
© The Author(s) 2020. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Cerebral Cortex, July 2020;30: 4220–4237

doi: 10.1093/cercor/bhaa050
Advance Access Publication Date: 26 March 2020
Original Article

O R I G I N A L A R T I C L E

Olfactory Influences on Visual Categorization:
Behavioral and ERP Evidence
Thomas Hörberg1,2, Maria Larsson1, Ingrid Ekström2,3, Camilla Sandöy1,
Peter Lundén1 and Jonas K. Olofsson1

1Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Sweden, 2Department of
Linguistics, Stockholm University, Sweden and 3Aging Research Center (ARC), Karolinska Institute, Sweden

Address correspondence to Thomas Hörberg, Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Frescati Hagväg 9A, SE-114 19,
Sweden. Email: thomas.hoerberg@psychology.su.se

Abstract
Visual stimuli often dominate nonvisual stimuli during multisensory perception. Evidence suggests higher cognitive
processes prioritize visual over nonvisual stimuli during divided attention. Visual stimuli should thus be disproportionally
distracting when processing incongruent cross-sensory stimulus pairs. We tested this assumption by comparing visual
processing with olfaction, a “primitive” sensory channel that detects potentially hazardous chemicals by alerting attention.
Behavioral and event-related brain potentials (ERPs) were assessed in a bimodal object categorization task with congruent
or incongruent odor–picture pairings and a delayed auditory target that indicated whether olfactory or visual cues should
be categorized. For congruent pairings, accuracy was higher for visual compared to olfactory decisions. However, for
incongruent pairings, reaction times (RTs) were faster for olfactory decisions. Behavioral results suggested that incongruent
odors interfered more with visual decisions, thereby providing evidence for an “olfactory dominance” effect. Categorization
of incongruent pairings engendered a late “slow wave” ERP effect. Importantly, this effect had a later amplitude peak and
longer latency during visual decisions, likely reflecting additional categorization effort for visual stimuli in the presence of
incongruent odors. In sum, contrary to what might be inferred from theories of “visual dominance,” incongruent odors may
in fact uniquely attract mental processing resources during perceptual incongruence.
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Introduction
It is commonly assumed that visual impressions have an
especially important role in human perception and cognition.
This notion has a long history; for example, Aristotle wrote
that vision “in its direct effects, is the superior sense” (Aristotle
2010). In a similar vein, Immanuel Kant postulated vision to
be the noblest of all the senses, because it “has the widest
sphere of perception in space” (Kuehn 2006). A strong emphasis
on visual processing is also present in the neurocognitive

literature. For more than 40 years, experiments have shown
that processing of visual stimuli “dominates” other senses
in multisensory perception (e.g., Colavita 1974; Sinnett et al.
2007; Koppen and Spence 2007a). In a pioneering study, Colavita
(1974) found that auditory stimuli often are neglected when
presented concurrently with visual stimuli. This effect that
has been replicated in more recent studies (e.g., Sinnett et al.
2007; Koppen and Spence 2007a). Similarly, in the “McGurk
effect,” the perception of speech sounds is influenced by
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incongruent visual–articulatory information (McGurk and
MacDonald 1976; Traunmüller and Öhrström 2007). In visual–
tactile multisensory decisions, participants rely more on visual
than tactile information (e.g., Welch and Warren 1980) as
visual stimuli distract from concurrent tactile stimulation
(Hartcher-O’Brien et al. 2010). Visual input thus appears to
be favored in multisensory perception. Higher neurocognitive
processes also appear to prioritize visual over nonvisual
stimuli. When attention is divided between visual and auditory
channels, cortical activity in terms of ERPs indicates that also
response selection—a higher cognitive process only indirectly
related to perceptual processing—is impaired for auditory but
not for visual decisions (Falkenstein et al. 1991; Hohnsbein et al.
1991). However, some studies have also found auditory or tactile
stimuli to dominate visual stimuli either under highly specific
conditions (e.g., Shams et al. 2000; Ernst and Banks 2002; Repp
and Penel 2002; Ngo et al. 2011; Robinson and Sloutsky 2013),
in children (e.g., Robinson and Sloutsky 2004) or in specific
subpopulations (Li et al. 2019).

