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Abstract: Paraoxonase 1 (PON1) is an antioxidant enzyme attached to HDL with an anti-atherogenic
potential. It protects LDL and HDL from lipid peroxidation. The enzyme is sensitive to various
modulating factors, such as genetic polymorphisms as well as pharmacological, dietary (including
carotenoids), and lifestyle interventions. Carotenoids are nutritional pigments with antioxidant
activity. The aim of this review was to gather evidence on their effect on the modulation of PON1
activity and gene expression. Carotenoids administered as naturally occurring nutritional mixtures
may present a synergistic beneficial effect on PON1 status. The effect of carotenoids on the enzyme
depends on age, ethnicity, gender, diet, and PON1 genetic variation. Carotenoids, especially astaxan-
thin, β-carotene, and lycopene, increase PON1 activity. This effect may be explained by their ability
to quench singlet oxygen and scavenge free radicals. β-carotene and lycopene were additionally
shown to upregulate PON1 gene expression. The putative mechanisms of such regulation involve
PON1 CpG-rich region methylation, Ca(2+)/calmodulin-dependent kinase II (CaMKKII) pathway
induction, and upregulation via steroid regulatory element-binding protein-2 (SREBP-2). More
detailed and extensive research on the mechanisms of PON1 modulation by carotenoids may lead to
the development of new targeted therapies for cardiovascular diseases.
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1. Introduction

Paraoxonase 1 (PON1) is an enzyme which manifests anti-atherosclerotic properties
due to its ability to inhibit low-density lipoprotein (LDL) oxidation [1]. It also exhibits
the properties of hydrolyzing organophosphate insecticides and a variety of lactones
including homocysteine thiolactone (HCTL) [2]. Therefore, there is an ongoing search for
factors, which could modulate its serum activity. One strategy involves the administration
of exogenous compounds that could increase endogenous PON1 activity. The second
approach is based on the upregulation of gene expression. This could potentially be
conducted at different levels: transcriptional and post-transcriptional (in the nucleus) and
translational and post-translational (in the cytoplasm). This type of modification is analyzed
in a rather limited number of studies, mainly describing modification at the transcriptional,
and rarely at post-translational, levels. Very little research has been conducted on the
epigenetic regulation of PON1 activity.

At the transcriptional level, the factor specificity protein 1 (Sp1) plays an essential
role in PON1 regulation [3]. It can be activated by protein kinase C (PKC) and p44/p42
mitogen-activated protein kinase (MAPK) [4]. P44/p42 MAPK is able to activate another
transcriptional factor, sterol regulatory element-binding protein 2 (SREBP 2) [5]. Some
polyphenols, such as resveratrol, were found to activate the aryl hydrocarbon receptor
(AhR) and stimulate PON1 transcription [6]. Another transcriptional factor, c-Jun, either
induces or suppresses the transcription of PON1 depending on its modulating factors
working through different signaling pathways [7]. Inhibition of transcription factor kappa-
B, which stimulates genes responsible for the production of some inflammatory cytokines,
restores PON1 mRNA levels [8].
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Post-translational modification of PON1 involves N-linked protein glycosylation in
four potential sites (Asn 227 and Asn 270; Asn 253 and Asn 324) [9]. Asn 253 and Asn
324 are most probably the glycosylation sites as they are positioned most superficially on
the protein. Some data indicate that glycosylation of the enzyme is not important for its
hydrolytic activities but for increasing its solubility and stability.

Among the factors which may affect PON1 activity, carotenoids are listed. They were
initially appraised due to their free radical quenching ability [10]. It was soon found that
they reduce lipid peroxidation and protect the membrane from oxidative damage. It has
been suggested that the antioxidant function of carotenoids may also be mediated through
the modulation of PON1 activity and gene expression. While some data on the modulation
of endogenous PON1 activity by carotenoids are available, there is a scarcity of research on
their influence on PON1 gene expression.

The aim of the review is to compare the effect of carotenoids studied so far. It aims
to identify which carotenoids have the strongest effect for consideration in practice when
composing diets for people with cardiovascular diseases. In addition, the study objective is
to present the current state of knowledge on the molecular mechanism of action of these
carotenoids on gene expression and PON1 activity and possibly to indicate the direction of
further research in this field. To the best of my knowledge, a review gathering the data and
analyzing the influence of carotenoids on PON1 status was lacking. The study will add
valuable evidence, which can be useful in atherosclerosis prevention. Understanding the
physiological mechanisms which enhance the enzyme activity, affect epigenetic regulation
and modify the signaling pathways of PON1 transcriptional factors is crucial for the
development of new targeted therapies for cardiovascular diseases.

Exogenous antioxidants are naturally supplied with diets as nutritional mixtures.
From a scientific point of view, in this arrangement, it is difficult to single out compounds
responsible for specific effects. Due to these concerns, a lot of effort has been put into
defining the most relevant chemical compounds responsible for the registered changes
in the nutritional mixtures when specific diets are analyzed. In this respect, the most
valuable studies show the effects of individual dietary components. A preliminary review
of the carotenoid literature shows that there are not many such publications, so in this
review, I refer to all available items, including those on the effect of diet with a mixture of
carotenoids.

2. Properties of Paraoxonase

PON1 (aryldialkylphosphatase, E.C.3.1.8.1) is a calcium ion-dependent enzyme that is
able to hydrolyze lactones, thiolactones, aryl esters, and organophosphate derivatives [11].
It is a glycoprotein formed by 354 amino acids with a molecular mass of 43–47 kDa. Its
three-dimensional structure is that of a six-bladed β-propeller, of which each blade consists
of four strands. Two Ca2+ ions are incorporated into the central part of the tunnel of the
propeller [9]. One plays a structural and the other a catalytic role. In the active site, the
catalytic Ca2+ interacts with Asn 168, 224, 270, Asp 269, and Glu 53. The active site of PON1
also contains histidine, tryptophan, phenylalanine, lysine, and aspartate/glutamine [12].
The enzyme has three cysteine residues at positions 42, 284, and 353. Cys42 and Cys353 form
a disulfide bridge, while Cys284 remains free. The latter is considered to have an important
antioxidant role in protecting LDL against oxidation [1,9]. PON1 is thought to contain
polar residues for high-density lipoprotein (HDL) binding. Most of the PON1 in circulation
is found attached to HDL but some particles are also associated with very low-density
lipoproteins (VLDL) and chylomicrons [13]. PON1 is anchored to HDL by apolipoprotein
A-I, which was shown to stabilize the enzyme and stimulate its lactonase activity [14]. A
part of the beneficial effects of HDL is attributed to the antioxidant properties mediated by
paraoxonase 1 [15].
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2.1. Paraoxonase Family

