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Abstract

Fast and accurate taxonomic identification of invasive trans-located ladybird beetle species

is essential to prevent significant impacts on biological communities, ecosystem functions,

and agricultural business economics. Therefore, in this work we propose a two-step auto-

matic detector for ladybird beetles in random environment images as the first stage towards

an automated classification system. First, an image processing module composed of a

saliency map representation, simple linear iterative clustering superpixels segmentation,

and active contour methods allowed us to generate bounding boxes with possible ladybird

beetles locations within an image. Subsequently, a deep convolutional neural network-

based classifier selects only the bounding boxes with ladybird beetles as the final output.

This method was validated on a 2, 300 ladybird beetle image data set from Ecuador and

Colombia obtained from the iNaturalist project. The proposed approach achieved an accu-

racy score of 92% and an area under the receiver operating characteristic curve of 0.977 for

the bounding box generation and classification tasks. These successful results enable the

proposed detector as a valuable tool for helping specialists in the ladybird beetle detection

problem.

Introduction

Insects are the most diverse group of animals, with more than 1 million described species [1].

They are key components of Earth ecosystems and provide invaluable services for humanity

[2]. Recent studies have shown steep declines in insect diversity and population worldwide.

Thus, taxonomic information increment has become more urgent than ever to develop insect-

efficient conservation efforts [3]. However, efficient taxonomic identification of insects is chal-

lenging due to the high richness of some taxonomic groups, significant inter and intraspecific
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morphological variation, diverse life histories, complex distributions, and the decline of

trained experts able to provide reliable identifications [4].

Ladybird beetles, which are members of the Coccinellidae family, are among the most dis-

tinctive and widespread groups of insects due to their colorful patterns and reputation as agri-

cultural pest controllers [5]. There are more than 6, 000 described species of ladybird beetles.

However, its diversity is still far from understood in the Neotropics, where new genera and

species are frequently described, especially in countries such as Ecuador where large areas

remain unexplored due to few specialists working on the field [6]. Although the Coccinellidae
family includes some species feeding on plants and fungi, many ladybird beetles are top preda-

tors in terrestrial invertebrate communities [5]. Several species of ladybird beetles are impor-

tant predators of agricultural pests, such as aphids, scale insects, and whiteflies. They have

been deliberately translocated as biological control agents across the world since the late 19th

century [5].

Translocated ladybird beetles, such as Harmonia axyridis and Coccinella septempunctata,

have established naturalized and expanding populations, becoming invasive and having a sig-

nificant impact on biological communities, ecosystem functions, and agribusinesses econo-

mies [5]. Harmonia axyridis, native to East Asia, nowadays has established populations in

America, Europe, Africa, and New Zealand, and it is considered the most invasive ladybird on

Earth [7]. Despite predictions of its potential invasive expansion, the presence of Harmonia
axyridis and other non-native ladybird beetles in many countries of the Global South has usu-

ally been reported after populations are well-established [8]. Statistically, the use of citizen sci-

ence records has proved exceptionally useful to discover new populations [9].

Morphologically, species identification is particularly applicable in organisms with distinctive

coloration patterns. Although several members of the Coccinellidae family lack distinctive pat-

terns, many predaceous ladybird beetles, including those commonly used as biological control

agents, are brightly colored [10].

New technologies, such as machine learning techniques and public participation in research

through citizen science, provide crucial opportunities for developing tools that can aid to

increase the discovery and identification of insect diversity significantly [11, 12]. These tools

might also offer advances for early identification and detection of non-native translocated spe-

cies, thus allowing for the establishment of monitoring, management, and control programs of

invasive species [13].

Machine learning classifiers (MLC) based on shallow and deep learning have been widely

used for object detection and classification in different scenarios [14]. For example, in medical

applications [15–18], volcanology [19–22], surveillance and security [23], intelligent transpor-

tation systems [24], energy and materials saving [25], or marine ecosystems [26, 27], among

many others. In the context of insect detection and classification, several machine learning

approaches have been developed [28–32]. Some of them include the feature calculation, the

feature selection, or the space reduction tasks before the classification step in order to moder-

ate the classifier complexity. Others exhaustively explore the whole image attempting the

detection and classification tasks but this increases the model complexity.

Despite these advances, research regarding the automatic detection and classification of

ladybird beetles is scarce in the literature. Examples using deep learning classifiers as in [28,

31, 33] provide good performance but incur in high computational costs as they skip the classi-

fication space reduction, for example, sometimes preferring to slide a subwindow into the

whole image to attempt any detection or classification task. On the other hand, classifiers

based on shallow learning as in [34, 35] are less complex but with inferior performances. Man-

ual identification by experts is still used as the reliable approach. However, this mechanism is
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always prone to errors introduction due to fatigue and workload, so that the problem of auto-

matic ladybird beetle detection and classification remains challenging.

Therefore, this work proposes a new automatic detector based on the combination of digital

image processing and deep-learning techniques to maximize the detection performance of

ladybird beetles on random environment images. First, possible regions with ladybird beetles

inside the image are detected. Subsequently, these regions are classified by a deep convolu-

tional neural network (CNN) model, which determines which of them contains ladybird bee-

tles or not. The principal advantage and novelty of this approach is reducing the classification

space to decrease the complexity required from the classification model while maximizing its

performance. Accordingly, the main contributions in this proposal are related to:

• Detection of suspected regions: We combine three digital image processing methods such as

saliency map, simple linear iterative clustering (SLIC) superpixels segmentation, and active

contour to determine possible regions with ladybird beetles inside. These methods operate

over the whole image but reduce the space at each stage to generate the suspected bounding

boxes.

• Reduced classification space: We obtain a set of bounding boxes (suspected regions) from

each image under analysis, where each of them is smaller than the input image. Therefore,

our classification space is substantially reduced versus the original one.

• Deep learning classification strategy: We take advantage of the reduced classification space to

explore and optimize several deep CNN models. This strategy allowed us to successfully clas-

sify the suspected set of bounding boxes with the most suitable classification model.

