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Venous thromboembolism (VTE) is a common cause of mortality and disability

in hospitalized patients, and anticoagulation is an essential therapeutic option.

Despite the increasing use of direct oral anticoagulants, complications and

adverse drug reactions still occur in patients with VTE. Within 5 years, 20%

of patients with VTE experience recurrence, and 50% of patients with deep

vein thrombosis develop post-thrombotic syndrome. Furthermore, bleeding

due to anticoagulants is a side e�ect that must be addressed. Therefore, safer

and more e�ective anticoagulant strategies with higher patient compliance

are urgently needed. Available epidemiological evidence and animal studies

have shown that factor XI (FXI) inhibitors can reduce thrombus size and loosen

the thrombus structure with a relatively low risk of bleeding, suggesting that

FXI has an important role in thrombus stabilization and is a safer target for

anticoagulation. Recent clinical trial data have also shown that FXI inhibitors

are as e�ective as enoxaparin and apixaban in preventing VTE, but with a

significantly lower incidence of bleeding. Furthermore, FXI inhibitors can be

administered daily ormonthly; therefore, themonitoring interval can be longer.

Additionally, FXI inhibitors can prolong the activated partial thromboplastin

time without a�ecting prothrombin time, which is an easy and common

test used in clinical testing, providing a cost-e�ective monitoring routine for

patients. Consequently, the inhibition of FXI may be an e�ective strategy for

the prevention and treatment of VTE. Enormous progress has been made in

the research strategies for FXI inhibitors, with abelacimab already in phase III

clinical trials and most other inhibitors in phase I or II trials. In this review,

we discuss the challenges of VTE therapy, briefly describe the structure and

function of FXI, summarize the latest FXI/activated FXI (FXIa) inhibitor strategies,

and summarize the latest developments in clinical trials of FXI/FXIa inhibitors.
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Introduction

Venous thromboembolism (VTE) is a common condition

in which abnormal blood clotting completely or incompletely

blocks blood vessels, impairing the venous blood return. This

disorder includes deep vein thrombosis (DVT) and pulmonary

embolism (PE). VTE is a leading cause of disability, contributes

to the global healthcare burden (1), and is the third leading

cause of vascular mortality worldwide, after heart attack and

stroke (2). There are many risk factors for VTE, such as genetic

factors (including congenital coagulation factor abnormalities or

congenital anticoagulant protein defects), and acquired factors

like surgery, infection, cancer, and pregnancy (3). However,

these risk factors differ according to socioeconomic and health

statuses (4).

The current basis of VTE treatment is pharmacological

anticoagulation. By using anticoagulants, we have made great

progress in recent years in the prevention and treatment of

thrombosis, but anticoagulation is still inadequate in clinical

practice. Some studies found that the recurrence rate of

thrombosis was up to 20% after 5 years in patients with

VTE (5), and the estimated mortality rate of patients with

PE and DVT after 30 days was 12 and 6%, respectively

(6). However, the incidence of anticoagulation-related bleeding

is the most common adverse reaction after clinical use of

anticoagulants with the incidence of major bleeding per 100

person-years was 1.74 events (7). This is closely related

to individual differences and standardized anticoagulation.

Patients with advanced age, liver disease, renal insufficiency,

bleeding history, cancer and those using antiplatelet drugs, non-

steroidal anti-inflammatory drugs, diltiazem, as well as other

specific features have a higher incidence of bleeding, and the

optimal anticoagulation strategy still needs more research (7–

9). Furthermore, the choices of anticoagulant and dose, switch

between anticoagulants and bridging therapy strategies remain

tricky. The guideline recommends that patients at high risk of

thrombosis should be treated with bridging therapy, but the

recommendation level is low (10). Recent evidence suggests

that bridging therapy leads to a higher incidence of bleeding

(11, 12). There are also side effects caused by the drug itself

that deserve attention, such as nausea, vomiting and other

gastrointestinal reactions caused by direct drug irritation of

the gastric mucosa; drug-induced allergic reactions such as

asthma, urticaria, and shock; impaired liver and kidney function;

osteoporosis; heparin-induced thrombocytopenia (13). Besides,

patient compliance and the lack and irrational use of monitoring

indicators affect the efficacy of anticoagulant drugs. Moreover,

it is urgent and important to find new anticoagulant drugs

with milder anticoagulant effects, fewer side effects, and better

patient compliance.