PON1 is the best-known member of a three-gene family: PON2, PON3, and PON1, lo-
cated in this order on the long arm of human chromosome 7 (q21.22) [16]. The paraoxonase
family was formed by a duplication of one common ancestral gene. PONs are evolutionarily
linked to lactonases, with some overlapping substrates [17]. The name paraoxonase comes
from PON1’s ability to hydrolyze paraoxon, a metabolite of the insecticide parathion [18].
It also degrades another artificial substrate, phenylacetate. The name of PON2 and PON3
is a simple derivative of PON1, based on the evolution of the enzymes rather than their
activities, as PON2 and PON3 are incapable of hydrolyzing paraoxon. Common features in
the whole PON family are the residues maintaining the hydrophobic core of the β-propeller,
the two calcium ions in the central tunnel, and the ‘velcro’ closure [9]. The elements
forming the catalytic site such as the catalytic calcium and its ligating residues, as well as
residues forming hydrogen bonds with calcium ions, and the catalytic histidines are also
highly conserved. Cys284, which is proposed to have an important effect of protecting
LDL from oxidation, is common to the whole PON family. Thus, the active site and the
main catalytic center are maintained among the PON family. Yet, the residues outside the
active site are different among subfamilies. This affects substrate specificity. For example,
one of the presumed glycosylation sites, Asn253, is found in PON1 but not in PON2 and
PON3 [9]. Other residues are most likely specific for each subfamily (such as in the region
of positions 20–50), which can affect the nonhydrolytic activities of the PON enzyme and its
prevalence in different tissues [16]. PON2 gene is widely expressed in a variety of tissues
(brain, liver, kidney, and testis), and it is not released into serum [19]. It is located in the
cell membrane with its active site pointing outside of the cell [14]. In contrast, PON1 and
PON3 mRNA expression and synthesis are limited mainly to the liver and then excreted
to the blood. PON1 and very low levels of PON3 are found in serum bound to HDL
by the hydrophobic N-terminal leader sequence [20]. All PON enzymes have an antioxi-
dant capacity and are known to decrease the risk of atherosclerosis development [21,22].
Despite having that effect, the physiological substrates of PONs remain unknown [23].
Some of the proposed substrates include oxidized 1-palmitoyl-2-arachidonoyl-sn-glycerol-
3-phosphorylcholine (Ox-PAPCP) [24], cholesterol linoleate hydroperoxide [25], oxidized
linoleic acid [26], platelet-activating factor (PAF) [27], and HCTL [2]. It is generally accepted
that paraoxonase has a wide range of biological substrate specificity.

In human serum, PON1 activity predominates. It travels in the blood attached to
the HDL particle and exerts its antioxidant effects. Its ability to inhibit lipid peroxidation,
among other activities, resulted in numerous studies on the association of PON1 with
atherosclerosis and cardiovascular disease. In this review, we focus on PON1, as current
research shows that this paraoxonase family member has the most significant impact on
human pathophysiology. We attempt to assemble evidence on the ability of carotenoids to
modulate PON1 activity.

2.2. Anti-Atherosclerotic Effect of PON1

Many studies support the hypothesis that low PON1 activity is associated with in-
creased oxidative stress, risk of atherosclerosis, and cardiovascular disease. Some prospec-
tive studies such as the Caerphilly Prospective Study, and a study conducted by Bhat-
tacharyya show that not only HDL itself but also PON1 is an independent risk factor for
coronary artery disease [28,29]. PON1 activity was found to be the lowest in patients
after acute myocardial infarction, higher in stable coronary disease, and the highest in
controls [30]. Several mechanisms by which PON1 can delay and reverse atherosclerosis
progression were detected in mice overexpressing PON1 [31] and mice lacking PON1 [32],
as well as in vitro studies on lipoproteins or macrophage cell lines. The anti-atherogenic
mechanisms of PON1 are summarized in Figure 1.
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from mice overexpressing PON1 was even more efficient in the inhibition of LDL oxida-
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Figure 1. The antioxidative and anti-atherogenic mechanisms of PON1 enzyme. Paraoxonase 1
(PON1), lysophosphatidylcholine (LPC), homocysteine—thiolactone (HCTL).

There is a body of evidence proving that PON1 protects LDL and HDL and cell mem-
branes from oxidative modification and inhibits the progression of atherosclerosis [1,33].
It can hydrolyze specific oxidized lipids such as phosphatidylcholine core aldehydes and
oxidized eicosanoids and docosanoids in LDL and the cell membranes [25]. The same
hydrolytic activity of PON1 was observed in atherosclerotic lesions [34] and arterial wall
cells [35]. The inhibition of HDL oxidation by PON1 was shown to preserve the anti-
atherogenic properties of HDL. HDL isolated from mice was able to prevent LDL oxidation,
while HDL from PON1 knockout mice lacked that ability [32]. Furthermore, HDL isolated
from mice overexpressing PON1 was even more efficient in the inhibition of LDL oxidation
than HDL from wild-type mice [31]. These observations are supported by studies on
human subjects. Low activity of PON1 and high levels of lipid peroxides were measured in
patients with metabolic syndrome [36].

PON1 protects macrophages from oxidative stress and stimulates cholesterol efflux.
PON1 can be delivered to macrophages during HDL interaction with the surface of
macrophages, which protects them from oxidative stress [37]. The enzyme inhibits choles-
terol biosynthesis and accumulation in macrophages [38]. It induces the production of
lysophosphatidylcholine (LPC) from phosphatidylcholine, which in turn inhibits the for-
mation of superoxide anions and reduces cell-mediated LDL oxidation [39]. These changes
reduce foam cell formation in macrophages.

It was also found that PON1 has the ability to hydrolyze HCTL, which is a highly
reactive metabolite of homocysteine (a sulfur non-protein amino acid). It is formed in cells
by methionyl-tRNA synthetase in a two-step error-editing reaction, which prevents the
incorporation of homocysteine into proteins. Increased levels of homocysteine result in the
elevation of HCLT. It is considered a risk factor for cardiovascular disease [2]. HCTL is
responsible for the N-homocysteinylation of proteins and lipoproteins, including LDL and
HDL. This process damages their structure and impairs their function [2]. PON1 is able to
detoxify this reactive metabolite.

In addition to inhibiting early plaque formation, PON1 was found to lower oxidative
stress and improve vasomotor function during established atherosclerosis [40].
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2.3. PON1 Polymorphism

The activity of PON1 depends on its genetic polymorphisms, which are responsi-
ble for its almost 40-fold variations. The difference in PON1 protein levels vary up to
13–15-fold [41]. Over 200 single-nucleotide polymorphisms (SNPs) of PON1 in different
regions of the gene were detected [9]. The highest impact of these polymorphisms on the
activity and protein level of the enzyme is attributed to SNPs of the coding region at posi-
tions 192, 55, and the −108 promoter region as presented in Table 1. These polymorphisms
result in different isoforms of the enzyme and a different hydrolytic activity of the enzyme
isoforms towards various substrates. For example, in case of glutamine (Q)/arginine (R)
substitution at codon 192, the Q isoform has a higher hydrolytic activity towards diazoxon
(diazoxonase activity) and the R isoform towards paraoxon (paraoxonase activity) [42].
The hydrolysis rate of another substrate, phenylacetate (arylesterase activity), is the same
for both allozymes [43]. More importantly, PON1 isoforms vary in retarding the oxidation
of LDL. In particular, the Q allele is far more efficient than the R allele in protecting LDL
from oxidation [44]. The leucine (L)/methionine (M) substitution at position 55 results in
different plasma PON1 protein levels. The M allele is associated with a low PON1 plasma
protein level. In addition, the T/C substitution at the −108 promoter region appears to in-
fluence the plasma PON1 protein levels. The low plasma PON1 protein level in PON1M55
may result from linkage disequilibrium with the C-108T allele. In case of the C-108C allele,
PON1 levels are twice as high as in case of the C-108T allele [45].

Table 1. PON1 polymorphisms affecting the enzyme structure and activity.

The PON1 Region The Affected Site Effect of the Polymorphism Ref.