Furthermore, this work constitutes an initial step towards an automated classification sys-

tem that can help the specialists detect endemic and invasive species quickly and accurately.

The rest of the paper is organized as follows. The Related Work Section briefly describes

previously developed approaches in the context of insect classification. The Materials and

Methods Section presents the employed database, together with a brief description of

employed digital image processing methods such as Saliency map, SLIC superpixels segmenta-

tion, active contour, and deep CNN architectures. Also, a detailed description of the proposed

detector and the experimental setup designed for the detector evaluation is included. The

Results and Discussion Section outlines the accuracy (ACC) results in the bounding

box generation. The classification output is validated based on the area under the receiver

operating characteristic curve (AUC) scores obtained by the selected deep CNN models using

the Wilcoxon statistical test [36] for evaluating the importance of the differences between the

classification models. The limitations of the proposed detector are presented, and finally, Con-

clusions and Future Work are summarized in the last section.

Related work

During the last decade, several approaches based on shallow and deep learning have been

developed to tackle the problem of insect detection and classification in random environ-

ments. For example, in [28], a mobile application was built to classify 30 kinds of forest insects

using a CNN. The network was validated on a 29, 722 sample data set, obtaining an ACC score

of 94%. In [37], a morphometric analysis of beetles was conducted by detecting landmarks on

beetle images with a CNN classifier. The method was validated on a data set of 293 samples,

reaching an ACC score of 78.79%. Similarly, in [29], a morphological analysis of biting midges

wing was carried out to discern among four different species. The linear discriminant analysis

model was the best classifier on a data set with 192 samples, obtaining an AUC score of 0.96.
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In [30], a speeded-up robust features (SURF) extraction method was combined with a sup-

port vector machine (SVM) classifier to recognize 102 species of insect pest. The method

reached a low ACC score of 19.5% on a data set with 75, 000 samples. In [38], a combination

of sparse-coding histogram features and multiple kernel learning techniques were employed to

classify 24 insect species of field crops such as corn, soybeans, wheat, and canola. The model

obtained an ACC score of 85.5% on a data set of 600 samples. A similar ACC value of 85% was

reached by a sequential minimal optimization SVM classifier while processing 35 different

moth species from UK territory on a data set with 774 samples [39]. In [40], an SVM classifier

with radial basis kernel function was used to identify four species of rice pests on a data set

with 156 feature vectors, reaching an ACC score of 97.5%. In [34], a set of color and geometri-

cal features was computed to classify 360 images of ladybird beetles using a probabilistic neural

network-based classifier, achieving a mean ACC value of 88.19%. Likewise, the developed

method in [35] employed a combination of a multilayer perceptron and a J48 decision tree to

classify 9 species of ladybird beetles, obtaining an averaged ACC of 81.93%.

Furthermore, some deep learning approaches have been used for recognizing varieties of

insect pests, such as in [41], where the InceptionV3 model was modified to recognize six differ-

ent pests of maize plantations, reaching an ACC score of 49, 7%. In [30], a combination of a

deep CNN ResNet and an SVM model was used for feature extraction and classification of

insect pest species, respectively, obtaining an ACC value of 49.5%. Similarly, in [31], dense

scale-invariant features and a deep CNN model was employed to classify brown plant-hoppers

and ladybirds in rice crops, attaining an ACC score of 97%. In [42], a combination of You

Only Look Once (YOLO) and SVM models were employed to segment and classify six species

of flying insects, reaching ACC scores of 93.71% and 92.50% in the segmentation and classifi-

cation stages, respectively. Similarly, in [32], a modified U-net model with a simplified VGG16

network was proposed to segment butterflies from ecological images, obtaining an ACC score

of 98.67%. Lately, 18 different ladybird beetle species from the UK were classified using a

CNN-ResNet model, achieving an overall ACC of 69% [33].

Given the background summarized in this section, it is possible to notice that most previ-

ously developed methods were employed to tackle the insect detection and classification prob-

lem in a general way. Only a few of them were applied to detect and classify ladybird beetles,

but obtaining reduced performance as in [34, 35, 37] or incurring in a high model cost of clas-

sification as in [33]. Therefore, we expect that the contributions of the proposed method

address the existing limitations of developing automatic ladybird beetle detection models with-

out a high classification cost and without losing detection performance.

Materials and methods

Database

This work used a ladybird beetle image database taken from the publicly available iNaturalist
project, which is provided by courtesy of the California Academy of Sciences and the National

Geographic Society, and it is available at http://www.inaturalist.org. This project consists of an

online initiative where observations of different animal species are well documented by the

general public and specialists worldwide. Also, using the implemented search engine makes it

possible to filter the data according to their taxonomic categories and select the desired species

samples.

We only assembled ladybird beetle data from Ecuador and Colombia regions labeled as

research-grade, which means that the observations were verified by experts in the iNaturalist
project. Moreover, we individually inspected each observation to confirm correct family iden-

tification and keep only adult samples. Adult ladybird beetles have external diagnostic
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morphology and coloration patterns, allowing their identification in random environment

images. Therefore, the employed dataset contains a total of 2, 300 images with different sizes

but including at least one identifiable ladybird beetle sample within the image. It is important

to note that, as the photos correspond to general observations reported by users to the iNatur-
alist project without any format restriction, the location and the ladybird beetles size within

the image, as well as image sizes, vary significantly across the dataset.

Saliency map

A saliency map is an image representation that shows where attention focus is given in a scene

by the unique quality of each pixel. Thus, its output is a pixel subset of the image, which is sub-

sequently easier to analyze. This type of image segmentation reveals the most relevant areas in

a picture using as a basis the spatial organization of features of the image [43]. Finding salient

regions of an image helps various tasks in computer vision, such as speeding up object detec-

tion [44], object recognition [45], object tracking [46], and content-aware image editing [47].