There are three predisposing factors for thrombosis—

vascular wall damage, altered blood flow, and blood

hypercoagulability (14). Damaged vessel walls and endothelial

cells can release tissue factor to bind FVII, which then

sequentially activates factor X (FX), prothrombin (FII), and

fibrinogen (FI) to form thrombi, which is termed the extrinsic

coagulation pathway (15–17). The degeneration, necrosis, and

shedding of injured endothelial cells expose subendothelial

collagen fibers that initiate the intrinsic coagulation pathway

by activating factor XII (FXII), which can accelerate clot

production (17). In addition, factor IX (FIX) can link the

extrinsic and intrinsic coagulation pathways. Therefore, if FXI

activity is inhibited, it can inhibit the production of thrombin

by the intrinsic coagulation pathway initiated by FXII without

affecting the extrinsic coagulation pathway. Thus, FXI, as a link

in the intrinsic coagulation pathway, plays an important role in

thrombus stabilization and growth, and FXI inhibitors does not

seriously affect thrombosis and increase the risk of bleeding.

Research on factor XI (FXI), including genotyping (18–

20), clinical data (21–23), and animal studies (24, 25), has

shown that high levels of FXI may be a risk factor for

VTE. Prolonged activated partial thromboplastin time (aPTT),

a thrombus loosening, and reduced thrombus volume can

all be caused by genetic abnormalities or reduced activity

of FXI. Recent clinical trials have shown the safety and

anticoagulant effectiveness of FXI inhibitors. Compared with

enoxaparin, abelacimab (26), osocimab (27), milvexian (28), and

IONIS-FXIRx (29) significantly reduced the incidence of VTE

and bleeding in patients undergoing total knee arthroplasty

(TKA). In clinical studies, osocimab (27) or asundexian (30)

showed approximately half the incidence of bleeding events

compared with apixaban in the prevention of VTE. Therefore,

FXI is considered a novel and safe target for inhibiting

thrombosis (31–33). In this review we highlight the urgent

need for safer anticoagulants, summarize current strategies

for FXI/activated FXI (FXIa) inhibition and clinical trials of

FXI/FXIa inhibitors. This information supports the application

of FXI/FXIa inhibitors in the prevention and management

of VTE.

Current treatments and challenges
of VTE

Anticoagulants, the cornerstone of treatment and

prevention of VTE, have evolved from multi-target to

single target drugs with better anticoagulation, but still face

many challenges in specific situations such as hepatic and renal

insufficiency, bridging therapy, combined dosing, safety, and

routine monitoring (34, 35). Recent studies have found that FXII

and FXI inhibitors single target of intrinsic coagulation pathway

and play a limited role in hemostasis in vivo, thus they have

good anticoagulation effect and safety (36). In addition, FXI

inhibitors are metabolized by the liver, but they are tolerated in

patients with mild and severe liver damage (37). FXI inhibitors

are not only orally available but also maintain anticoagulant
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effect for up to 1 month (38, 39), which significantly improves

patient compliance by eliminating the need for routine

monitoring and avoiding the effects of discontinuation or

irregular readministration after discontinuation. In addition,

FXI inhibitors, regardless of different application strategies,

have stable pharmacokinetics, good anticoagulation, and a

low incidence of adverse events such as headache and fatigue

(37–40). Therefore, FXI inhibitors are safe, but more studies are

needed to observe patients with renal insufficiency, combination

dosing, and bridging therapy.

Another treatment for VTE is thrombolytic therapy. It is

primarily aimed at reducing the burden of thrombosis, but it

may not be the most beneficial therapy due to differences in the

extent of the disease and thrombolytic regimens (41). Compared

to that with anticoagulation alone, pharmacological catheter

thrombolysis does not reduce the risk of post-thrombotic

syndrome or significantly improve quality of life but increases

the risk of major bleeding in patients (42–44). Guidelines on

thrombolytic therapy recommend against systemic thrombolysis

in patients with DVT, but for those experiencing acute DVT,

pharmacological catheter thrombolysis or tissue-type fibrinogen

activator can be used (45).

Structure and function of FXI

FXI was first identified in a family whose main clinical

feature was mild to moderate bleeding after tooth extraction

(46); the deficient coagulation factor was named plasminogen

kinase and the disease was named hemophilia C. FXI is part of

the intrinsic pathway and is present in blood circulation mostly

as a zymogen. FXI plays an important role in promoting massive

production of thrombin and downregulating the fibrinolytic

system after the initiation of coagulation (47). FXI can be

activated not only by activated FXII (FXIIa) but also by FXIa

itself and thrombin in a positive feedback manner; thus, FXI

can promote the production of thrombin and amplify the

coagulation cascade. However, increased levels of thrombin can

increase the concentration of thrombin-activatable fibrinolysis

inhibitor, which in turn inhibits the fibrinolytic system and

makes the clot more stable.