Pr
om

ot
er

re
gi

on

−108C/T polymorphism
(rs705379)

The center of consensus
binding site for Sp1

Effect on gene expression and serum activity:
-Weaker binding of Sp1 in the presence of the

T allele than the C allele
-Modulation of Sp1 binding affects SREBP2,

which upregulates PON1 in the presence
of statins

[46–48]

−162A/G polymorphism
(rs705381)

The potential NF-1
binding site Effect on gene expression and serum activity [46,47]

C
od

in
g

re
gi

on

PON1-Q192R (rs662) Active site

Direct effect on catalytic activity:
The 192R allozyme is

-more efficient in hydrolyzing paraoxon and
chlorpyrifos-oxon, homocysteine thiolactone,

higher affinity to HDL binding

[49–52]

-less efficient in hydrolyzing diazoxon, sarin,
and soman, lower protection against LDL

oxidation.
[33,46,49–51]

-no effect on hydrolyzation efficiency of
phenylacetate [49,50]

PON1-L55M (rs854560)
(Possible linkage

disequilibrium with the
−108 promoter region

polymorphism)

The protein structure

Effect on plasma PON1 protein concentration:
55L allozyme has:

-higher stability, less susceptible to proteolysis
[50,53]

-key role in the packing of the protein [9]

Effect on PON1 activity:
Location of L55M polymorphism in the

neighborhood of two crucial amino acids
(Glu52 and Asp53), which are required for

PON1 activity

[54]

PON1—paraoxonase 1; Sp1—specificity protein 1; SREBP2—steroid regulatory element-binding protein-2;
NF-1—nuclear factor-1.
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Many studies prove an association between PON1gene polymorphisms and cardio-
vascular disease [55,56]; yet in others, this relation is not found [57]. This lack of association
in some observations can be explained, at least in part, by the susceptibility of PON1 gene
expression and activity to different modulating factors. Therefore, a consensus was formed
that PON1 concentration and activity are higher predictors of cardiovascular disease than
the PON1 genotype alone [43]. Furthermore, considering that promoter polymorphisms
are associated with the early onset of coronary artery disease [58], a search had begun to
identify interventions, which could enhance the expression and activity of the enzyme.
Studies show that PON1 can be influenced by pharmacological treatment, environment,
lifestyle, and diet.

2.4. The Influence of Environmental Factors on PON1 Activity and Concentration

In studies on humans, hypolipidemic pharmacological drugs such as statins and
fibrates were shown to modulate PON1 activity. Simvastatin and atorvastatin [48,59,60]
cause an increase in serum PON1 activity. However, a lack of influence of statins on the
enzyme activity was also found in another study [61]. Fibrates (gemfibrozil, fenofibrate,
ciprofibrate) induced PON1 activity in serum and isolated HDL [62–64]. Cigarette smoking
was associated with a decrease in PON1 activity [65].

In search of more natural ways of influencing PON1 activity, research began to focus
on lifestyle interventions, which could affect the enzyme such as physical activity. Many
but not all studies show that a single exercise leads to an increase in PON1 concentration
and activity in the plasma of young men [66–69]. Yet, this increase in activity is not stable.
A decrease or at least a return to basal levels within two hours after exercise was observed.
Training, however, consolidates the changes in PON1 status. The exercise conducted
regularly for 8–10 years improved PON1 activity even at rest [70]. Subjects who undertook
regular physical activity had higher PON1 activity than sedentary subjects [69,71]. This
implies that some mechanisms evoked by physical activity stimulate PON1. Free radicals
released during physical exercise may upregulate antioxidant enzyme expression [72].

It has been suggested that the consumption of red wine or flavonoid-containing
drinks increases serum PON1 activity [73]. Yet, a high dosage of red wine polyphenols
decreased hepatic PON1 activity in mice, even though a lower dosage had a beneficial
effect on the enzyme activity [74]. The consumption of a moderate amount of alcohol
(13–39 g/day) caused an increase in PON1 activity. On the contrary, heavy alcohol drinking
had a detrimental effect on the enzyme [75].

Moreover, environmental factors such as diet and nutrition can affect the regulation of
PON1 at an epigenetic level, causing changes at specific loci, which can modify correspond-
ing phenotypes. Studies concerning this topic are scarce. They have been reviewed by
Mahrooz et al. [76]. An increase or decrease in DNA methylation can result in gene silencing
or overexpression, respectively. An inverse association between methylation levels of PON1
promoter region CpG sites and ARE in adults with metabolic syndrome was described
in a six-month energy-restricted dietary weight-loss intervention [77]. Additionally, this
study showed that dietary antioxidants might enhance the ARE activity by lowering the
PON1 gene methylation. In another study, an association between methylation at two
PON1 promoter CpG sites with body weight and waist circumference was reported, which
proves that PON1 DNA methylation may influence obesity risk. The microRNAs (miRNAs)
are able to inhibit the expression of genes, i.e., PON1 by binding to 3′-UTR of the coding
region of target mRNAs. It was observed that miR-616 negatively regulated the expression
of the PON1 gene and protein level. Moreover, miR-486 was found to correlate inversely
with PON1 activity. The intense continuous exercise reduced circulating miR-486 [78]. This
could potentially explain the rise of PON1 observed at the bout of exercise [68]. Epigenetic
regulation of PON1 is a very promising subject, which calls for further research.
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2.5. The Influence of Various Components of Diet on PON1 Activity and Gene Expression

The effect of diet on many parameters of health maintenance has been a subject of
scientific interest for many years and it is still a current topic. As the methods of research
in medicine and biology are evolving, we are able to investigate more mechanisms on the
cellular and subcellular levels.

The diet has been shown to affect PON1 activity. In a systematic review, Lou Bonafonte et al.
introduced evidence that the Mediterranean diet exerts a protective effect on the en-
zyme [79]. Extra virgin olive oil was found to be particularly effective in increasing
PON1 activity. In vivo, olive oil consumption by mice increased PON1 activity in parallel
to HDL-mediated macrophage cholesterol efflux. Similar effects of olive oil consumption
were observed in healthy humans [80]. Oleic acid was associated with increased HDL
cholesterol levels and PON1 activity, especially in patients carrying the R allele. Further-
more, in a study on mice, the consumption of a diet containing high amounts of olive
oil phenolics increased hepatic PON1 mRNA and protein expression [81]. In addition,
squalene dissolved in virgin olive oil promoted increases in PON1 level with a concomitant
rise in HDL and decreases in reactive oxygen species in lipoproteins and a fall in plasma
malondialdehyde level [82].

Some compounds being part of fruit and vegetables, such as vitamin C and E, were
also found to modify PON1 activity. Vitamin C was shown to preserve the cardio-protective
activity of PON1. Yet, this was not accompanied by restoring HDL ability to prevent athero-
genic modification of LDL [83]. Vitamin C attenuated the inhibitory effect of hypochlorite
on PON1 activity in vitro [84]. Vitamin E was found to improve PON1 activity in patients
with type 2 diabetes [85]. Yet, the effect of vitamin supplementation was not always shown
to be beneficial. A reduction in PON1 activity after a high intake of fruits and vegetables,
which was expected to increase vitamin C and E, was also observed [86]. In general, vitamin
C and E should be supplemented in small amounts. If excess levels of these antioxidants
are achieved, they can have a detrimental effect and result in a rise in oxidation [87].