Among several established approaches [48, 49], Kanan and Cottrell [50] implemented an

algorithm which is biologically inspired to model visual attention by relying on two facets of

the optical system. The sparse visual features that capture the statistical regularities in natural

scenes such as luminance, color, contrast, blur, edges, and the sequential fixation-based visual

attention attempt to mimic the way we sequentially look at salient locations of an object in a

scene.

The sparse visual features are computed by applying independent component analysis

(ICA) filters to image patches to produce a set of sparse filters with luminance and chromatic

properties similar to simple cells in the primate visual cortex [51]. The saliency map model (P
(f)), using ICA features, is defined using a generalized Gaussian distribution (GGD) given by:

PðfiÞ ¼
yi

2siGðy
� 1

i Þ
exp �

fi

si

�
�
�
�

�
�
�
�

yi
 !

ð1Þ

where f indicates the ICA features, fi is the ith element of the vector f; θi and σi are the shape

and scale parameters of the GDD respectively, and Γ is the gamma function. These parameters

were estimated with the algorithm proposed by Song [52], which assumes that θ and Γ are

independent. Thus, additional subroutines are not needed to evaluate them, making this algo-

rithm a practical optimizer of P(f).
On the other hand, during the fixation stage, the preliminary saliency map (obtained in the

previous step) is normalized to be a probability distribution constrained to one (unitary con-

strain). This distribution is used to compute the fixations, which are windows with variable

sizes located over the most important regions in the image under analysis. Subsequently,

according to Eq (1), the process of saliency map computation is applied iteratively until explor-

ing all fixation windows. Finally, the preliminary saliency map and all saliency maps computed

from the fixation windows are merged to form the final output (saliency map image).

SLIC superpixels segmentation

Superpixels algorithms cluster pixels that share similar qualities into multiple sets of pixels

(superpixel segments). The goal is to simplify the segmentation process by changing the repre-

sentation of an image into another which is easier to analyze. These algorithms have become

key building blocks of many computer vision systems to reduce the complexity of subsequent

image processing tasks. There are many approaches to superpixels segmentation algorithms

[53–56]. The simple linear iterative clustering (SLIC) [57] stands as a practical option to be
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considered in this work since it has been demonstrated to be faster and more memory efficient

than existing methods. Additionally, it offers flexibility in the compactness and number of

superpixels that it generates [58].

The SLIC superpixel algorithm is an adaptation of the k-means method for superpixel gen-

eration. It is based on the color and spatial proximity of the pixels in the image plane. The algo-

rithm transforms the images to the CIELAB color space, in which each color is composed of

three components: L�, a�, b�, representing the lightness (L�), the color tone from green to red

(a�), and the color tone from blue to yellow (b�), respectively. Additionally, the pixel position

information is represented as an [x, y] vector of coordinates. The SLIC superpixel algorithm

merges both the value of the components [L�, a�, b�] and the pixel position into a five-dimen-

sional vector [L�, a�, b�, x, y] representing the information of the current pixel under analysis

in the feature space. The algorithm then computes distances (D) among pixels in the whole

space to create superpixel segments and determine their size and compactness. However, the

application of D can not be defined just by a five-dimensional Euclidean distance because, for

large superpixel segments, the spatial distance outweighs the color proximity. Therefore, the

color and spatial proximity must be normalized with respect to their maximum distances. The

improved distance equation of D is given by:

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dc

Mc

� �2

þ
ds

Ms

� �2
s

ð2Þ

subject to:

dc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðLj � LiÞ
2
þ ðaj � aiÞ

2
þ ðbj � biÞ

2
q

ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxj � xiÞ
2
þ ðyj � yiÞ

2
q

where dc and ds are the color and spatial distances between the i and j pixels, and Mc and Ms

their maximum distance scores, respectively. It must be considered that Ms within the clusters

(superpixel segments) should correspond to the sampling interval Ms ¼

ffiffiffiffiffiffi
n
k

� �q

, being n and k

the number of pixels and superpixels, respectively.

Active contour

Active contour models, also known as snakes or deformable models, are algorithms based on

an energy-minimizing curve that consider external constraints and image forces to determine

lines and edges [59]. These models are generally used in computer vision to refine the delinea-

tion of an object systematically. Although commonly used in image segmentation, these algo-

rithms can not identify objects in an image by themselves since they require an initial contour

that serves as a seed to initialize the outline refining process (curve deformation).

In this work, we used the Chan-Vese’s active contour algorithm [60]. In contrast to the clas-

sical models that rely on the stopping-edge function based on the image gradient, the Chan-

Vese algorithm treats the segmentation as an energy minimization problem with the stopping-

edge function based on Mumford–Shah segmentation techniques [61]. This modification

enables this model to discover contours both with or without gradient, thus providing advan-

tages in detecting object contours in very noisy images, in cases where objects have very

smooth boundaries, or even with discontinuous boundaries.

An overview of the mathematical formulation of the Chan-Vese model starts with the origi-

nal snake model of Kass and Terzopoulos [59], which is subject to constraints of an input
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image (u0), e.g., the user initializes a curve around the desired object in the image. It moves

until reaching the object boundary, and their formula is given by:

JðCÞ ¼ a
Z 1

0

jC0ðsÞj2dsþ b
Z 1

0

jC00ðsÞjds � l
Z 1

0

jru0ðCðsÞÞj
2ds ð3Þ

where C is a parameterized curve on the gradient of the input image u0 and α, β, and λ are pos-

itive coefficients. The first two terms of the equation carry out the curve smoothness (internal

energy), while the third term represents the curve attraction toward the objects in the image

(external energy). It should be noted that by minimizing the energy (in Eq (3)), the curve acts

as an edge detector by positioning at the points of maximaru0(C(s)) while keeping a smooth-

ness in the curve (object boundary). In contrast, the curve energy minimization of Mumford–

Shah is a functional technique that establishes an optimal criterion for segmenting the image

objects. It consists of minimizing:

FMSðu;CÞ ¼ m � xðCÞ þ l
Z

O

ju0ðx; yÞ � uðx; yÞj2dxdy

þ

Z

OnC
jruðx; yÞj2dxdy

ð4Þ

subject to:

xðCÞ ¼
Z

O

d0ð�ðx; yÞÞjr�ðx; yÞjdxdy

where μ and λ (as in Eq 3) are positive coefficients, u is the best approximation of u0 (average

inside or outside of C), O is the domain of application, δ0 is the one-dimensional Dirac mea-

sure, ϕ is the evolving curve C, and ξ is the length of curve C.

