surface morphology.

Besides these and a few other reports found in the recent scientific literature, electro-
chemical solar cells mostly refer to DSSCs for which the reader is referred to the aforemen-
tioned or other specialized review papers.

8. Sensors

Sensors are devices required for authentic detections in various fields of chemical anal-
ysis, food assessment, clinical diagnosis, and many more. They have been developed based
upon several detection technologies including fluoro-photometery, chemoluminescence,
liquid chromatography, spectrophotometry, and electrochemistry [319,320]. Among them,
electrochemical sensors received tremendous attention resulting from their wide detection
range as well as high selectivity [321]. This kind of sensors was first introduced by Clark in
1962 [322]. They are commonly comprised of a receptor and a signal transducer (Figure 13).
In such devices, the interactions between the sensitive receptor and analyte are measured.
Then, an electrical signal is applied to clarify the level of interaction. Through analysis of
the reported signal, information about the material content could be obtained.

According to the mentioned operational mechanism, such sensors mainly contain an
electrode connected to a sensitive component. Materials with specific performance are
deposited on the electrode surface. By applying an external voltage, the utilized specific
materials take part in a redox reaction which results in generation of a current. Then,
the produced current is transferred to a signal analysis system to report the binding effi-
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ciency. An ideal electrochemical sensor should reveal low detection limit and appropriate
selectivity. In addition, it is vital to report the result in a short response time [321].

Electrospun membranes are great candidates to design highly efficient electrochem-
ical devices, especially electrochemical sensors. This could be attributed to the unique
characteristics of the nanofibrous mats, such as high SSA, proper porosity structure, tiny
pores, interconnected fibers, etc. In recent decades, great performance features of different
electrospun electrochemical sensors have been extensively reported. The evaluated nanofi-
brous structures have been mainly obtained though electrospinning of various kinds of
polymeric, carbon-based, and metal oxide materials [323,324].
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8.1. Electrochemical Sensors Based on Electrospun Polymeric Fibers

Enzymes are able to catalyze numerous interactions due to their catalytic activity
characteristics. They are widely utilized on the electrode surfaces for sensing activity
regarding to their proper sensitivity along with great selectivity. Notably, stabilizing of the
enzymes on the surface of the electrodes is considered as a critical step in sensor fabrication
procedure. Physical adsorption, sol–gel, and self-assembly are some of the commonly
applied routes for enzyme stabilization. Meanwhile, unique characteristics of the polymeric
nanofibers have facilitated immobilization of the enzymes on the surface of the electrodes.
This could be carried out through direct and indirect methods. In the prior technique,
enzymes are embedded into the polymeric nanofibers by direct loading of enzymes into the
electrospinning solutions, whereas enzymes could be added to the electrospun polymeric
nanofibers by using the post-modification processes [324,325]. As an example, Ren et al.
immobilized glucose oxidase (GOx) by direct electrospinning of PVA/GOx on the surface
of an electrode followed by a cross-linking procedure. The as-spun structure showed linear
response in the range from 1 to 10 mM and detection limit of 0.05 mM [326]. In another
attempt, Arecchi et al. displayed linear response range of 1 to 10 mM and detection limit of
6 µM by covalent stabilization of GOx on a Nylon-6 electrospun membrane [327]. Several
recent approaches focusing on modification of the electrodes by using the electrospun
polymeric fibers are summarized in Table 7.

Table 7. Polymeric nanofibers utilized for modification of the electrochemical sensors.

Support Materials Target Linear Response Range Detection Limit Author (Year) Ref.

PAN/PPy/PPy3COOH Glucose 20 nM−2 µM 2 nM Sapountzi et al. (2020) [328]

Cellulose acetate/chitosan Glucose 5 µM–0.75 mM 4.8 µM Yezer & Demirkol (2020) [329]

PAN/montmorillonite Glucose 1.0 × 10−5–2.45 × 10−3 M
and 2.45 × 10−3–15 × 10−3 M 2.4 µM Apetrei & Camurlu (2020) [330]

Chitosan/GO Glucose 0.05–20 mM 0.02 mM Mehdizadeh et al. (2020) [331]

Chitosan/sodium dodecyl
sulfate/hemoglobin

Hydrogen
peroxide 3–2940 µM 0.16 µM Kholosi et al. (2020) [332]

PVA/chitosan Urea 0.023–0.23 mM - Kutlu et al. (2020) [333]

PAni/GO Breast cancer
biomarker 10−15–10−7 M 3.01 × 10−16 M Su et al. (2020) [120]
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8.2. Electrochemical Sensors Based on Carbon Nanofibers