In addition, other groups of antioxidants acquired from fruit and vegetables, i.e.,
phenolic compounds and carotenoids, were found to be particularly effective in increasing
PON1 activity [88–90]. These nutritional antioxidants may induce PON1 activity through
effects on gene expression, increase in PON1 gene activation, prevention of PON1 inacti-
vation, and binding of PON1 to HDL and increasing its stability [91]. Pomegranate juice
consumption, as a source of phenolic antioxidants, enhanced PON1 activity [92–94]. Other
fruits were not examined as thoroughly, yet raspberry juice and apple juice were shown to
increase PON1 activity in animal studies [95,96]. Not all fruit juices were shown to have
this beneficial effect. In human studies, orange and blackcurrant juices did not influence the
enzyme activity [97]. It is quite well documented that polyphenols are promising antioxi-
dants, which may modulate PON1 activity and gene expression [98]. Quercetin increased
enhanced PON1 hepatic expression and PON1 activity in the liver and serum [99]. Aqueous
extracts of yerba mate, which has a high concentration of polyphenols, can contribute to
the improvement of PON1 levels in individuals affected by overweight or obesity and
dyslipidemia [100]. The positive effect of a diet rich in fruit and vegetables is also associated
with another group of antioxidant components, i.e., carotenoids.

3. Properties of Carotenoids

One of the groups of nutritional agents mentioned above, which is known for its
protective properties against oxidative damage is carotenoids. They are represented by a
wide variety of compounds. Carotenoids are natural pigments with lipophilic properties.
They are synthesized by plants de novo, and so they are administered with a diet, mostly
in fruit and vegetables. These compounds are also distributed in foods of animal origin,
as compounds accumulated from plants, sometimes in a slightly changed form [101].
Carotenoids are transported in human blood attached to plasma lipoproteins, mainly LDL
particles.
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The reason why they may serve as antioxidants is in their structure. All carotenoids
have a polyene backbone consisting of a series of conjugated C=C bonds. This offers an
opportunity for many carotenoids to interact with free radicals and singlet oxygen and
fight oxidative stress. The reactivity of carotenoids varies depending on modifications
to this polyene backbone, such as the number of conjugated double bonds and the addi-
tion of oxygen functional groups [10,71]. Here, in this review, we focus on carotenoids,
which were found to have a protective effect on the cardiovascular system, i.e., α-carotene,
β-carotene, zeaxanthin, astaxanthin, lutein, β-cryptoxanthin, and lycopene. Carotenes
such as α-carotene, β-carotene, and lycopene are transported mainly in the inner part of
LDL. β-cryptoxanthin, lutein, and zeaxanthin are classified as xanthophylls, and they are
transported on the outer surface area of LDL and HDL [102–104]. This specific localization
of carotenoids together with their antioxidant properties allows them to help prevent
atherosclerosis. Major dietary carotenoids are presented in Table 2.

Table 2. Major dietary carotenoids and their common sources.

Chemical Structure Dietary Source
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A study on nearly 400 subjects showed a reduction in the risk of atherosclerosis due
to carotenoids administration [105]. Another study indicates that some carotenoids, i.e.,
β-cryptoxanthin and lutein reduce the risk of acute myocardial infarction [106]. A study
on coronary mortality in 16 countries showed that a diet low in food containing folate
and lutein/zeaxanthin might be an important factor contributing to a higher coronary risk
observed in Central and Eastern Europe [107]. Early atherosclerosis patients had lower
serum concentrations of lutein and zeaxanthin than healthy subjects [108]. In a cohort study
conducted on 3116 Japanese patients, higher levels of serum carotenoid were associated
with lower risks of all-cause, cancer, and cardiovascular disease mortality in Japanese
patients [109]. Diabetic patients with higher serum carotenoid concentrations had fewer
vascular complications [110]. However, the mode of action of carotenoids in vascular en-
dothelial cells is still not fully understood. It has been suggested that these compounds may
activate an HDL-like protective mechanism in endothelial cells. Additionally, carotenoids
protect human lymphocytes from oxidative damage and decrease the risks of some chronic
diseases and degenerative disorders including some cancer types [111]. There is some
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evidence that some of the beneficial effects of carotenoids on the human body are achieved
through increasing paraoxonase activity.

4. The Influence of Carotenoids on PON1 Activity and Gene Expression

In this review, we focus on the research on the influence of carotenoids on PON
and ARE activities of PON1 and PON1 gene expression. Most reviewed literature on
the influence of carotenoids on PON1 focuses on astaxanthin, β-carotene, and lycopene.
These carotenoids are easily accessible and highly available in the diet. Previous studies
show that they have pronounced antioxidant and atheroprotective effects. Astaxanthin
effectively scavenges free radicals, thereby protecting fatty acids and biological membranes
from oxidative damage [112]. Lycopene has a high antioxidant capacity as the β cycle in its
structure is opened [113]. β-carotene is inversely associated with atherosclerosis in various
vascular territories [105]. Table 3 summarizes the results of animal studies, while Table 4
provides an overview of clinical studies on the effect of carotenoids on PON1. Further
description of the studies is supplied in the main text.

Table 3. Overview of animal studies on the effect of carotenoids on PON1 gene expression and PON1
(paraoxonase 1) activities.

Animal Studies

Study Objective Study Protocol Studied Group Results Ref.

The effect of asx on PON Supplementation with 50, 100 and
500 mg/100 g b.w. of asx for 60 days

Hypercholesterolemic
rabbits

Restoration of PON by all
asx doses [112]

The effect of asx on PON
and ovarian damage

Supplementation with 80 mg/kg b.w. of
asx for 14 days

32 female rats in 4 equal
groups: control, induced
ovarian damage, treated

with asx, induced ovarian
damage treated with asx

Increase in PON and
reduction of

ovarian damage
[114]

The effect of lycopene
on ARE

Administration of different doses (5, 10 and
50 mg/kg b.w./day) of lycopene for

30 days
Hyperlipidemic rats Improvement in ARE [115]

The effect of lycopene on
PON

Administration of lycopene for 28 days and
comparison of PON between groups

Non-diabetic rats (7 in the
control group and 7 in the

lycopene group)
Increase in PON

[113]STZ-induced diabetic rats
(7 in the diabetes group

and 7 in the
diabetes-lycopene group)

Restoration of PON

The effects of lycopene or
metformin, alone or in
combination, on PON

Treatment for 35 days. Assessment of PON
in plasma before and after treatment STZ-induced diabetic rats Increase in PON [116]

The effect of treatment
with yogurt enriched with

lycopene, bixin,
lycopene + curcumin,

bixin + curcumin on PON

Administration of antioxidants
individually or as mixtures for 50 days.
Assessment of antioxidants and PON in
plasma before, at 10 days, and at 50 days

of treatment

STZ-induced diabetic rats Increase in PON [117]

The effect of bixin on PON
reduced by

hypocholesterolemia

60 days of hypercholesterolemic diet alone
or with bixin (10, 30, or 100 mg/kg b.w.) or

simvastatin (15 mg/kg b.w.) vs. regular
chow (control)

42 hypercholesterolemic
rabbits divided into

7 groups

Partial prevention of
serum PON decrease [118]

PON—paraoxonase activity; ARE—arylesterase activity; asx—astaxanthin; STZ—streptozotocin.
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Table 4. Overview of clinical studies on the effect of carotenoids on PON1 gene expression and PON1 (paraoxonase 1) activities.

Clinical Studies

Study Objective Study Protocol Studied Group Results Ref.

The effects of asx on PON1 activities Collection of blood samples before, 45, and 90 days
after supplementation, while regular soccer training.

40 young elite soccer players in two
groups (21 asx vs. 19 placebo)

Increase in PON. Interaction effect of asx and
training on PON. Increase in PON1 activity

towards diazoxon after 90 days in the asx group,
and no difference in the placebo group.