Finally, from the Kass and Terzopoulos original snake model (Eq (3)) and Mumford–Shah

functional (Eq (4)), Chan-Vese proposed an active contour model, which does not depend on

the gradient of the image to find the object boundary. This model is defined as:

Fðc1; c2; �Þ ¼ m

Z

O

dð�ðx; yÞÞjr�ðx; yÞjdxdyþ n
Z

O

Hð�ðx; yÞÞdxdy

þ l1

Z

O

ju0ðx; yÞ � c1j
2Hð�ðx; yÞÞdxdy

þ l2

Z

O

ju0ðx; yÞ � c2j
2
ð1 � Hð�ðx; yÞÞdxdy

ð5Þ

where C1 and C2 are constants given by the average of u0 inside and outside the evolving curve

ϕ, respectively. H is the Heaviside function and μ (as in Eq (4)), ν, λ1 and λ2 are fixed parame-

ters, usually λ1 = λ2 = 1 and ν = 0. Fig 1 shows an example of the application of the Chan-Vese

active contour curve (Eq (5)) to the problem under analysis.

Deep CNN architecture

Deep learning is a new branch of machine learning that improves traditional shallow learning

models by including multiple layers to manage and process large amounts of data. The extra

layers specialize in different features during the training stage. For example, in image classifica-

tion, the visual features from an input image are later combined to detect higher-order features
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that are relevant to the final classification. Thus, severe problems in image classification and

recognition are easier to solve now [26].

The deep CNN is an exclusive deep-learning model [62, 63], the popularity of which has

increased on image labeling problems. It is a multilayered approach of conventional convolu-

tional neural networks that include an input layer, a set of hidden layers (which could vary

depending on the network architecture from two to hundreds of layers), and an output layer,

usually, a fully connected layer. Each hidden layer is based on the CNN architecture core, con-

sisting of at least the convolutional and max-pooling layers. Other configurations extend the

basic scheme by adding dropout and flatten layers [64]. This multilayer structure enables the

network to learn different data abstractions while transitioning from layer to layer until reach-

ing the output result [20].

Proposed detector

The proposed detector is based on the combination of digital image processing and deep-

learning techniques to enhance and classify the objects in the image as the desired object, i.e.,

the ladybird beetles (see Fig 2, step 1). In this setting, we developed two modules separated by

tasks: image processing to generate bounding boxes with possible ladybird beetle inside and a

deep CNN classifier to determine which of the generated bounding boxes have ladybird

Fig 1. Deformation example of the Chan-Vese active contour curve (green lines) until reaching the ladybird

beetles boundary (red line) on the image.

https://doi.org/10.1371/journal.pone.0253027.g001

Fig 2. Workflow of the proposed detector.

https://doi.org/10.1371/journal.pone.0253027.g002
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beetles. Once both modules are integrated, it is possible to detect the ladybird beetles in the

input image (see Fig 2, step 3).

The image processing tasks include determining the image saliency map to highlight

important areas with possible ladybird beetles (see Fig 2, step 2.1). The superpixels segmenta-

tion method is then applied to extract the regions detected in the image (see Fig 2, step 2.2).

The Chan-Vese active contour model then obtains the final segmentation to refine the seg-

mented areas using the superpixels method (see Fig 2, step 2.3). Bounding boxes are then gen-

erated to enclose (mostly in a rectangular shape) the segmented areas of the previous step (see

Fig 2, step 2.4). On the other hand, the classifier is based on a deep CNN architecture to avoid

introducing false positives in the bounding boxes classification, e.g., boxes detected but with-

out containing ladybird beetles. A detailed description of these modules follows.

Image processing. This step aims to define bounding boxes that show the location of pos-

sible beetle specimens within the total image. The proposed method employed several image

segmentation techniques and morphological operations to achieve this goal. First, the saliency

map method is applied to the input image to obtain a gray-level scale image highlighting the

most relevant areas. In some cases, these areas are big and connected between them, making it

challenging to delimit regions of interest (ROI) possibly containing ladybird beetles. Thus, an

initial statistical analysis of the pixel intensity values concludes that only pixels above a thresh-

old value of 90 units in the saliency map are sufficient to produce ROIs with smaller areas.

Besides, the segmentation of detected ROIs was improved by applying the Chann-Vese active

contour model with 50 iterations and a dilate-based morphological operation with a disk-

based structuring element with a radius of 10 units. As a result, well-delimited ROIs were

obtained, which enclose possible ladybird beetles candidates (see Fig 2, step 2.1). Subsequently,

the SLIC superpixels method was used to create a new and more precise mask of the ladybird

beetles within each segmented ROIs. This approach can distinguish between the object fore-

ground and background in scenes where both aspects contrast, a frequent scenario found in

our database (see Fig 2, step 2.2).

Finally, we repeated the Chann-Vese active contour model application with 100 iterations

and a morphological dilate operation with a disk-based structuring element with a radius of 5

units pixels to achieve the final segmentation of the ladybird beetle mask inside the ROIs (see

Fig 2, step 2.3). The resulting segmented masks were used to generate the bounding boxes

(mainly square shape), which are the output of this module and that are used to feed the deep

CNN classifier (see Fig 2, step 2.4 red boxes).

Deep CNN classifier. The final stage of the proposed method uses a deep CNN classifier

to determine whether or not the generated bounding boxes (output of the image processing

module) contain ladybird beetles (see Fig 2 step 2). Thus, we adopted the standard deep CNN

architecture to build four possible classification models, named DCNN1, DCNN2, DCNN3,

and DCNN4, to fulfill the classification task. However, only the best one is integrated into the

final proposed detector. These models were built based on the main architecture components

variation, i.e., on the number of convolutional layers and their respective number of filters, the

number of pooling layers, and their location within the network. We focus our description on

the DCNN1 classification model to explain this stage better, as shown in Fig 3.