FXI is mainly synthesized in hepatocytes, along with

prothrombin, FXII, and other coagulation factors; it has a

distinct structure, which is homologous to that of prekallikrein,

although without γ-carboxyglutamate residues, and is a

homodimeric protease formed by a disulfide bond linkage

(48). The N-terminus of each subunit contains four apple

domains (A1–A4), which bind to heparin, FIX, FXIIa, platelet

GP1b, and high-molecular-weight kininogen, and are only

found in prekallikrein and FXI. The C-terminus is the trypsin-

like catalytic domain (49). The structural integrity of FXI is

important for thrombosis, but not necessary for hemostasis.

Although the monomeric form of FXIa cannot be activated by

FXIIa, it can be activated by thrombin or by itself and can even

activate FIX in a way similar to the activation of the dimeric form

of FXIa (50). The specific mechanism of action and significance

of FXI in thrombogenesis are still unclear, and more research is

necessary to analyze the mechanism of action of the FXI dimer

in thrombosis.

In the presence of polyanions, activators such as FXIIa,

thrombin, and FXIa can cause a cleavage of the Arg369-Ile370

site, which leads to a conformational change of FXI to FXIa

(51). Although the structure of FXIa has been described for both

subunits of FXI after cleavage of the Arg369-Ile370 site, some

studies have shown that activation of FXI by thrombin or FXIIa

to form FXIa is first achieved through the 1/2-FXIa intermediate

(52). This intermediate represents a structure generated during

FXI activation when only one active subunit has formed after

cleavage of the Arg369-Ile370 site, and its migration rate on the

sodium dodecyl sulfate polyacrylamide gel is at the midpoint

between that of FXI and FXIa (52). Activation of FIX by FXIa

also requires the formation of an activated factor IX (FIXa)

intermediate by cleavage at the Arg145 site of FIX, which is

then converted to FIXaβ. FIXa can then activate FX. This

process sustains the early stages of thrombin production, which

is further amplified by the action of thrombin on FXI.

In summary, FXI links the thrombin generation system

to the kallikrein–kinin system (53). On the one hand, FXIa

can activate FXII and FXI, allowing FXI to accelerate the

thrombogenic process in the coagulation cascade through

positive feedback. However, massive activation of thrombinogen

leads to increased activity of the fibrinolytic system. The

fibrinolytic inhibitor, which is activated by thrombin, in turn

resists the action of the fibrinolytic system and stabilizes the

fibrin clot. Thus, FXI is essential not only for contact activation

to initiate the coagulation process but also for stabilizing fibrin

clots, especially in tissues with high fibrinolytic activity (54).

Hereditary FXI insufficiency is the most common cause of

decreases in FXI levels. The F11 gene in humans is located

on the long arm of chromosome 4, and mutations can lead

to structural changes in FXI monomers, thereby impairing

dimer formation and disrupting FXI secretion. Common

mutations include Phe283Leu (50) and Gly350Glu (55) in

the A4 domain of the FXI structure, which can lead to a

stabilized form of the FXI monomer, thus preventing FXI

dimer formation. The mutation of cross-reacting material does

not change the structure of the domain but can cause the

binding of normal and abnormal subunits to form a non-

secretory heterodimer, leading to protein secretion disorder

(49). Mutations in residues that bind to ligands, such as

thrombin, high-molecular-weight kininogen, heparin, FIX, and

platelet GP1b, can also affect the function of the catalytic region

of FXIa (56–58). Additionally, severe liver diseases (59) and

autoimmune diseases, such as systemic lupus erythematosus

(60) and membranoproliferative glomerulonephritis (61), can

decrease FXI levels.
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Despite the deficiency of FXI, most patients with hemophilia

C have an unremarkable clinical presentation and significant

individual differences that are usually present during trauma

or surgery; these patients are not as prone to spontaneous

bleeding or joint bleeding as those with hemophilia A or B

(62, 63). Patients experiencing FXI deficiency are more likely to

bleed after injury to the gums, sinuses, bladder, endometrium,

and other tissues with high endogenous fibrinolytic activity.

However, more studies are needed to evaluate the fibrinolytic

activity of different tissues and the effect of FXI levels on the

occurrence of bleeding after damage to these tissues.

Thus, inhibiting FXI activity can diminish the generation

of the fibrinolytic inhibitor, reduce the body’s ability to

inhibit fibrin clot lysis, and inhibit the intrinsic pathway and

amplification of the coagulation cascade. Furthermore, the

incidence and severity of bleeding induced by FXI insufficiency

are low, suggesting that clinical suppression of FXI activity has

a low risk of severe bleeding events and a high level of clinical

safety. FXI plays a crucial role in the prevention of VTE and

surgical thrombosis, and FXI/FXIa inhibitors are considered

promising novel anticoagulants (64).

FXI/FXIa inhibitors

The following sections we describe the main strategies

of currently available FXI/FXIa inhibitors. In Table 1 we list

the current research strategies for FXI/FXIa inhibitors. In

Figure 1 we summarize the current sites of action of the

FXI/FXIa inhibitors.