[119]

The effect of lycopene on ARE
Treatment with 70 mg lycopene/week. Collection of

serum before and after a 12-week intervention

54 moderately overweight middle-aged
subjects randomized into 3 groups

(lycopene, lycopene-rich diet,
and control)

Increase in ARE in serum and HDL2&3 [120]The effect of a lycopene-rich diet (224–350 mg
lycopene/week) on ARE

Assessment of relationships between the ARE
with the methylation levels of the PON1 gene
transcriptional regulatory region and lycopene

Measurement of ARE and lycopene in plasma, and
PON1 transcriptional regulatory region
methylation before and after a 6-month

energy-restricted dietary weight-loss intervention.

47 obese subjects (46.8% women;
47 ± 10 y.o.; BMI 36.2 ± 3.8 kg/m2) with

metabolic syndrome

Positive correlation with ARE

[77]Increase in PON1 gene expression by inhibition of
PON1 gene methylation

The effects of high and low intakes of vegetables,
berries, and apples (containing lutein,

β-cryptoxanthin, α-carotene, β-carotene) on PON

Consumption of 1 of 4 controlled isoenergetic diets for
6 weeks containing either 815 or 170 g of vegetables,

berries, and apples. Assessment of PON and
carotenoids in plasma before and after the diet.

Healthy men and women (n = 77;
19–52 y.o.) vs. 19 healthy control subjects

Decrease in PON in all groups; increase in
carotenoids in groups on high fruit and vegetable

diets in comparison to baseline
[121]

The influence of Mediterranean meal
(monounsaturated 61% of fat and antioxidants)
vs. Western meal on (saturated 57% of fat) on

ARE and carotenoids

Consumption of meals after a 12-h fast, first the
Mediterranean meal and after a week of the Western
meal. Determination of 0, 2, 4, 7 h postprandial ARE

and total carotenoids level in plasma

8 healthy males Increase in postprandial ARE and total carotenoids
only after Mediterranean-like meal [122]

The impact of consuming 0–3 eggs/d on
zeaxanthin, lutein, and ARE

14 wk crossover intervention. Subjects underwent a
2 wk washout (0 eggs/d) followed by sequentially

increasing intake of 1, 2, and 3 eggs/d for 4 weeks each.
After each period, fasting blood was collected

for measurements.

38 healthy men and women (18–30 y.o.,
BMI 18.5–29.9 kg/m2)

Compared with the intake of 0 eggs/d, intake of
2–3 eggs/d promoted a 20–31% increase in plasma
lutein and zeaxanthin. Compared with the intake
of 1–2 eggs/d, intake of 3 eggs/d resulted in an

additional 9–16% increase in serum ARE

[123]

The effect of increased fruit and vegetable
consumption on carotenoid content (α-carotene,
β-cryptoxanthin, lutein, lycopene) and ARE in

subjects with T2D
1- or ≥ 6-portion/day of fruits and vegetable diet for

8 weeks. Collection of fasting
serum pre- and post-intervention

80 obese (BMI > 30 kg/m2) subjects
(40–70 y.o.) with T2D

Increase in ARE in serum and HDL3, no change in
ARE in HDL2

[88]

β-cryptoxanthin correlation with ARE Positive correlation between change in HDL3
β-cryptoxanthin with change in ARE in HDL3
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Table 4. Cont.

Clinical Studies

Study Objective Study Protocol Studied Group Results Ref.

Determination of the relationship of PON and
ARE with β-carotene, lycopene, lutein, and

zeaxanthin

Measurement of PON and ARE and carotenoids
concentration in serum of subjects on habitual diet

127 Greek subjects (men and women;
diabetic and non-diabetic

equally distributed)

Positive correlation of carotenoids with PON in
subjects with the R-allele of PON1–192

[124]
128 Anglo-Celtic subjects (men and
women; diabetic and non-diabetic

equally distributed)
No correlation of carotenoids with PON

Determination of the relationship of total
carotenoids with PON and ARE

20 months of diet and exercise intervention.
Measurements were taken at baseline and follow-up.

60 Australian Aboriginal subjects
(20 men and 40 women; 16–85 y.o.), 38%

had T2D

Carotenoids and PON1 activities increased. At
baseline: positive correlation with PON and ARE.
At follow-up: no correlation of change in PON1

activities with the change of carotenoids.
[125]

Determination of the relationship of individual
carotenoids (β-carotene, β-cryptoxanthin

lycopene, lutein plus zeaxanthin) with PON
and ARE

At baseline: Positive correlation of all individual
carotenoids with ARE Positive correlation of

lycopene with PON

Determination of relationship of β-carotene and
PON in habitual diet

Assessment of habitual diet by 3-day estimated
food record

388 subjects (194 women and 194 men;
18–75 y.o.) No correlation of β-carotene with PON [126]

Determination of the relationship of β-carotene
and PON in habitual diet

Assessment of habitual diet by 3-day estimated
food record

95 healthy young Finnish volunteers
(24 male and 71 females) Inverse correlation of β-carotene with PON [86]

The effect of tomato juice consumption (rich in
β-carotene, and lycopene) on ARE depending on

PON1-192 polymorphism

Consumption of 330 mL/day of tomato juice for
8 weeks

50 elderly subjects in 2 groups (control
(mineral water) or intervention group

(tomato juice))

Antioxidant status improvement and
LDL-oxidation decrease only in R-allele carriers.

Increase in ARE in intervention group and control.
[127]
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Table 4. Cont.

Clinical Studies

Study Objective Study Protocol Studied Group Results Ref.

The effect of tomato juice consumption (rich in
β-carotene, and lycopene) on PON1 activities

depending on PON1-192 polymorphism
Consumption of 330 mL/day of juice for 2 weeks after

2 weeks of low-carotenoid intake.

20 young healthy non-smoking subjects
were randomized into 2 groups

(consuming either tomato juice or
carrot juice)

Lipid peroxidation decrease only in R-allele
carriers. No effect on PON1 activities

[128]
The effect of carrot juice (rich in β-carotene and
α-carotene) on PON1 activities depending on

PON1-192 polymorphism

No effect on lipid peroxidation regardless of
PON1-192 genotype. No effect on PON1 activities

Modification of the association between serum
concentration of lycopene and oxidative stress

markers and bone turnover markers by
PON1 polymorphism

Measurement of lycopene, oxidative stress markers,
and bone turnover markers in serum 107 women (25–70 y.o.)

PON1 L55M polymorphisms modify the
association between lycopene and NTx. The Q192R
polymorphism modifies the association between
lycopene and BAP. In a subject with RR genotype,

lycopene was associated with TBARS.

[129]

PON—paraoxonase activity; ARE—arylesterase activity; asx—astaxanthin; y.o.—years old; b.w.—body weight; BMI—body mass index; T2D—type 2 diabetes; NTx-N-telopeptide of
type I collagen, a marker of bone resorption; BAP—bone-specific alkaline phosphate, a marker of bone formation; TBARS—thiobarbituric acid-reactive substances.
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4.1. The Influence of Astaxanthin on PON1 Activity

Astaxanthin is a carotenoid pigment synthesized by plants and some bacteria, algae,
and fungi and distributed in some fish such as salmon and trout as well as crustaceans [103,130].
It is an antioxidant, which serves as a free radical scavenger. It protects fatty acids and cell
membranes from oxidative damage [131]. It was shown to reduce lipid peroxidation while
preserving the membrane structure [132].