The bounding box regions generated in the previous step are now used to feed the first con-

volutional layer, composed of 32 convolutional filters with a [5 × 5] kernel size. This layer aims

to predict the input sample class probabilities by creating a feature map representation com-

puted by the filter structure. Subsequently, the feature map enters a max-pooling layer with a

[3 × 3] size to reduce irrelevant features (information) while retaining the relevant ones. The

reduced feature space is then used to feed two more convolutional layers (64 filters each with a

kernel size of [3 × 3]) and a pooling layer with the same configuration as the previous one.
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This second convolutional module concentrates the most relevant (important) features to clas-

sify the input sample. Finally, a fully connected layer consisting of two dense layers with 256

and 1 neurons is used to determine the final output. The first layer employs the rectified linear

unit (ReLU) activation function to convert and reduce the bi-dimensional input feature space

into a single feature vector with corresponding weights. The output layer uses the sigmoid acti-

vation function and provides the final (binary) classification for a given feature vector.

The other implemented models (DCNN2, DCNN3, and DCNN4) follow the same deep

CNN base architecture, varying the layers configurations and employing the same fully con-

nected layer configuration as in the DCNN1 model. Additionally, all the models include an

input layer with a size of [144 × 144]. Table 1 shows an overview of the core structure of pro-

posed deep models.

Experimental setup

This section defines the experimental setup used to evaluate the proposed method of detecting

ladybird beetle species in random environments. Data preparation, training and test partitions,

models optimization, assessment metrics, and model selection are the essential aspects

explained in the following subsections.

Fig 3. Proposed DCNN1 model.

https://doi.org/10.1371/journal.pone.0253027.g003

Table 1. Core structure of the proposed deep CNN models.

DCNN1 DCNN2 DCNN3 DCNN4

Conv.(32)+Kernel (5 × 5) Conv.(32)+Kernel (5 × 5) Conv.(32)+Kernel (5 × 5) Conv.(32)+Kernel (5 × 5)

max-pooling (3 × 3) max-pooling (3 × 3) max-pooling (3 × 3) max-pooling (3 × 3)

Conv.(64)+Kernel (5 × 5) Conv.(32)+Kernel (5 × 5) Conv.(32)+Kernel (5 × 5) Conv.(32)+Kernel (5 × 5)

Conv.(64)+Kernel (5 × 5) max-pooling (3 × 3) max-pooling (3 × 3) max-pooling (3 × 3)

max-pooling (3 × 3) Conv.(64)+Kernel (5 × 5) Conv.(32)+Kernel (5 × 5) Conv.(64)+Kernel (5 × 5)

fully connected (256, 1) Conv.(64)+Kernel (5 × 5) max-pooling (3 × 3) Conv.(64)+Kernel (5 × 5)

max-pooling (3 × 3) Conv.(64)+Kernel (5 × 5) max-pooling (3 × 3)

fully connected (256, 1) Conv.(64)+Kernel (5 × 5) Conv.(64)+Kernel (5 × 5)

max-pooling (3 × 3) Conv.(64)+Kernel (5 × 5)

fully connected (256, 1) max-pooling (3 × 3)

Fully connected (256, 1)

Conv.- convolutional layer

https://doi.org/10.1371/journal.pone.0253027.t001
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Data preparation. The output of the image-processing module is a set of bounding boxes

that may contain or not ladybird beetles, and each box may have different dimensions (first

stage of the proposed detector). Therefore, it was mandatory to prepare them to meet the

required settings of the learning process in the deep CNN classifier (second stage of the pro-

posed detector). Bounding boxes labeling and padding tasks were done as follows:

• Manual labeling: the employed image processing algorithms are prone to introduce false-

positive regions such as those containing flowers, leaves, unrelated insect specimens,

amongst others. Due to their functionalities, they are bound to highlight any area with a pos-

sible object. Thus, we manually inspected and labeled the bounding boxes into two catego-

ries: boxes with and without ladybird beetle specimen, i.e., positive and negative samples.

• Padding: the proposed deep CNN models are constrained to an input canvas (image) with a

size of [144 × 144] pixels. Thus, if any dimension of the bounding box is larger than 144 pix-

els, we isotropically resize it to fit in the required canvas dimension. Otherwise, we centered

it in the canvas and started adding white noise (random values for every pixel channel) to

every empty pixel in the canvas, as shown in Fig 4.

After completing both tasks, we used the labeled and padded bounding boxes to form an

experimental data set for training and testing the proposed deep CNN models.

Training and test partitions. We apply a stratified 5-fold cross-validation method [65]

on the experimental data set to form disjoint training and test partitions and guarantee the

class representation on each partition. This process was repeated ten times with different ran-

dom initialization seeds to reflect better the classification capabilities of the model for previ-

ously unseen data.

Models optimization. For all the models, we optimized the L2 regularization parameter

in the values of 0.001, 0.003, and 0.005 to prevent overfitting during the model training. The

number of training iterations (epochs) was optimized in the range from 20 to 50, with an

increment of 10 units. Other hyperparameters were kept constant throughout the optimiza-

tion, such as a learning rate of 3 × 10−4, batch size of 128, convolutional kernel size of [5 × 5]

with a single stride, max-pooling kernel size of [3 × 3] with a stride of 3 units, the same padding

type for all convolutional layers, and the adam optimizer, which is based on adaptive estima-

tion of lower-order moments [66].

Assessment metrics. Regarding the bounding boxes generation, we computed the ACC

metric to evaluate the image processing module (first stage of the proposed detector). Since it

is possible to have several bounding boxes per image, we considered a true positive generation

if the ladybird beetle specimen is located inside a bounding box. Otherwise, we considered it

Fig 4. An example of a padding operation on bounding boxes regions smaller than the required input dimension.

https://doi.org/10.1371/journal.pone.0253027.g004
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as a false positive. The error rate metric associated with the ACC performance was also calcu-

lated to support the discussion of the proposed detector limitations. In this case, the error rate

metric measures the percentage of bounding boxes generated with incomplete ladybird beetles

inside.