Antibodies

There are polyclonal and monoclonal antibodies that can

inhibit FXI. In animals, FXI is less related to the initiation

of thrombosis but is associated with the coagulation process

during thrombus formation; therefore, polyclonal anti-human

FXI antibodies can reduce the thrombus volume and even lower

platelet counts and prolong the aPTT (65). Monoclonal anti-

human FXI/FXIa antibodies, such as XI-5108, can dramatically

inhibit the thrombus growth by inhibiting substrate binding

to FXIa, but they do not inhibit the activation of FXI by

thrombin and FXIIa, nor do they inhibit the amidolytic activity

of FXIa (66). These antibodies can remarkably prolong the aPTT

without affecting the prothrombin time (PT), collagen-induced

platelet aggregation, and the bleeding time (66). Monoclonal

anti-human FXI antibodies, such as aXIMab, inhibit thrombus

development, platelet activation, and thrombin production by

binding to the A3 domain of FXI (67). Furthermore, 14E11 (68),

DEF (69), and MR1007 (70) have been shown in animal studies

to inhibit thrombosis in a dose-dependent manner, without

increasing the bleeding time. Unlike other FXIa inhibitors,

MR1007 also binds to CD14 to suppress cellular production

of interleukin-6 and E-selectin; these anti-inflammatory and

anticoagulant functions make MR1007 a viable target drug for

treating inflammation-induced hypercoagulable states, such as

sepsis and infectious shock (70).

Antisense oligonucleotides (ASOs)

ASOs are relatively short single-stranded nucleotide

sequences that specifically bind to the FXI mRNA in the liver

through specific base fragments, resulting in the catalytic

degradation of FXI mRNA and reduction of the level of

FXI synthesis in the liver (71). Compared with conventional

anticoagulants, ASOs have the advantages of lower drug design

costs, higher drug targeting selectivity, fewer food and drug

interactions, high compliance without frequent doses, and a low

incidence of adverse events, such as major bleeding; they are

also easy to reverse (71, 72). Studies on ASOs have concluded

that they can be used not only to improve hypercoagulable states

with thrombotic risk and treat cardiovascular diseases, such as

VTE, myocardial infarction, and stroke (73), but also to prevent

and treat inflammatory diseases, such as arthritis and colitis

(29). However, the backbone of the drug is a phosphodiester

skeleton, which is susceptible to the action of nucleases; as

this affects the stability and activity of ASOs, it is necessary to

modify the backbone to increase its stability during the drug

design process (74). Current studies of ASOs include those on

IONIS-FXIRx (29, 75) and FXI-LICA (76).

Aptamers

Aptamers are single-stranded oligonucleotides obtained

through a complex screening mechanism from a DNA

combinatorial library, with the advantages of high binding

affinity to target proteins, low immunogenicity, low production

costs, and the possibility to easily design antidotes (77). The first

aptamer that inhibited FXIa was obtained from a database by

exponential enrichment to achieve the phylogenetic evolution

of the ligand and was finally identified after repeated screening.

The inhibitory aptamer can not only inhibit FXIa-mediated FIX

activation through competitive inhibition but can also inhibit

thrombin production (78). However, this class of drugs does not

inhibit the activation of FXI and contains sequences that do not

bind to the target. There is also a possibility of the disruption

of the aptamer library during the screening process, and there

is a need for further optimization. In addition, as limited data

exist on the inhibitory abilities of aptamers, more studies are

needed to identify drugs with more reasonable structures and

clearer efficacy.
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TABLE 1 Current strategies and features of factor XI/activated factor XI inhibitors.

Type Mechanism of

action

Delivery Renal clearance Hepatic

metabolism

Administration Examples

Antibodies Bind to FXI/FXIa to

inhibit FXI activation

and/or FXIa activity

Intravenous or

subcutaneous

No No Monthly Osocimab

(BAY1213790);

Abelacimab

(MAA868);

AB023 (Xisomab

3G3)

Antisense

oligonucleotides

Bind to and catalyze the

degradation of FXI

mRNA and reduce the

hepatic synthesis of FXI

Subcutaneous No No Weekly to monthly IONIS-FXIRx ;

FXI-LICA

(BAY2976217)

Aptamers Bind to FXI/FXIa and

block their activity

Intravenous or

subcutaneous

No No Daily FELIPA

Small

molecules

Reversibly bind to the

catalytic domain of FXIa

and block its activity

Intravenous or oral Yes Yes Daily Milvexian (BMS-

986177/JNJ-

70033093);

Asundexian

(BAY2433334)

FXI, factor XI; FXIa, activated factor XI.