4.1.1. The Influence of Astaxanthin on PON1 Activity in Animal Studies

PON1 activity was inhibited in parallel to LDL oxidation in the serum of hypercholes-
terolemic rabbits. Supplementation of diet with astaxanthin restored PON1 activity [112].
This effect may be explained by a mechanism that was introduced in a dynamic model
based on the Atlantic salmon system, where the antioxidant was transported in the blood-
stream from LDL and VLDL to HDL [130]. Astaxanthin may have an attachment site near
PON1 in the HDL particle [112]. Due to this location on HDL, it can exert its protective
effect on the enzyme. Even though PON1 activity was preserved by the carotenoid, no
protection of LDL oxidation was registered. This observation may have been related to a
lower PON1/HDL ratio in hypercholesterolemic rabbits in comparison to a control group.
It may also be due to other factors influencing LDL oxidation that are not under the con-
trol of astaxanthin [112]. Kukurt et al. described a protective effect of astaxanthin in a
study on 3-nitropropionic-acid-induced ovarian damage in rats [114]. As the destruction
of ovaries can be explained by an oxidative mechanism, treatment with antioxidants may
decrease the negative changes in structure. Indeed, administration of astaxanthin resulted
in an improvement of histopathological ovarian damage. These beneficial changes were
accompanied by a restoration of PON1 activity with a concomitant rise in total antioxidant
capacity, whole blood reduced glutathione, and HDL, as well as a reduction in total oxidant
capacity and oxidative stress index. These changes speak for the antioxidant properties of
astaxanthin.

4.1.2. The Influence of Astaxanthin on PON1 Activity in Clinical Studies

In human studies, 90 days of carotenoid supplementation in young elite soccer players
during their training program resulted in an increase in PON1 activity and improvement of
the activity towards paraoxon and diazoxon with a concomitant rise in total sulphhydryl
group content [119]. These changes were not observed in a group receiving a placebo.
It was previously observed that exposure of PON1 to hydroxyl radicals and superoxide
anions caused a fall in PON1 activity and the number of PON1-free thiol groups [133]. The
authors suggest that astaxanthin supplementation might increase total sulphhydryl group
content. PON1 has a free cysteine residue (Cys284), which was shown to be important for
the enzyme’s activity [134]. The rise of PON1 activity may be caused by the protection of
free thiol groups in the active center of the enzyme against oxidative damage. In disease
states that lead to a reduction in PON1 activity, astaxanthin was shown to restore PON1
activity. In addition, astaxanthin supplementation may be useful in augmented antioxidant
demand, such as during the training season of soccer players. It may deliver additional
antioxidant protection and increase PON1 activity.

At present, no data exist on the influence of astaxanthin on PON1 gene expression.

4.2. The Influence of β-Carotene on PON1 Activity and Gene Expression

Another carotenoid, β-carotene, is found in palm fruits, squash cultivars, green veg-
etables, carrots, orange-fleshed sweet potato, cantaloupe, mango, and apricot [103].

The Influence of β-Carotene on PON1 Activity and Gene Expression in In Vitro Studies

β-carotene strongly induced gene expression of PON-1 in cultured human endothelial
cell lines [135]. A key role in the formation of initial arteriosclerotic lesions is played by an
inflammatory interleukin-1 beta (IL-1β), which induces endothelial dysfunction [136]. It
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was found that the promoter activities of PON1 were downregulated by IL-1β in HepG2
cells [137]. IL-1β decreased the activity of PON-1, which may have negatively impacted
the protection from oxidative stress in endothelial cells. To prevent the development
of atherosclerosis, it is important to inhibit IL-1β-mediated endothelial alterations and
upregulate protective mechanisms [138,139]. The addition of β-carotene to confluent
endothelial cells treated with IL-1β was able to reverse the effects of IL-1β on the gene
expression of PON-1 via Ca(2+)/calmodulin-dependent kinase II (CaMKKII) pathway
induction. It led to an increase in PON-1 protein expression [135]. Enhanced adherence
of monocytic U937 cells to human aortic endothelial cells was observed after treatment
with IL-1β [140]. The addition of β-carotene, lutein, and lycopene led to a reduction in
the adhesion. In conclusion, β-carotene may induce PON1 activity and gene expression
and reduce endothelial cell dysfunction caused by inflammatory cytokines such as IL-1β
through a mechanism similar to HDL and may reinforce the effects of HDL.

4.3. The Influence of Lycopene on PON1 Activity and Gene Expression

Lycopene is a carotenoid present in tomato, pitanga, pink-fleshed guava, red-fleshed
papaya, and watermelon. The richest source of lycopene is the Asian gac fruit and the
Spanish sarsaparilla [103]. It is considered to possess the most potent antioxidant ac-
tivity of all carotenoids in accordance to the following ranking: lycopene > α-carotene >
β-cryptoxanthin > zeaxanthin = β-carotene > lutein [141]. Its antioxidant effects are sum-
marized in Figure 2.
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Figure 2. Proposed mechanisms of antioxidant effects of lycopene; (original figure, based on data
from [77,120,142–149]).

Lycopene has especially high free radical scavenging properties which can be ex-
plained by a high number of conjugated double bonds with a high singlet oxygen quenching
ability [142]. Experimental evidence shows that lycopene can quench singlet oxygen (102),
scavenge free nitrogen dioxide (NO•2), thiyl (RS•), and sulfonyl (RSO•2) radicals [147].
Due to its ability to catch free radicals and decrease the damage caused by oxidative stress
in lipids, lipoproteins, proteins, and DNA, it was suggested to prevent atherogenesis and
carcinogenesis [143]. Lycopene lacks hydrophilic substituents, and therefore, it is very
hydrophobic. It has been strongly associated with the ability to decrease LDL oxidation
and overall lipid peroxidation [150]. High consumption of tomato products resulted in a
decrease in LDL cholesterol level and an increase in LDL resistance to oxidation in healthy
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normocholesterolemic adults [144]. These atheroprotective changes correlated with an
increase in lycopene, α-carotene, and β-carotene levels measured in serum.

4.3.1. The Influence of Lycopene on PON1 Activity and Gene Expression in Animal Studies

Hypercholesterolemia induces oxidative stress. In a study on hyperlipidemic rats,
lycopene supplementation was shown to restore plasma antioxidant levels measured as
the ferric-reducing activity of plasma (FRAP), which was accompanied by a rise in PON1
arylesterase activity [115]. The PON1 enzyme is thought to be partly responsible for the
rise in FRAP. The observed improvement in PON1 activity may have been achieved by
an upregulation of PON1 gene expression. PON1 expression was previously seen to be
upregulated by transcription factors such as steroid regulatory element-binding protein-2
(SREBP-2), which binds to the promoter region of PON1 [48]. Apart from increasing PON1
activity, lycopene supplementation resulted in a more favorable lipid profile. It improved
the concentration of HDL and caused a reduction in elevated levels of total cholesterol,
triglycerides, LDL, and VLDL [115].

Lycopene supplementation for 1 month resulted in an increase in PON1 activity
in non-diabetic rats [113]. In diabetic rats, lycopene consumption was able to restore
PON1 activity, as its basal level was lower in diabetic rats than in a control group. A
slight increase in the diabetes–lycopene group and a significant increase in the lycopene
group over the control group were found. In another study, the treatment of diabetic rats
with lycopene and metformin-induced PON1 activity, an effect similar to that reached by
metformin or insulin [116]. The combination of these treatments has a potential beneficial
effect of lowering markers of lipid peroxidation, increasing antioxidant defenses, as well
as inhibiting postprandial glycemia and dyslipidemia [116]. Thus, lycopene appears as
a promising therapeutic agent with the potential to be used in combination therapy to
minimize the diabetic complications triggered by glycation and oxidative stress.