On the one hand, the “visual dominance” effects have been
suggested to stem from a sensory-level advantage of visual input
over other sensory modalities, either due to the visual sen-
sory channel having priority over other sensory channels (e.g.,
Colavita 1974; Colavita et al. 1976; Colavita and Weisberg 1979)
or because of greater attention-capturing qualities or greater
salience of visual stimuli in comparison to stimuli in other
modalities (e.g., Koppen and Spence 2007a). Others have, on the
other hand, suggested that visual dominance results from an
attentional bias towards visual input (e.g., Posner et al. 1976;
Sinnett et al. 2007). Posner et al. (1976) suggested that in order to
compensate for the fact that visual stimuli are less alerting than
other stimuli, selective attention is by default directed towards
visual stimuli, resulting in less attentional resources to other
sensory modalities. More recently, visual dominance has been
suggested to be a consequence of the visual system actively
inhibiting nonvisual processes (Spence et al. 2012).

Olfaction provides an interesting test of the visual domi-
nance framework. Although less well-investigated than “higher”
senses, olfaction has been suggested to mediate powerful alert-
ing cues to attract attention and enable processing in other
senses (Herrick 1933). This alerting capacity has more recently
been theorized as the defining feature of olfaction. In partic-
ular, the olfactory system might be particularly sensitive to
contextually inappropriate or novel odors, which signal poten-
tially hazardous chemicals in the environment (Köster et al.
2014). Incongruent odor cues might therefore attract attention
and thereby provide disproportional influence over vision (i.e.,
dominance). While the awareness of an ambient odor can be
effectively eliminated by engaging in a demanding visual per-
ception task (Forster and Spence 2018), no previous study has
directly compared how olfaction and vision compete for pro-
cessing resources under conditions of equal task relevance. Prior
research shows that congruent visual information facilitates
olfactory-based detection (Gottfried and Dolan 2003; Olofsson
et al. 2013, discrimination (Dematte et al. 2008) and identifica-
tion (Olofsson et al. 2013; Höchenberger et al. 2015) but congru-
ent olfactory information similarly facilitates visual-based iden-
tification (Seigneuric et al. 2010; Zhou et al. 2010) and motion
perception (Kuang and Zhang 2015).

In this preregistered study (Hörberg and Olofsson 2018,
osf.io/7qnwu/), we tested the generality of visual dominance
by assessing task interference across olfactory–visual sensory
channels. We posited that perceptual dominance would involve

a pattern of “asymmetric” activation and inhibition between
sensory systems due to the salience or alerting effects of
the dominant sensory input (Spence et al. 2012). We further
assumed that perceptual dominance is modulated by selective
attention in that successful processing in the dominated
modality would require additional resources to overcome
interference from dominant cues (e.g., Posner et al. 1976; Sinnett
et al. 2007; Koppen and Spence 2007a). We devised a bimodal
odor–picture categorization task with a delayed auditory target.
Participants categorized familiar objects (lemon, pear, lavender,
lilac) as fruits or flowers. The task was designed to be rapidly and
accurately performed based on either olfactory or visual cues,
following previous work (Olofsson et al. 2012, 2014). On each trial,
an odor and a picture were simultaneously presented. After a
short delay, these cues were followed by a tone that indicated
whether the fruit/flower decision should be based on the odor
or the picture. That is, in order to provide ample time for sensory
processing of both odors and pictures (Olofsson et al. 2014, 2018),
the tone needed to make a response decision was delayed.
In order to engage competition for processing resources, the
odor–picture pair was incongruent on half of the trials (e.g.,
lemon odor, lavender picture). We assumed that when visual
and olfactory stimuli activate two conflicting representations,
the dominant sensory system will be less vulnerable to such
cross-modal distraction and retain a relatively high behavioral
performance. Incongruent stimuli in the dominant sensory
modality should interfere more with the nondominant modality
than vice versa, resulting in a relative behavioral advantage
during the incongruent condition for decisions in the dominant
modality (see Fig. 1).

Although response decisions were linked to a delayed,
auditory stimulus, we hypothesized that visual-based decisions
should be overall faster and/or more accurate than olfactory-
based decisions. Prior results have shown that such odor
decisions triggered by auditory targets involve a reactivation
of olfactory-specific cortical pathways in the orbitofrontal and
the anteromedial temporal cortex and lead to less rapid and
accurate responses compared to visual decisions (Olofsson et al.
2014). In Figure 1, which shows hypothetical outcomes, this
general response advantage for visual stimuli over olfactory
stimuli would be observed as a main effect of modality (upper
panel). Based on the vast literature on visual dominance, we
further assumed that if visual processing dominates olfactory
processing, incongruent visual stimuli should interfere more
with olfactory categorization than incongruent olfactory stimuli
would interfere with visual categorization (middle panel).