Peptides or peptidomimetics

These drugs can suppress the active site and thus achieve

the inhibition by conjugating to the catalytic structural domain.

Currently, peptides or peptidomimetics have been developed,

including desmolaris (79), protease nexin-2 (80), fasxiator (81),

BMS-262084 (82), phenylimidazole (83), α-ketothiazoles (84),

and others. Desmolaris, a compound extracted from the salivary

glands of Desmodus rotundus, can not only inhibit the Kunitz

structural domain of FXI and FXIa in a noncompetitive,

slow, dose-dependent manner but can also inhibit activated

FX, bradykinin, and trypsin to significantly prolong aPTT

without producing significant bleeding (79). BMS-262084 can

inhibit arterial and venous thrombosis by irreversibly covalently

binding to FXIa through the β-lactam structure but cannot

significantly prolong the time of bleeding caused by trauma

(82). Although there are numerous patents for peptidomimetics

(85), related clinical research data are relatively scarce, and more

research is necessary to support the pharmacokinetics as well as

the safety and efficacy of these drugs in the treatment of different

thrombotic diseases.

Polymeric glycosaminoglycans and
saccharide mimetics

Polymeric glycosaminoglycans and their saccharide

mimetics are non-competitive conformational inhibitors that

are less conservative and more selective than orthosteric

inhibitors. The most studied inhibitors are FXIa inhibitors

targeting the heparin site (86–88). The mechanism of action

may be through the Coulombic attraction of the anionic sulfate

group to FXIa cations, followed by the attraction of the heparin-

binding site, recognition of the adjacent hydrophobic structure,

and tight binding to form a complex (86). This dual strategy

ensures that the substance is highly selective for FXIa without

inhibiting other proteins, such as thrombin, activated FX, or

protein C, which increases the efficacy and safety of the drug.

However, the disadvantage of the dual strategy is that it only

works for enzymes that bind to both domains; enzymes that lack

heparin-binding sites or hydrophobic structures cannot inhibit

FXIa. Alternatively, the process can be reversed by fisetin, or the

inhibitor activity can be decreased by bovine albumin, FXI, and

other substances (87).

Clinical trials

Through May 20, 2022, a total of 53 registered clinical

trials on FXI inhibitors were found in the clinical trials

database (https://clinicaltrials.gov/). Only abelacimab has been

registered in two phase III clinical trials, where it has been

compared with apixaban or dalteparin in the prevention,

treatment, and management of tumor-associated VTE. Clinical

trials of other FXI inhibitors are in phase I and II and are

described in detail below. Table 2 summarizes the clinical trials

of FXI/FXIa inhibitors.
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FIGURE 1

Overview of the sites of action of factor XI (FXI)/activated factor XI (FXIa) inhibitors. The three FXI inhibition strategies can be summarized as

follows: (1) degradation of FXI mRNA; (2) inhibition of FXI activation to FXIa; and (3) inhibition of FXIa activity. Abelacimab (MAA868) and

osocimab (BAY1213790) are antibodies that inhibit FXIa activity. Abelacimab can also inhibit the activation of FXI by activated factor XII (FXIIa).

IONIS-FXIRx and FXI-LICA are antisense oligonucleotides (ASOs) that promote FXI mRNA degradation in the liver and reduce the amount of FXI

synthesized. Milvexian (BMS-986177 or JNJ-70033093), asundexian (BAY2433334), SHR2285, and ONO-7684 are small molecules that directly

inhibit FXIa. Ir-CPI is a contact-phase peptide inhibitor that can inhibit the activity of activated factor XII and FXIa.

Phase III

Abelacimab

Abelacimab, previously known as MAA868, is the first

FXI/FXIa inhibitor in phase III clinical trials. It is a humanized

monoclonal antibody that inhibits the activation of FXI and the

activity of FXIa with a lasting inhibitory effect on thrombosis

(38, 89). It has the advantages of inhibiting both FXI and

FXIa and causing less damage to the liver and kidney, which

makes the drug better for use in patients with hepatic and

renal dysfunction. Moreover, it has a long half-life and requires

injection only once a month, which simplifies the treatment

process and improves patient compliance, thus showing good

clinical application prospects.