Wide potential window, cost effectiveness, and inertness are well-known intrinsic
features of the carbon-based electrodes. Carbon materials have been mainly applied in
various forms including carbon fibers, carbon powder, graphite, and many more. With
development of nano-sized materials, CNFs have been applied in fabrication of several
electrochemical applications, specifically sensing and electro-analysis. CNFs are introduced
as an efficient matrix for immobilization of enzymes due to several advantages such as
excellent mechanical strength, appropriate conductivity, and high SSA. In addition to their
performance as ideal matrixes, proper electrical conductivity has provided their potential
for acting as transducers. This may be attributed to the existence of more edge planes in the
CNF structure [334]. CNF-based electrochemical sensors are commonly fabricated using
an electrospinning method followed by a carbonization technique. Wu et al. investigated
catalytic activity of an electrochemical glucose sensor designed by CNFs which resulted in
linear response range of 0.1 to 78 µM and low detection limit of 0.07 µM [335]. Based on a
study performed by Bae et al., increasing the porosity, crystallinity, and orientation of the
carbon nanofibers could result in higher current and superior sensitivity [336]. In addition,
Liu et al. reported linear range of 1 to 800 µM with a low detection limit of 0.6 µM for a
H2O2 electrochemical sensor for an electrode loaded by Pt nanoparticles and CNFs [337].
A sensitivity down to 1 nM and high selectivity for glucose molecules was presented by
Kim et al., using cobalt-oxide-incorporated multichannel carbon nanotubes [338], while
Simsek et al. reached a detection limit of 0.3 µM glucose with Ni nanoparticles adhered to
a CNF network [339].

A summary of the most recent fabricated sensors based on CNFs is provided in
Table 8.

Table 8. Catalytic activity of the electrochemical sensors based on carbon nanofibers.

Support Materials Target Linear Response Range Detection Limit Author (Year) Ref.

CNF Malachite green 0.1–22.1 µM 0.05 µM Yang et al. (2020) [340]

CNF Tramadol 0.05–100 nM 0.05 nM Jahromi et al. (2020) [341]

CNF Cadmium (II) 2–100 ppb 0.11 ppb Fakude et al. (2020) [342]

CNF Paracetamol 2.0 × 10−9–5.0 × 10−8 and
1.0 × 10−7–2.0 × 10−6 M 5.4 × 10−10 M Sasal et al. (2020) [343]

CNF/GO Uric acid 100–700 µM 0.14 µA.µM−1 Aryal & Jeong et al. (2020) [344]

CNF/β-cyclodextrin Ascorbic acid 0.9 µM 100–400 µM Aryal & Jeong et al. (2020) [345]

CNF/poly(L-aspartic acid)/
nanodiamond particles L-ascorbic acid 0.2 µM–1.8 mM 0.1 µM Kacer & Erden (2020) [346]

CNF/PEDOT neurotransmitters 0.1–9 µM 0.045 µM Saunier et al. (2020) [347]

CNF/zeolitic imidazolate
framework-8

dihydroxybenzene
isomers 0.06 µM 2-400 µM Yang et al. (2020) [348]

8.3. Electrochemical Sensors Based on Metal and Metal Oxide Nanofibers

Distinctive characteristics of the electrospun metals and metal oxides, such as high
specific surface area, interconnected pores, proper porosity, fast response, high sensitivity,
etc., have made them a great candidate for fabrication of various electrospun sensors.
Nanofibrous metal oxides are commonly produced through the following procedures:
(a) electrospinning of polymer solution embedded with metal oxide precursor, and (b)
dipping the electrospun fibers into a metal oxide precursor solution. Both methods are
followed by a calcination step. During the calcination process, the utilized polymer content
is degraded, while metal-oxide crystals are grown and nucleated by temperature increment.
Numerous literatures have reported excellent performance of the mentioned electrospun
fibers for sensing of different targets, including glucose, ascorbic acid, cholesterol, uric
acid, and so on. These kinds of electrospun fibers are applied in synthesis of enzyme and
none-enzyme electrochemical sensors. The non-enzyme sensors act based on catalyzed
reactions. So, electro-catalytic materials (e.g., metals and metal oxides) play a key role
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in providing the aforementioned reactions. The non-enzyme electrochemical sensors
could reveal superior cycling stability compared with the enzyme ones. In addition,
they are synthesized through easier processes as they do not require an immobilization
procedure. Notably, the combination of nano-dimensional metals and metal oxides with
carbon-based materials has been broadly applied to enhance the performance of signal
transduction in the non-enzyme electrochemical sensors. Nano-sized metals and metal
oxides display significantly superior transducer activity as compared to the micro-sized
ones [349–351]. Table 9 lists several recent studies which have explored electrochemical
behavior of electrospun sensors through fabrication of metal and metal oxide nanofibers
and their combination with CNFs.

Table 9. Electrospun electrochemical sensors based on metals and metal oxides.

Materials Target Linear Response Range Detection Limit Author (Year) Ref.