Concerning the deep CNN-based classification (second stage of the proposed detector), we

calculated the mean of the AUC (area under the receiver operating characteristic curve), ACC,

precision (PRE), and recall (REC) to assess the effectiveness of all classification models on the

experimental data set over 50 runs. Also, we performed a statistical comparison between classi-

fication models using the Wilcoxon statistical test [36] with α = 0.05 to determine if there is

any statistically significant difference among models. Despite computing several validation

metrics, we supported the discussion of results using the mean of the AUC metric.

Model selection. Since the proposed detector explored several classification models, a

golden rule was set for selecting the best classification scheme. Thus, we follow first the model

that provided the higher mean of AUC performance statistically at p< 0.05, and second, if

there was a tied performance in the resulting scores, the model with the most straightforward

architecture was selected and implemented within the proposed detector.

All deep CNN classifiers were implemented, trained, and evaluated in Python language ver-

sion 3.6.9 [67] using Keras [68] (MXNET backend [69]) and the scikit-learn (SKlearn) library

[70].

Results and discussion

The performance of the proposed detector is next analyzed by considering its two internal

stages results separately. First, the results from the image processing module (first stage) are

presented. Then, the deep CNN model classification performance is evaluated on an experi-

mental data set containing the bounding boxes regions produced by the first stage of the pro-

posed detector.

Performance of bounding box generation

A total of 2, 300 images with ladybird beetle species from the iNaturalist project were used to

feed the proposed detector. It was possible to generate a bounding box around the ladybird

beetles in the images in most cases, demonstrating successful performance. The obtained ACC

score of 92% corroborated the satisfactory results. Some examples of successful detection are

shown in Fig 5.

From this figure, it is possible to observe that the saliency map step (second column) cor-

rectly revealed the ladybird beetle area in the image. However, it also spotlighted other non-

desired regions, which could produce bounding boxes without ladybird beetles. This effect is

present because this method is intended to highlight the most relevant image regions accord-

ing to the pixel quality, which is greater where the focus of attention is given in the scene. Simi-

larly, the SLIC superpixel segmentation method (third column) correctly segmented the

saliency map discovered areas. Even when some of them do not contain ladybird beetles, after

that, the Chan-Vese model (fourth column) refined the ladybird beetle contour inside the seg-

mented areas. It is also possible to notice that this method has low performance when the tar-

get object is missing. This behavior was expected since the Chan-Vese model started the

segmentation process (curve deformation) on areas without any ladybird beetles. Finally, the

bounding boxes were correctly generated (fifth column), enclosing the ladybird beetles and

other non-desired regions, which were wrongly revealed by the saliency map method.

It should be noted that this part of the proposed detector does not consider any knowledge

about the ladybird beetles. Therefore, as long as the saliency map method highlights correct
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areas, the remaining processes will perform better and vice versa. For instance, the ladybird

beetles were correctly enclosed in common backgrounds such as grass or leaves (see Fig 5, first

and second rows). Also, it worked well in more homogeneous contexts such as flowers and

hands red, where the background colors are very similar to some parts of the ladybird beetle

specimen (see Fig 5, third and fifth rows). Even in scenarios where the ladybird beetles are tiny

and frequent (more than one) objects in the image, they were precisely enclosed by the pro-

posed detector (see Fig 5, fourth and fifth rows).

Performance of deep CNN models

The image processing module of the proposed detector (first stage) provided a total of 9,925

bounding box regions, which were processed to form an experimental data set distributed in 3,

024 and 6, 901 bounding boxes with and without ladybird beetles, respectively. This dataset

was used together with the 5-fold cross-validation method to feed the proposed deep CNN

models. The obtained classification performance highlighted quality results, as shown in

Table 2.

Fig 5. Successful performance examples of the image processing module (first stage of the proposed detector) in

different environments. From left to right, original image, saliency map, SLIC superpixels segmentation, Chan-Vese

active contour, and final bounding boxes generated.

https://doi.org/10.1371/journal.pone.0253027.g005
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Table 2. Performance results of proposed deep CNN models.

Arquitecture Reg. Epochs AUC±SD ACC±SD PRE±SD REC±SD Wil. (α = 0.05)