If, on the other hand, olfactory processing dominates visual
processing, incongruent olfactory stimuli should interfere more
with visual categorization than vice versa (lower panel). In other
words, a perceptual dominance account would predict an inter-
action effect between congruence and modality, and this would
be observed in either reaction times (as illustrated with hypo-
thetical bar plots in Fig. 1, right panel) or in response accuracies.
Congruent cues served as our control condition.

We also investigated cortical responses time-locked to the
presentation of the auditory target, using ERPs. This would allow
us to draw further conclusions regarding the cortical processing
sequence underlying perceptual dominance. We were interested
in ERP effects that would correspond to behavioral effects and
thereby aid interpretation. Further, we explored the notion that
perceptual dominance involves asymmetric inhibition between
perceptual systems. We hypothesized that if perceptual dom-
inance is a consequence of asymmetric inhibition, successful
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Figure 1. Illustration of how sensory dominance is conceptualized. Left panel: Congruent visual–olfactory stimuli (e.g., lilac picture and lilac odor) lead to a bimodal
activation of the same lilac representation under assumptions of no dominance, visual dominance, or olfactory dominance. Middle panel: Incongruent visual–olfactory
stimuli (e.g., pear picture and lilac odor) lead to a competitive activation, resulting in between-modality inhibition of the two representations. Under no dominance,
inhibition strength is symmetric, resulting in an equal interference effect on behavioral results. Under visual dominance, the olfactory representation is to a greater

extent inhibited by the visual representation, resulting in delayed olfactory decisions. Under olfactory dominance, on the other hand, the olfactory representation
has a stronger inhibitory effect on the visual representation, resulting in delayed visual decisions. Right panel: Hypothesized response times corresponding to each
dominance assumption.

categorization of stimuli in the dominated sensory channel
should require additional attentional resources in order to com-
pensate for the strong interference effect of the incongruent
input in the dominating channel.1 The allocation of attentional
resources during stimulus categorization has been linked to the
P300 ERP response, a positive, centro-parietal or centro-frontal
wave around 300-ms poststimulus onset (e.g., Kutas et al. 1977;
Picton 1992; Sutton et al. 1965; Verleger 1997; and Polich 2011
for a review). Stimulus categorization involves the integration
of external stimuli with working memory representations, a
process that is mediated by attention (Kok 2001). It has been
suggested that P300 amplitude reflects the attentional demands
of the categorization task (Kok 2001), which, in turn, co-occurs
with inhibition of task-unrelated activity (Polich 2007). In the
context of the present study, categorizing stimuli during cross-
modal interference can therefore be expected to result in an
enhanced P300 wave. Further, more attentional resources might
be required to inhibit the sensory representation in the domi-
nant sensory system. This should result in a more pronounced
P300 wave during categorization in the nondominant sensory
channel.

In addition to the ERP response to the auditory target, we
also analyzed ERPs time-locked to bimodal cue presentation,
thereby investigating the cortical response to congruent versus
incongruent stimulus processing (i.e., the N400 response, see,
e.g., Mudrik et al. 2010). However, as these analyses are not
crucial for our research questions, they are presented in the
Supplementary Materials.

1 See Supplementary Materials for an extended discussion regarding the
neurophysiological processes underlying the experimental task and
the predicted ERP effects.

Materials and Methods
Participants

Participants were recruited at Stockholm University via online
advertisements. Participation was compensated with either gift
vouchers worth 200 SEK or course credit. Power analyses based
on behavioral and ERP pilot data and simulations (see Supple-
mentary Materials) showed that a sample size of 40 individuals
would be sufficient (power > 0.8) even for small effect sizes
(standardized βs = 0.2). The initial sample therefore consisted of
46 healthy adults who reported to have normal to corrected-
to-normal vision and a normal sense of smell, and who were
screened for their ability to correctly identify the four stimulus
odors. We excluded data from 10 participants who had less
than 75% correct trials in either the congruent or incongruent
conditions and data from 1 participant with missing background
data. In the analyses of the behavioral data, the effective sample
size therefore consisted of 35 individuals (M age, 31.3 years;
range, 19–59 years, 16 females). In the ERP data analyses, data
from an additional five participants was also excluded due to
EEG artifacts, resulting in a sample size of 30 individuals (M age,
32.3 years; range, 19–59 years, 14 females). In order to preserve
statistical power, we chose to keep these five participants for
behavioral analyses. However, the results of these analyses also
held with these participants excluded. All participants gave
written informed consent in accordance with the Declaration of
Helsinki. The study was approved by the regional ethics board
2014/2129-31/2.