The first phase I clinical trial was conducted with a single

incremental dose and showed that a subcutaneous dose of

5 to 240 mg/kg was safe and effective in healthy or obese

patients. The prolongation of the aPTT was maintained for

at least 4 weeks at a dose of 150 mg/kg, with no significant

effect on the PT and thrombin time, and recombinant activated

factor VII reversed the effects of MAA868 (38). Intravenous

or multiple subcutaneous dosing was also safe in patients with

atrial fibrillation (90). A parallel controlled phase II clinical

trial of patients who underwent TKA and were randomly

administered 30, 75, or 150mg of intravenous abelacimab or

subcutaneously injected with 40mg of enoxaparin showed that

the incidence of VTE was 13, 5, 4, and 22%, respectively, and

the incidence of bleeding was 2, 2, 0, and 0%, respectively

(26). Two phase III trials, NCT05171049 and NCT05171075,

are currently enrolling patients in 2022. NCT05171049 is being

conducted at multiple hospitals and is recruiting patients who

received direct oral anticoagulants for at least 6 months after a

diagnosis of cancer combined with VTE. NCT05171075 aims

to compare the efficacy and safety of abelacimab and apixaban

to prevent recurrent VTE in patients with gastrointestinal or

genitourinary cancers.
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TABLE 2 Overview of factor XI-targeting inhibitors currently in clinical trials.

Compound Therapy Phase Population Number of

subjects

Comparator Status Registry number

Abelacimab (MAA868) Antibody III GI/GU cancer-

associated

VTE

1,020 Dalteparin Recruiting NCT05171075

III Cancer-

associated

VTE

1,655 Apixaban Recruiting NCT05171049

MK-2060 Antibody II ESRD 489 Placebo Recruiting NCT05027074

ABO23 (Xisomab 3G3) Antibody II ESRD 27 Placebo Completed NCT03612856

II Cancer patients

on

chemotherapy

50 Placebo Recruiting NCT04465760

Osocimab (BAY1213790) Antibody II ESRD 686 Placebo Active, not recruiting NCT04523220

II TKA 813 Enoxaparin or Apixaban Completed NCT03276143

BAY2976217

(FXI-LICA)

ASO II ESRD 307 Placebo Active, not recruiting NCT04534114

IONIS-FXIRx

(BAY2306001/IONIS416858)

ASO II ESRD 213 Placebo Completed NCT03358030

II ESRD 49 Placebo Completed NCT02553889

II TKA 315 Enoxaparin Completed NCT01713361

Asundexian

(BAY2433334)

Small molecule II AHF 1,592 Placebo Completed NCT04304534

II Non-

cardioembolic

ischemic stroke

1,808 Placebo Completed NCT04304508

II AF 753 Apixaban or Placebo Completed NCT04218266

Milvexian (BMS-

986177/JNJ-70033093)

Small molecule II Stroke 2,366 Placebo Active, not recruiting NCT03766581

II TKA 1,242 Enoxaparin Completed NCT03891524

BMS-986209 Small molecule II Healthy

participants

114 Placebo Completed NCT04154800

ONO-7684 Small molecule I Healthy

participants

72 Placebo Completed NCT03919890

SHR2285 Small molecule I TKA 500 Enoxaparin Recruiting NCT05203705

Ir-CPI Polypeptide I Healthy males 32 Placebo Active, not recruiting NCT04653766

AF, atrial fibrillation; AHF, acute heart failure; ASO, antisense oligonucleotide; GI, gastrointestinal; GU, genitourinary; ESRD, end-stage renal disease; TKA, total knee arthroplasty; VTE,

venous thromboembolism.

Phase II

Milvexian (BMS-986177/JNJ-70033093)

Milvexian, also known as BMS-986177 or JNJ-70033093,

is a reversible small-molecule inhibitor of FXIa, with excellent

antithrombotic effects, and is also effective in combination with

aspirin (91). Currently, milvexian has been registered in the

largest number of clinical trials, predominantly phase I clinical

trials and two phase II clinical trials. One phase I clinical

trial of milvexian was performed on healthy volunteers and

showed a promising safety record of the drug (92). The safety

of milvexian does not appear to differ depending on race, food

interactions, and liver function (37, 93). A pharmacokinetic

study observing Milvexian in combination with itraconazole

or diltiazem in healthy subjects showed that itraconazole and

diltiazem could increase milvexian exposure without affecting

the efficacy or increasing the incidence of adverse events (94).

This suggests a promising application for the combination of

FXI inhibitors with other drugs. Furthermore, there is another

observational study on the safety and pharmacodynamics
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of milvexian in patients with end-stage renal disease on

hemodialysis (NCT02902679).

Phase II clinical trials of milvexian included a multicenter

study of 923 patients undergoing unilateral TKA who received

oral milvexian at a dose of 25, 50, 100, or 200mg once or

twice a day and 296 patients who received 40mg of enoxaparin

once daily (28). In this study, the observed incidence of VTE

was 12% in patients taking milvexian and 21% in patients

taking enoxaparin. Although the incidence of bleeding was 4%,

the occurrence of serious adverse events was 2 and 4% in

patients with milvexian or enoxaparin, respectively. Therefore,

in patients undergoing TKA, oral milvexian was more effective

and safer than enoxaparin in preventing VTE. Another phase

II clinical trial (NCT03766581) is a polycentric, randomized,

double-blind study. It aims to evaluate the efficacy of secondary

stroke prevention with milvexian combined with aspirin and

clopidogrel in patients over 40 years of age with acute ischemic

stroke or transient cerebral infarction. The primary outcome of

the study is the occurrence of a new ischemic stroke or occult

cerebral infarction.