DCNN1 0.001 20 0.968 ± 0.005 91.88 ± 0.008 0.901 ± 0.031 0.827 ± 0.030 p < 0.05

0.003 20 0.963 ± 0.005 91.09 ± 0.009 0.891 ± 0.041 0.809 ± 0.049 p < 0.05

0.005 20 0.960 ± 0.006 90.63 ± 0.010 0.882 ± 0.037 0.802 ± 0.039 p < 0.05

0.001 30 0.971 ± 0.004 92.34 ± 0.007 0.907 ± 0.031 0.836 ± 0.037 p < 0.05

0.003 30 0.968 ± 0.004 91.74 ± 0.009 0.906 ± 0.040 0.817 ± 0.044 p < 0.05

0.005 30 0.964 ± 0.005 91.21 ± 0.009 0.905 ± 0.038 0.801 ± 0.046 p < 0.05

0.001 40 0.972 ± 0.004 92.66 ± 0.007 0.909 ± 0.030 0.845 ± 0.036 p < 0.05

0.003 40 0.970 ± 0.005 92.26 ± 0.007 0.919 ± 0.028 0.818 ± 0.038 p < 0.05

0.005 40 0.966 ± 0.004 91.56 ± 0.009 0.903 ± 0.039 0.811 ± 0.051 p < 0.05

0.001 50 0.972 ± 0.005 92.79 ± 0.006 0.905 ± 0.031 0.849 ± 0.038 p < 0.05

0.003 50 0.971 ± 0.004 92.31 ± 0.008 0.920 ± 0.026 0.817 ± 0.049 p < 0.05

0.005 50 0.968 ± 0.004 91.85 ± 0.006 0.905 ± 0.034 0.821 ± 0.035 p < 0.05

DCNN2 0.001 20 0.972 ± 0.004 92.42 ± 0.007 0.920 ± 0.031 0.825 ± 0.043 p < 0.05

0.003 20 0.968 ± 0.004 91.78 ± 0.009 0.909 ± 0.038 0.817 ± 0.052 p < 0.05

0.005 20 0.965 ± 0.005 91.16 ± 0.011 0.895 ± 0.050 0.813 ± 0.060 p < 0.05

0.001 30 0.975 ± 0.004 93.01 ± 0.007 0.932 ± 0.024 0.831 ± 0.039 p < 0.05

0.003 30 0.971 ± 0.004 91.97 ± 0.008 0.923 ± 0.033 0.809 ± 0.049 p < 0.05

0.005 30 0.967 ± 0.005 91.58 ± 0.014 0.914 ± 0.044 0.803 ± 0.062 p < 0.05

0.001 40 0.977 ± 0.003 93.37 ± 0.007 0.932 ± 0.025 0.843 ± 0.036 p = 0.57

0.003 40 0.973 ± 0.005 92.59 ± 0.009 0.925 ± 0.029 0.828 ± 0.045 p < 0.05

0.005 40 0.970 ± 0.004 91.76 ± 0.010 0.911 ± 0.040 0.816 ± 0.055 p < 0.05

0.001 50 0.978 ± 0.004 93.53 ± 0.008 0.939 ± 0.025 0.845 ± 0.038 −

0.003 50 0.974 ± 0.005 92.73 ± 0.009 0.933 ± 0.029 0.821 ± 0.043 p < 0.05

0.005 50 0.970 ± 0.005 92.00 ± 0.009 0.920 ± 0.038 0.811 ± 0.053 p < 0.05

DCNN3 0.001 20 0.968 ± 0.005 92.02 ± 0.008 0.897 ± 0.033 0.836 ± 0.031 p < 0.05

0.003 20 0.960 ± 0.008 90.79 ± 0.013 0.878 ± 0.046 0.826 ± 0.039 p < 0.05

0.005 20 0.954 ± 0.007 89.81 ± 0.020 0.847 ± 0.057 0.825 ± 0.049 p < 0.05

0.001 30 0.973 ± 0.005 92.73 ± 0.008 0.920 ± 0.028 0.833 ± 0.040 p < 0.05

0.003 30 0.968 ± 0.005 91.78 ± 0.009 0.902 ± 0.050 0.818 ± 0.049 p < 0.05

0.005 30 0.960 ± 0.009 89.04 ± 0.081 0.854 ± 0.089 0.835 ± 0.056 p < 0.05

0.001 40 0.976 ± 0.004 93.25 ± 0.006 0.928 ± 0.024 0.846 ± 0.030 p = 0.08

0.003 40 0.970 ± 0.005 92.07 ± 0.010 0.911 ± 0.037 0.823 ± 0.046 p < 0.05

0.005 40 0.964 ± 0.007 90.94 ± 0.023 0.887 ± 0.053 0.821 ± 0.053 p < 0.05

0.001 50 0.977 ± 0.005 93.42 ± 0.010 0.930 ± 0.031 0.847 ± 0.034 p = 0.96

0.003 50 0.971 ± 0.006 91.91 ± 0.021 0.916 ± 0.058 0.820 ± 0.047 p < 0.05

0.005 50 0.965 ± 0.008 89.21 ± 0.092 0.882 ± 0.105 0.822 ± 0.060 p < 0.05

DCNN4 0.001 20 0.966 ± 0.005 91.54 ± 0.008 0.892 ± 0.041 0.826 ± 0.044 p < 0.05

0.003 20 0.954 ± 0.007 90.32 ± 0.012 0.853 ± 0.047 0.825 ± 0.056 p < 0.05

0.005 20 0.951 ± 0.007 89.89 ± 0.010 0.838 ± 0.043 0.829 ± 0.043 p < 0.05

0.001 30 0.971 ± 0.005 92.26 ± 0.007 0.913 ± 0.033 0.825 ± 0.042 p < 0.05

0.003 30 0.962 ± 0.007 90.89 ± 0.015 0.889 ± 0.043 0.814 ± 0.048 p < 0.05

0.005 30 0.957 ± 0.006 90.58 ± 0.008 0.863 ± 0.042 0.825 ± 0.047 p < 0.05

0.001 40 0.973 ± 0.004 92.67 ± 0.007 0.923 ± 0.027 0.830 ± 0.052 p < 0.05

0.003 40 0.966 ± 0.006 91.63 ± 0.008 0.902 ± 0.033 0.819 ± 0.048 p < 0.05

0.005 40 0.959 ± 0.012 90.61 ± 0.031 0.863 ± 0.130 0.803 ± 0.125 p < 0.05

0.001 50 0.975 ± 0.004 93.08 ± 0.009 0.930 ± 0.026 0.835 ± 0.037 p < 0.05

0.003 50 0.967 ± 0.007 91.50 ± 0.018 0.917 ± 0.030 0.811 ± 0.054 p < 0.05

0.005 50 0.963 ± 0.005 91.31 ± 0.009 0.875 ± 0.131 0.803 ± 0.123 p < 0.05

Reg.—L2 regularization parameter; AUC, ACC, PRE and REC—mean of: AUC, ACC, PRE, and REC metrics over 50 runs; SD—standard deviation; underlined AUC

value is the Wilcoxon test pivot value; selected model in bold.

https://doi.org/10.1371/journal.pone.0253027.t002
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From this table, it is possible to read that all models obtained AUC mean scores over the

0.95, which means that the proposed four deep architectures and employed configurations

provided successful classification models. The higher mean of AUC score of 0.978±0.03 was

reached by the DCNN2 model with a L2 regularization value of 0.001 and 50 epochs. However,

this performance was not statistically superior (α = 0.05) to the classification model based on

the DCNN2 model with a L2 regularization value of 0.001 and 40 epochs (AUC = 0.977±0.003,

p = 0.574), and the two others models using the DCNN3 with the same L2 regularization value

of 0.001, but with 40 (AUC = 0.976±0.004, p = 0.076) and 50 (AUC = 0.977±0.005, p = 0.959)

epochs, respectively.