Stimuli

The stimuli consisted of four visual and four olfactory objects
belonging to the categories fruit (lemon and pear) and f lower
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(lavender and lilac). Odors were presented with an olfactometer
that was controlled by the stimulus computer. We used 1–3 ml of
odor essences and oils from Stockholms Aeter and Essencefabrik
AB (pear “päronessens” and lilac “syrenolja”) and Aroma Cre-
ative (lemon “citron” and lavender “lavendel”).2 The odor iden-
tification and rating tasks indicated that the odors were easy to
identify and perceived as similar in intensity, pleasantness, and
specificity but differed in edibility (see Supplementary Mate-
rials). The pictures were presented on a computer screen and
consisted of photographed images that were matched in size,
brightness, and hue. All pictures were 10.5 cm high (subtending
6.01◦ vertical visual angle at a 1-m distance). The lavender and
lilac pictures were 5.5 cm wide (3.15◦ horizontal visual angle),
and the lemon and peak pictures were 8 cm wide (4.58◦ horizon-
tal visual angle). The auditory targets consisted of two 0.5-s-long
sinus tone that were presented in earphones. Tone amplitudes
were adjusted for tone loudness. The low tone consisted of a
630-Hz tone with 60.8 dB and the high tone of 1250 Hz tone with
62.2 dB.

Procedure

The experiment was conducted in brightly lit and well-
ventilated olfactory testing room at the Gösta Ekman Laboratory,
Department of Psychology, at Stockholm University. Participants
were informed about the experiment and that they could
abort it at any time. They were seated at a 1-m distance
from the stimulus computer screen. Participants performed
a training protocol in which they identified the experimental
stimuli. Participants also performed perceptual odor ratings
(see Supplementary Materials for details).

In the main experimental task, participants categorized
visual or olfactory stimuli as fruit or flower. In order to
investigate modality dominance, we used a categorization task
with cross-modal interference. Visual and olfactory stimuli were
presented concurrently in order to achieve a simultaneous
bimodal percept (see below for details). On congruent trials,
the same visual and olfactory objects were used (e.g., the
picture and odor of pear), yielding a total of four different odor–
picture pairings. On incongruent trials, objects from each of
the two categories were used (e.g., the picture of pear and
the odor of lilac), resulting in eight different odor–picture
pairings (see, e.g., Olofsson et al. 2012, 2014, for a similar
protocol). Importantly, in order to remove bias due to processing
speed differences between visual and olfactory perception, the
auditory target cues that informed about the object target
(i.e., picture or odor) were delayed by a varying interval of
1000–2000-ms poststimulus offset. This allowed for statistical
analyses of the possible effect of lag time. Further, the cue
onset timing and the delayed auditory target minimized the risk
that sensory processing speed would influence the results (see
Supplementary Materials). A categorization trial is illustrated in
Figure 2.

Each trial begun with the presentation of the odor. First, a
black fixation cross appeared for 1500 ms in the center of the
screen. It indicated that it was time to exhale and prepare to
sniff. Following a 200-ms blank screen, a sniff cue (red fixation
cross) appeared. The odor was simultaneously released by the
olfactometer. At 400 ms after olfactory stimulation (and sniff

2 No precise chemical information regarding these products are provided
by the manufacturers.

cue) onset, the picture appeared in the center of the screen.
It was presented together with the odor for 1500 ms. In other
words, pictures were presented with a lag of 400 ms relative
to the olfactometer trigger. This was done in order to com-
pensate for the processing time difference between visual and
olfactory stimuli. Whereas visual detection RTs are on average
about 300 ms (e.g., Collins and Long 1996; Amano et al. 2006),
olfactory detection RTs are around 800 ms when following the
current protocol (Olofsson et al. 2013, 2014). Also visual ERPs
occur about 300–400 ms before olfactory ERPs (Geisler and Polich
1994; Alexander et al. 1995; Pause et al. 1996; Romero and Polich
1996). Taken together, these findings are highly suggestive of a
350–500-ms delay in olfactory processing times and prompted
our 400-ms odor–picture lag time. However, as our dependent
measures (ERPs and RTs) were linked to the onset of a delayed
auditory target stimuli, the exact timing of the cue onset should
not be critical.