CuCr2O4/CuO Methotrexate 0.1–300 µM 25 nM Salandari-Jolge et al. (2020) [352]

WO3 Catechol 1–100 µM 0.52 µM Veeralingam & Badhulika
(2020) [353]

L-cysteine/ZnO Lead ion 10–140 µg·Lit−1 0.397 µg·L−1 Oliviera et al. (2020) [354]

NiCo2S4/graphene/CNF Pyrimethanil 0.06–800 µM 20 nM He et al. (2020) [355]

Co3O4/CNF Hemoglobin 1–12 mM 0.33 mM Xie et al. (2020) [356]

NiMoO4/CNF Glucose 0.0003–4.5 mM 50 nM Rani et al. (2020) [357]

Graphene/gold Glucose 0.5–9 mM 55 µM Shamsabadi et al. (2020) [358]

MnO2/Co3O4/CNF Glucose <10.2 mM 0.02 µM Wei et al. (2020) [359]

Ferric ceria Uric acid 0.5–500 µM 0.3 µM Shekh et al. (2020) [360]

ZnO/CNT Atrazine 10 zM–1µM 5.368 zM Supraja et al. (2020) [361]

CNF/Co Hydrogen peroxide <50 mM 10 µM Riaz et al. (2020) [362]

Au/Pt/CNF Mercury ion 10−15–10−6 M 3.33 × 10−16 M Xie et al. (2021) [363]

ZrO2/graphene Osteopontin 0.01 pg·mLit−1–2.0 ng·mLit−1 4.76 fg·mL−1 Zhou et al. (2020) [364]

TiO2/CNT/CNF Bovine hemoglobin 5–80 mM 1.67 mM Zhu et al. (2020) [365]

CoFe2O4/GO Rutin 0.001–0.1 nM and from
1.0–100 nM 0.94 pM Ansari et al. (2020) [366]

CoFe2Se4/CNF

Hydroquinone 0.5–200 µM 0.13 µM

Yin et al. (2020) [367]Catechol 0.5–190 µM 0.15 µM

Resorcinol 5–350 µM 1.36 µM

As a working principal, effective sensing and conversion of the signals are the main
features of an ideal electrochemical sensor. In addition, efficiency, size, and price are other
critical issues related to an appropriate electrochemical sensor. Applying nanotechnology
for the fabrication of electrochemical sensors has led to production of more efficient, smaller,
and cheaper electrochemical sensors due to high specific surface area, great electrical
conductivity, and so on. Nevertheless, progress and development of technology have
a greater demand for increment of sensitivity and specificity. Among various materials
applied for synthesis of electrospun non-enzyme sensors, fibrous composites of metal or
metal oxides with carbon nanofibers have illustrated desirable features and could be the
future trend of most researches. In addition, production of multi-analysis electrochemical
sensor systems is of interest to researchers and developers. Any advancement in this area
could be beneficial for various medical fields.

9. Conclusions

In this review, the broad range of recent approaches on applications of electrospun
fibers in various electrochemical structures has been evaluated. Based on the investigated
efforts, electrospun fibers have enhanced various characteristics of electrolytic cells, battery
structures, fuel cells, supercapacitors, solar cells, and sensors. The great potential of such
structures for being applied as different components of the mentioned cells has been widely
illustrated. Regarding the possible materials for nanofiber mats in electrochemical devices,
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a broad range of materials can be found in the recent literature, from quite common,
easily spinnable ones like PAN along carbon nanofibers, e.g., produced by stabilizing and
carbonizing PAN or other precursor fibers, to semiconducting or metallic nanoparticles
integrated in a polymer matrix or as pure nanofibers produced by calcination of the
electrospun composite fibers. While electrode materials need to be conductive and are
thus often produced from carbon nanofibers, partly also from conductive polymers, the
mechanical properties and pore sizes are more important for separating membranes which
thus often consist of PAN and other reliably spinnable materials. Sensors, on the other
hand, necessitate specific metallic or other constituents to reach a high sensitivity towards
a desired molecule.

Overall, nanofibrous structures have promising industrial applications in various
electrochemical cells regarding their unique and fabulous features. Nevertheless, there is
still a lot of challenges to be solved and open questions to be investigated. For electrolytic
cells, e.g., research should be broadened beyond electrolytic water splitting and degradation
of dyes and other contaminants. Regarding batteries, the main goals are a high efficiency
and improved functionality, necessitating further improvements of all battery components,
especially in terms of mechanical stability, electrical conductivity, and ionic conductivity.
For the diverse kinds of fuel cells in which electrospun nanofiber mats can be applied, the
most crucial parameters for the electrodes are specific surface area and conductivity as
well as introducing a suitable catalyst, while for membranes, the pore size distribution
and possible selectivity governs the choice of materials and structures. In supercapacitors,
high conductivity, structural stability, and great porosity of nanofiber mats are again the
most important parameters. Especially the electrical conductivity and the electrochemical
properties need to be improved further, which may be done by introducing composite
materials like selenide/CNF or telluride/CNF nanofibers or metal oxides with complex
interior, respectively. Research on electrochemical solar cells is mainly related to DSSCs
or perovskite solar cells recently; here, finding non-toxic, abundantly available materials
with high efficiency as dyes or for other parts of these solar cells would highly increase
the further interest in this topic. Finally, nanofiber mats for applications in electrochemical
sensors need further increased sensitivity and specificity, ideally in the form of multi-
analysis sensor systems. We hope that our review paper can support future research in all
these areas.
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