It should be noted that none of the DCNN1 and DCNN4 models were good candidates

when compared to those from the DCNN2 and DCNN3 models. This behavior is related to

the core structure of these architectures. The DCNN1 model used three convolutional layers

(see Table 1) that seem insufficient to learn the needed abstractions from the images of the ran-

dom environment, including the ladybird beetles details. On the other hand, the DCNN4

model employed six convolutional layers (see Table 1) that could resemble an efficient archi-

tecture, but it was not. In this case, the use of two blocks of convolutional layers with 64 filters

each demands more samples (bounding boxes with ladybird beetles) to learn and extract ade-

quate image features. That explains the reason why some models from this architecture were

the only reaching AUC mean scores around the 0.95 (worst scores). In contrast, the DCNN2

and DCNN3 models were in the middle of explored architectures with acceptable combina-

tions of convolutional layers that enable them as good classification models to tackle the prob-

lem under analysis.

According to the model selection criteria, the DCNN2 model with a L2 regularization value

of 0.001 and 40 epochs was considered the best model to integrate into the second stage of the

proposed detector. It did not obtain the highest mean AUC score, but it was statistically similar

in terms of performance with a mean of AUC = 0.977±0.003 (p = 0.574). It was the most

straightforward model among those with similar performance. It did not incur overfitting dur-

ing the training process while maintaining good precision and recall performance during the

test (see Fig 6, left panel). Moreover, we can observe that the cross-entropy red-based loss

function describes a similar performance for both the training and test curves. This behavior

guarantees the good generalization power of the model when classifying new unseen data (see

Fig 6, right panel).

Fig 6. Performance of the selected deep CNN model based on the P-R curve (left) and cross-entropy loss function

during the training and test stages (right).

https://doi.org/10.1371/journal.pone.0253027.g006
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Limitations of the proposed detector

The principal limitations of the present proposal are associated with the image processing

module of the proposed detector. Even though the bounding boxes generation part performed

well in almost all cases, there was an error rate of 8% related to some complex scenarios where

the saliency map failed to correctly estimate the ladybird beetle area, as shown in Fig 7. For

example, this could happen when the ladybird beetle contour is too similar to the surrounding

background. In that case, the detector tends to find only the ladybird beetle patterns that con-

trast with the background, e.g., the orange spots (see Fig 7, first row). In such a case, the lady-

bird beetle sample black patterns are highly correlated to the background intensity, thus

provoking a missing detection and wrong bounding boxes generation.

Other challenging scenarios are related to the size and out of focus of the ladybird beetles in

the scene. Both cases come from randomly taken images in uncontrolled environments (poor

lightning conditions, objects too far from the lens, hand-taken picture with low camera shutter

speed, among others). Under these situations, the saliency map highlighted several random

regions in the image, which sometimes could contain the ladybird beetles or not (see Fig 7, sec-

ond, third, and fifth rows). In opposite, when the ladybird beetle size occupies a significant

portion of the image (macro photo), usually the generated bounding box is incomplete, i.e.,

less than a half of the correct size (see Fig 7, fourth row). In this case, despite the excellent

Fig 7. Unsuccessful performance examples of the image processing module (first stage of the proposed detector)

in different environments. From left to right, original image, saliency map, SLIC superpixels segmentation, Chan-

Vese active contour, and final bounding boxes generated.

https://doi.org/10.1371/journal.pone.0253027.g007
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performance of the saliency map method, the ladybird beetle was not correctly enclosed by the

bounding box. This lousy result is linked to the insufficient number of iterations employed by

the Chan-Vese active contour. We used 50 and 100 iterations for the active-contour model

first and second applications, respectively. These values were enough for most small-medium

samples but insufficient for bigger ones. Except for the last case, the main drawbacks of this

part of the proposed detector are correlated with the saliency-map low performance. As we

mentioned before, this method is the base of the image processing module, and any failure in

its application will interfere with the remaining processes.

Regarding the deep CNN classifier, the main limitation is linked to the data (bounding

boxes) preparation before training the classifier. As we mentioned before, the bounding boxes

contain variable sizes that need to be standardized to a fixed input size in the classification

model. This classifier uses supervised learning and should be retrained at some point in time

to improve the classification performance. Thus, the bounding box labeling and padding tasks

become mandatory during the training process.

Conclusion

We proposed a two-stage approach for the automatic detection of ladybird beetles in random

environment images. First, an image processing module composed of the saliency map, SLIC

superpixels segmentation, and active contour methods allowed us to generate bounding boxes

with possible ladybird beetles. Subsequently, a deep CNN-based classifier determines only the

bounding boxes with ladybird beetles as the final output. The proposed method was validated

on a data set of 2, 300 images from Ecuador and Colombia regions in the iNaturalist project

highlighting an ACC score of 92% and an AUC score of 0.977 for the bounding

box generation and classification tasks, respectively. These successful results enable the pro-

posed detector as a valuable tool for helping specialists in the ladybird beetle detection

problem.

As future work, we plan to improve the image processing module by combining the

saliency map method with an adaptive local pattern analysis (ladybird neighborhood inspec-

tion) towards the correct bounding box generation. In this sense, we will overcome most of

the limitations of this work by experimenting with more extensive ladybird beetle image data-

bases to validate detection performance deeply. We also want to explore the use of deep learn-

ing models in the whole workflow to benchmark the detection performance and determine the

best solution to be implemented in a future mobile device application.
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Data curation: Pablo Venegas, Francisco Calderon, Daniel Riofrı́o, Giovani Ramón, Diego

Cisneros-Heredia.

Formal analysis: Pablo Venegas, Francisco Calderon, Noel Pérez.
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