Osocimab

Osocimab, also known as BAY1213790, is a long-lasting

humanized monoclonal antibody against FXIa, which binds to

a specific region of the FXIa catalytic structural domain, close

to the active site of the enzyme (95, 96). A phase I clinical trial

of osocimab was a single-blind study conducted in 83 healthy

white men who received single intravenous injections at doses

ranging from 0.015 to 10 mg/kg. The results showed no adverse

events, and the drug half-life was approximately 30 to 44 days

(39). A phase II clinical trial of osocimab was a non-inferiority

trial vs. enoxaparin and apixaban that was conducted on 813

patients from 54 hospitals in 13 countries (27). The results

indicated that the preoperative use of osocimab at a dose of

0.6 or 1.2 mg/kg has a promising application. There is also

an ongoing multicenter phase II clinical trial (NCT04523220),

which is being conducted in several countries to investigate

the pharmacokinetics and safety of low-dose osocimab (initial

load of 105mg and a monthly maintenance dose of 52.5mg)

and high-dose osocimab (initial load of 210mg and a monthly

maintenance dose of 105mg) vs. a placebo in patients with

end-stage renal failure undergoing regular hemodialysis.

ASOs

Currently, the most well-studied ASOs are IONIS-FXIRx

and FXI-LICA. IONIS-FXIRx, also known as BAY2306001 and

IONIS416858, inhibits the synthesis of FXI in the liver, which

in turn inhibits thrombosis. A phase II clinical trial of this ASO

was conducted on a total of 300 patients undergoing TKA in

five countries (29). The patients were randomized and received

200 or 300mg of IONIS-FXIRx or 40mg of enoxaparin once

daily, and the observed incidence of VTE was 27, 4, and 30%,

respectively, whereas the incidence of bleeding was 3, 3, and

8%, respectively. Therefore, the efficacy of 200mg of IONIS-

FXIRx in the prevention of VTE was not inferior to that of

enoxaparin, and the efficacy of 300mg of IONIS-FXIRx was

better than that of enoxaparin. Other results of phase II clinical

trials in patients with end-stage renal disease are in the process

of being published (76). FXI-LICA (BAY2976217), also known

as ION-957943, has the same RNA sequence as that of IONIS-

FXIRx. Based on previous studies, the dose relationship was

extrapolated from the IONIS-FXIRx study to FXI-LICA for

validation, and the data showed that 40, 80, and 120mg of FXI-

LICA could be used as doses for clinical trials in patients (76).

Therefore, a phase II clinical trial (NCT04534114) is focused

on the efficacy and safety of 40, 80, and 120mg of FXI-LICA

in inhibiting of thrombosis in patients with end-stage renal

disease undergoing regular hemodialysis, with bleeding as a

primary endpoint.

AB023

ABO23, also known as xisomab 3G3 or 3G3, is a

humanized FXI antibody, but unlike abelacimab and osocimab,

it inhibits the activation of FXI by FXIIa rather than inhibiting

FXIa activity or activation of FXI by thrombin. The first

in vivo human study included 21 healthy volunteers and

resulted in no positive antidrug antibodies and no serious

adverse events at doses of 0.1–5.0 mg/kg (97). A phase

II clinical trial of ABO23 (98) was a double-blind trial

in 24 patients diagnosed with end-stage renal disease who

were administered 0.25 or 0.5 mg/kg AB023 or a placebo.

The study demonstrated that ABO23 significantly reduced

the occurrence of blood clotting in the dialyzer and was

well tolerated by the volunteers. However, the sample size

in this study was small. Another phase II clinical trial

(NCT04465760) is currently recruiting volunteers and aims to

evaluate the effectiveness and safety of ABO23 in preventing

central venous catheter-related thrombosis in patients diagnosed

with solid tumors treated with peripheral central venous

catheter insertion or indwelling. ABO23 may benefit patients

using medical devices that come into contact with blood,

such as mechanical heart valves or extracorporeal membrane

oxygenators (99).

Asundexian (BAY2433334)

Asundexian is an orally available, direct small molecule that

specifically inhibits FXIa and significantly reduces FXIa activity,

prolongs the aPTT, decreases the weight of arteriovenous

thrombus, and is independent of antiplatelet drugs (100).