4.3.2. The Influence of Lycopene on PON1 Activity and Gene Expression in
Clinical Studies

Supplementation of lycopene, as well as the implementation of a lycopene-rich diet to
a group of moderately overweight middle-aged subjects, resulted in an increase in PON1
arylesterase activity in serum as well as in HDL2 and HDL3 subfractions [120]. PON1
deficient HDL is dysfunctional and not effective in preventing LDL oxidation. Lycopene
may positively affect the structural and functional composition of Apo-AI and thereby
restore PON1 activity in HDL particles.

A positive relationship between arylesterase activity and lycopene was also reported in
a study on subjects with metabolic syndrome following an energy restriction diet [77]. This
association can be explained by the capacity of lycopene to scavenge free oxygen radical
products, which would otherwise engage PON1 activity and decrease it [151]. Furthermore,
lycopene (and other dietary antioxidants) may exert its effects through modulation of
gene expression through regulation of DNA methylation [148]. Methylation of the CpG-
rich region overlapping a gene’s promoter is considered a mechanism for inhibiting a
gene’s expression [149]. This mechanism was confirmed concerning the PON1 gene, as
methylation of the CpG-rich region was found to inversely correlate with PON1 arylesterase
activity. Inverse correlations were also observed between methylation of different CpG sites
and dietary lycopene, vitamin C, and total tocopherol [77]. At the same time, all measured
exogenous antioxidants correlated positively with PON1 arylesterase activity.

In conclusion, lycopene may enhance PON1 expression by inhibiting PON1 gene
methylation in subjects with metabolic syndrome. Furthermore, lycopene supplementation
was shown to restore PON1 activity in cases of hyperlipidemia, diabetes, obesity, and
metabolic syndrome. These changes were found in serum, HDL2, and HDL3. Lycopene
may favorably modify the lipid profiles in the population at risk of cardiovascular disease,
as well as improve the antioxidant composition of lipoproteins and ameliorate antioxidant
defense mechanisms.
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4.4. The Effect of a Mixture of Carotenoids on PON1 Activity and LDL Oxidation

While it is easier to observe the specific effects of individual carotenoids when sup-
plementing single compounds separately, in nature, they exist in combinations. Therefore,
attempts have been made to measure the effect of carotenoids when they are administered
together.

Oxidative lipid damage is a marker of the development of cardiovascular disease.
PON1 hydrolyses oxidized lipids in LDL, retards atherosclerosis [28], and predicts the
development of cardiovascular disease [152]. Similarly, some dietary antioxidants work
in this direction, for example, β-carotene protects lipids from oxidation. In vitro and
in vivo enrichment of LDL with beta-carotene protected them from cell-mediated oxidation.
Surprisingly, this effect was not reached with in vivo treatment with lycopene in this
study [153]. However, the administration of lycopene as tomato oleoresin (which contains
a mixture of exogenous antioxidants) resulted in a strong inhibition of LDL oxidation. This
gives evidence that lycopene may act as an effective antioxidant in synergism with several
other natural antioxidants. It is very likely that, when given as a mixture, carotenoids do not
only act additively but even synergistically, potentiating each other’s effect [141,154]. This
observed effect of higher antioxidant activity of carotenoids, when supplied as mixtures,
may be associated with the specific positioning of different carotenoids in membranes [141].
A single oral supplementation of alpha-tocopherol, beta-carotene, lycopene, canthaxanthin,
and lutein protected LDL polyunsaturated fatty acids (PUFA) and their cholesterol moieties
against oxidative modifications [155]. It has been suggested that the protection from
oxidative damage and the associated cardiovascular disease is best achieved by natural
antioxidants found in fruit and vegetables.

4.4.1. The Influence of a Mixture of Carotenoids on PON1 Activity in Animal Studies

PON1 activity has been reported to be lower in subjects with type 2 diabetes [156].
Two carotenoids, lycopene and bixin, supplemented individually increased PON1 level
and HDL in streptozotocin-induced diabetic rats [117]. The treatment of rabbits on a hypoc-
holesterolemic diet with bixin alone resulted in partial prevention of serum PON1 activity
decrease [118]. Adding curcumin to lycopene or bixin led to an even more pronounced
effect of decreasing biomarkers of carbohydrate and lipid disturbances, increased HDL lev-
els, decreasing oxidized LDL, and alleviating oxidative stress [117]. Therefore, combining
the two antioxidants resulted in a reduction in cardiovascular risk.

4.4.2. The Influence of a Mixture of Carotenoids on PON1 Activity in Clinical Studies

In a randomized controlled trial on subjects with type 2 diabetes, increasing fruit and
vegetable intake for 8 weeks resulted in a rise in carotenoids (α-carotene, β-cryptoxanthin,
lutein, lycopene) in serum, HDL2, and HDL3, which was accompanied by an increase in
PON1 activity in serum and HDL3 [88]. The potential of a high fruit and vegetable diet rich
in carotenoids to increase PON1 activity is especially valuable, as PON1 improves the anti-
atherogenic mechanisms of HDL and helps to fight the potential negative complications of
type 2 diabetes. A positive correlation was found between change in HDL3 β-cryptoxanthin
and change in HDL3–PON1 activity, which further supports the idea of using carotenoids
to induce the activity of PON1. Yet, this effect is not always observed and depends
on the detailed conditions of the study. The consumption of fruits and vegetables for
6 weeks in a group of healthy subjects resulted in a decrease in PON1 activity despite
an increase in carotenoids [121]. Another study showed that postprandial PON1 activity
raised only after a Mediterranean-like meal together with the increase in carotenoids. On
the contrary, the consumption of Western-like meal did not affect postprandial PON1
activity or carotenoids [122]. The effect of dietary modification on carotenoids and PON1
activity in healthy individuals was also assessed by DiMarco et al. While consumption of
2–3 eggs/day increased plasma lutein and zeaxanthin and caused improvements in HDL
function, the intake of 3 eggs/day had the additional beneficial effect of inducing PON1
activity [123].
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Carotenoids were found to exert their antioxidant effect by the protection of PON1. Yet,
the level of PON1 activity preservation by the studied compounds varied in the observed
populations. PON1 activity’s correlations with β-carotene, lycopene, lutein, and zeaxanthin
were found in Greek but not in Anglo-Celtic subjects [124]. Yet, a different dietary intake
of fruits and vegetables, which transferred to a different baseline level of carotenoids,
was registered in these two groups, which could influence the outcome. These results
also suggest that ethnicity may determine the influence of carotenoids on PON1 activity.
Possibly, other factors such as food sources of carotenoids or different preparation methods
may affect this relationship. In particular, olive oil usage with vegetables, which was
registered to be higher in Greek subjects, may be a confounding factor due to its protective
activity towards PON1. Virgin olive oils increased PON1-associated specific activities in a
randomized study [157]. Furthermore, after stratification, the observed relationship was
significant only in subjects with the R-allele of PON1-192 polymorphism [124].