The published phase II clinical trial was a double-blind,

multicenter study in 753 patients over 45 years of age with

atrial fibrillation (30). The volunteers were randomized and
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administered 20 or 50mg of asundexian once a day and

5mg of apixaban twice daily. The final incidence ratios with

bleeding as the primary endpoint were 0.50, 0.16, and 0.33,

and the incidence of any adverse event was 47, 47, and

49%, respectively. Therefore, 20 or 50mg of asundexian daily

could provide durable inhibition of FXIa and resulted in

a lower incidence of bleeding than that with the standard

treatment for atrial fibrillation. Two other phase II clinical

trials have also been completed, but their results have not

yet been published. The primary objective of NCT04304534

was to examine the optimal dose of asundexian in patients

with acute myocardial infarction taking acetylsalicylic acid

and clopidogrel. The primary outcome was the occurrence of

myocardial infarction, stroke, stent thrombosis, and bleeding

within 12 months. Another clinical trial, NCT04304508, was

also a multicenter, randomized controlled trial. This study was

designed to explore the optimal dose of the drug in patients with

acute non-cardiogenic stroke.

SHR2285

SHR2285 is an oral small-molecule inhibitor of FXIa that

can significantly prolong the aPTT and inhibit thrombosis.

The main purpose of a phase I clinical trial, NCT03769831

(40), was to evaluate the occurrence of adverse events in

healthy volunteers who were administered 50, 100, 200,

400, 600, 800, or 1,000mg of SHR2285. The results showed

that the adverse events involved mainly liver function,

gastrointestinal function, and the hematological system,

but these recovered spontaneously without any special

intervention, and no serious adverse events were observed.

In terms of efficacy, SHR2285 could significant prolon

aPTT and decrease the activity of FXI, but no significant

differences in PT and international standardized ratio

were observed. Consequently, SHR2285 performed well

in the clinical trial. The follow-up phase II clinical trial

(NCT05203705) was a multicenter study that assessed the

efficacy and safety of four different doses of SHR2285

vs. enoxaparin to prevent VTE in postoperative patients

after unilateral TKA. The primary endpoint of the study

was the occurrence of VTE or bleeding after 12 days

of treatment.

Phase I

There are also several FXI inhibitors undergoing phase

I clinical trials. ONO-7684, a small molecule inhibitor of

FXIa, was first tested in healthy people and showed good

safety and tolerability profiles (101). In addition, the half-

life of the drug was extended up to 22.1–27.9 h while

maintaining a once-daily dosing protocol, suggesting that

ONO-7684 is promising for use in anticoagulation therapy.

REGN9933 is a monoclonal antibody against FXI, and

the NCT05102136 study is expected to enroll 72 healthy

adults to evaluate its pharmacokinetics. An Ixodes ricinus

contact-phase inhibitor (Ir-CPI) is as effective as heparin

in inhibiting thrombosis in animal models, but with a

reduced incidence of bleeding (102). A phase I clinical

trial (NCT04653766) included 32 male volunteers who were

randomized and received Ir-CPI at doses of 1.5, 3.0, 6.0, or

9.0 mg/kg; only one serious adverse event was observed at the

maximum dose.

Conclusions

Although the use of direct oral anticoagulants has simplified

the prevention and treatment of VTE, the incidence and

mortality from VTE are still relatively high, which carries

a heavy burden on both patients and healthcare systems.

Therefore, there is an urgent need for safer and more

effective anticoagulant drugs to prevent VTE. It is also

necessary to integrate information on patients’ renal function

and compliance, medical costs, and contraindications to

thrombolysis to assess the risks and benefits of treatment.

Since it plays an important role in thrombosis rather than

in hemostasis, FXI has received increasing attention as a

safer target of anticoagulation. Many FXI/FXIa inhibitors

have entered phase II clinical trials, wherea abelacimab is

in phase III trials. Completed clinical trials have shown that

FXI/FXIa inhibitors are safe and effective in preventing VTE

and have broad application prospects, especially in patients

with end-stage renal disease undergoing hemodialysis and those

with TKA.

More data may be needed to demonstrate the efficacy of

FXI/FXIa inhibitors in the prevention and management of

VTE in special populations, such as patients with cancer or

hepatic and renal insufficiency, children, and older patients.

In addition, more data are needed to validate the antagonists

of FXI inhibitors and their combinations with other drugs.

Indicators for monitoring the drug activity of FXI inhibitors

need to be further investigated. More data are needed to

establish the correspondence between the doses of FXI inhibitors

and aPTT levels, which can be helpful for dose adjustment

in clinical treatment. Furthermore, the accuracy of aPTT

test results is related to the sensitivity of reagents to drugs,

and thus, it is also worth investigating how to avoid the

influence of coagulation factors on intrinsic pathways and

improve the accuracy and comparability of results from

different laboratories. Therefore, more effort is needed to

bring FXI/FXIa inhibitors into clinical practice to benefit

more patients.
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