In other studies, the influence of PON1 gene polymorphism on the modulation of
antioxidant activity by dietary antioxidants was also noted. A higher intake of oleic acid
was related to an increased PON1 activity only in the PON1-192 RR genotype group [158].
Furthermore, in a study on elderly volunteers, where antioxidant protection offered by
components of tomato juice (especially β-carotene and lycopene) was more advantageous
in subjects with the R-allele [127]. PON1 activity increased in all volunteers, including the
control group. However, antioxidant status improved and LDL-oxidation decreased only
in R-allele carriers but not in the QQ genotype group. The same group of authors observed
the effect of tomato (as a source of β-carotene and lycopene) and carrot juice (as a source
of β-carotene and α-carotene) consumption on PON1 activity and lipid peroxidation in
healthy young volunteers for 2 weeks preceded by 2 weeks of low-carotenoid intake. In
this setting, as opposed to the previous study, neither of the juices affected PON1 activity.
However, tomato juice consumption resulted in a reduction in lipid peroxidation in R-
allele carriers in comparison to QQ subjects. Carrot juice did not affect lipid peroxidation
regardless of the PON1-192 genotype [127]. Again, the QQ homozygous subjects did not
gain any additional antioxidant protection of the lipids with this nutritional intervention.
These results suggest that there may be a higher potential for improving the antioxidant
defense of PON1 and protection from atherosclerosis through the modulation of HDL
function by using dietary antioxidants in subjects with R-allele than in the QQ-genotype.
Interestingly, it is the PON1 isoenzyme corresponding to the RR genotype that has a low
hydrolyzing activity towards lipid hydroperoxides [159]. Additionally, given that in some
populations, subjects of the RR genotype or with R-allele were shown to be at increased
risk of coronary artery disease [55,56], it would be indeed very valuable to find ways of
enhancement of PON1 activity, particularly in these individuals. PON1 polymorphism
modifies the effect of carotenoids on different diseases related to oxidative stress, not
necessarily related to atherosclerosis. The distribution of PON1 polymorphism is known
to vary between different populations. For the PON1-192 polymorphism, the R-allele was
most widely distributed among Mexican (51.7–43.7% depending on the ethnic group) [160],
Japanese (65.2%) [161], and Chinese (64.8%) [162] people. Among the Mexican population,
the Mestizos have the highest frequency of the RR genotype. Important differences were
reported after the comparison of the Mexican and Asian populations to Caucasians. The
lowest R-allele frequency was observed in German (22.5%) [163], British (29%) [43], and
French (29%) [164,165] populations. Taking into account the allele distribution frequency
may help assess the target population, in which carotenoid supplementation improves
antioxidant status and limits lipid peroxidation. Another area in which carotenoids may
be useful is the osteoporosis risk attenuation. Yet this effect may also be affected by PON1
polymorphism. High serum lycopene was associated with lower bone resorption markers
only with subjects with the LL genotype and Q allele [129]. Dietary interventions may be a
therapeutic option, applied especially in groups where they offer the greatest advantage.
Further research should be encouraged to identify these groups.
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In a study on a cohort of 60 Australian Aboriginal people, PON1 arylesterase activ-
ity correlated with total carotenoid concentration, as well as the individual carotenoids
β-carotene, lycopene, cryptoxanthin, and lutein plus zeaxanthin [125]. In addition, corre-
lations of paraoxonase activity with plasma total carotenoids concentration, due mainly
to a strong correlation with lycopene concentration, were found. Dietary and lifestyle
intervention in this study increased PON1 activity, homocysteine, and carotenoid con-
centration. Change in PON1 activity correlated with the change in HDL cholesterol, but
the increased HDL cholesterol could not account for all PON1 activity rise. Correlation
between carotenoid concentration and PON1 activity were detected at baseline and after
the intervention. Yet the authors were not able to find a correlation between change in
carotenoids and change in PON1 activity. Not all studies prove that carotenoids influence
PON1 activity. Ferre et al., in a study on 388 individuals, found no correlation between
β-carotene intake and PON1 activity [126]. The participants of this study were randomly
selected with a wide age range (18–75 years) with an equal proportion of men. Kleemola
et al. describe an inverse relationship between β-carotene and PON1 activity, but the vol-
unteers in this study were young and healthy university students and employees, mostly
women [86]. These conflicting results can be explained, at least in part, by differences in
the studied populations.

4.4.3. Conclusion on the Effect of a Mixture of Carotenoids on PON1 Activity

In most of the studies, supplementation of a mixture of carotenoids in their natural
form with food increases PON1 activity in serum and/or HDL3. Studies focused on the
determination of correlations of individual mixtures of carotenoids with PON1 activity sug-
gest that the relationship between these antioxidants exists only in some populations. While
this is observed for most carotenoids and carotenoid mixtures, β-carotene exceptionally
shows no correlation or even an inverse correlation with PON1 activity. PON1-192 polymor-
phism was found to modify the effect of carotenoids on antioxidant status improvement,
lipid peroxidation, LDL-oxidation, and bone turnover markers.

5. Conclusions

PON1 has been shown to prevent the development of atherosclerosis. Excessive oxida-
tive stress can have a detrimental effect on the enzyme. Evidence exists that carotenoids,
among other exogenous antioxidants, possess protective activity over PON1. Their ben-
eficial effects were often shown to depend on the length of time of consumption, the
administered dosage, and the type of carotenoid or carotenoids used.

Lycopene is the most effective antioxidant agent among all carotenoids. An assumption
can be made that it may also have the most pronounced effect on PON1 activity. Yet,
comparative studies in this respect are very scarce. No proof of the superiority of one
carotenoid over another was found so far. In a study comparing the effects of lycopene or
bixin on PON1 activity, no difference was shown, though both compounds increased the
enzyme activity. Another one comparing the effects of tomato juice (source of β-carotene
and lycopene) and carrot juice (source of β-carotene and α-carotene) showed no effect
on PON1 activity. Comparisons conducted so far rather point to higher effectiveness of
carotenoids when they are supplied as mixtures of antioxidants rather than separately.

This is in line with the developing interest in functional foods. Researchers, as well
as consumers, are now searching for food, which has value beyond its basic nutritional
properties but is rather designed to prevent certain chronic diseases. Carotenoids can
also be administered with naturally occurring fruits and vegetables, dietary supplements,
or food additives. The research should be oriented toward identifying populations that
will benefit the most from their supplementation. So far, intrinsic factors such as PON1
polymorphism, ethnicity, age, and gender were found to determine the effect of carotenoids
on enzyme activity.

The review encountered several limitations. There were heterogeneous population
characteristics among the studied subjects. The origin, form, or mode of administration
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of carotenoids may have influenced the outcomes, which was not considered when com-
paring the effects of the studies and should be a subject of further investigations. Most
of the studies were not placebo-controlled. In fact, in case of research concerning fruits
and vegetables or juice consumption studies involving placebo are difficult to design. Ex-
periments on larger study groups, with prolonged observations involving randomized
controlled trials, are needed to further investigate the role of carotenoids on PON1 activity
and gene expression. Studying the interactions between the PON1 gene and its epigenetic
regulation may result in finding new possibilities for favorable modifications of the enzyme
by therapeutic agents or lifestyle interventions.

Future research on the influence of carotenoids on PON1 activity should develop
in two directions. One approach should be based on studying the effects of various
carotenoids and their mixtures, forms, doses, and administration methods in the search
for those most advantageous, contributing to the highest activity of PON1. Care should be
taken to design high-quality, randomized controlled intervention studies on larger study
groups, with prolonged observations. The other approach should be more mechanistic. It
should aim at explaining the physiological mechanisms, which stimulate PON1 activity by
exogenous antioxidants such as carotenoids. The research should aim at understanding the
very complex pathways up- and downregulating PON1 gene expression. In addition, the
area of epigenetic modification of PON1 by carotenoids should be explored, especially since
the first observations are very encouraging. Studying the interactions between the PON1
protein and its epigenetic regulation may result in finding new possibilities for favorable
modifications of the enzyme by therapeutic agents or lifestyle interventions.

While many issues regarding the effect of carotenoids on PON1 activity still require
further investigation, evidence gathered in this review speaks for the existence of a positive
relationship between these antioxidants. Carotenoids supplementation may help modulate
PON1 antioxidant and anti-inflammatory effects and increase the enzyme potential to
preserve lipoproteins from oxidation and prevent cardiovascular diseases.
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