After stimulus presentation, the screen turned blank for
1000–2000 ms. Following this delay, participants were presented
with the target cues (i.e., low/high sinus tone, presented together
with a black fixation cross at the center of the screen) and per-
formed the categorization task. The fixation cross was flanked
by two text boxes that reminded about the button assignment
(i.e., whether the left button was used for fruits and the right
for flowers or vice versa). The position of the boxes (left vs.
right) corresponded to the button assignment. The task was
performed by pressing either the leftmost or the rightmost
button of a four-button response box. Participants were encour-
aged to respond as quickly and accurately as possible. The
four possible combinations of tone and button assignment were
counterbalanced across participants. Each trial ended with a
delay (minimum 1000 ms) that ensured that at least 10 s had
passed since the start of the trial.

Participants conducted 128 trials, 2 (congruence) × 2 (modal-
ity) × 2 (category) × 2 (stimuli) × 8 (repetitions), evenly dis-
tributed across 4 blocks. In the incongruent trials, the target
stimulus object (i.e., the sensory object to be categorized) co-
occurred with either of the two incongruent stimuli equally
often (e.g., pear odor co-occurred with lilac and lavender pictures
on an equal number of trials). Trial presentation order within
a block was randomized. At the beginning of each block, a
visual display informed that the next block was about to
start. The block started with a button press. In order to get
familiarized with the task, participants performed a training
session consisting of 16 trials, 2 (congruence) × 2 (modality) × 2
(category) × 2 (stimuli), before the actual experiment started. In
the training trials, but not the experimental trials, the sensory
modality to categorize was displayed on the screen (directly
above the fixation cross, see Fig. 2), in order for the participants
to learn the meaning of the target tones. Participants were
encouraged to take short breaks in between blocks. They were
told to avoid blinking and moving from the time the sniff cue
was presented to the time of their response.

Apparatus

Odors were presented birhinally with a custom-built, continuous-
flow olfactometer described in detail in Lundström et al. (2010).
The olfactometer was controlled using experimental PsychoPy
software through a parallel port. In order to evaluate the
timing of odor presentation in our experimental setup, we
performed measurements of the temporal performance of
the olfactometer (presented in detail in the Supplementary
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Figure 2. Trial structure of the categorization task. During training trials (but not in experimental trials), the object modality to be categorized was also displayed on

the final screen, written above the fixation cross, in order to learn the meaning of the two target tones.

Materials). These showed that the onset of the odor output
occurs approximately 54 ± 7 ms after the presentation of the
visual sniff cue. The olfactometer has also been shown to emit
a stable odor concentration over time (approximately a 0.5%
decrease over a 10-min period) and to be suitable for recording
olfactory ERPs (Lundström et al. 2010). The continuous airflow
was set to 0.5 l/m and individual channel airflows to 2.5 l/m.

Visual stimuli were presented on a 24′′ Benq XL2430-B TN-
screen with 100-Hz refresh rate and a resolution of 1920 × 1080
pixels. The experiment was run on a Windows 7 PC. In the odor
identification and rating tasks, participants responded with the
mouse. In the categorization task, they responded with a Cedrus
RB-740 Response Box (Cedrus Corporation).

EEG Recording

EEG was recorded with a 64-pin electrode Active Two Biosemi
system (Biosemi), using EEG caps (Electro-Cap International). In
addition to the 64 10–20 electrodes, the Biosemi system uses an
internal reference electrode (CMS), positioned in between PO3
and POz, and a ground electrode (DRL) positioned in between
POz and PO4. EOG was recorded with two flat electrodes
attached with an adhesive disk, one positioned at the outer
canthus of the right eye and the other directly below the right
eye. Data was sampled at 2048 Hz with a hardware low-pass
filter at 410 Hz but down sampled to 512 Hz offline.

Data Analysis

EEG Preprocessing
We performed all offline EEG preprocessing in EEGLAB (Delorme
and Makeig 2004) in MATLAB (MathWorks, Inc.). The raw EEG
data was down sampled to 512 Hz and band-pass filtered
between 0.2 and 40 Hz, using a FIR filter with a cutoff frequency
of 0.1 Hz. Irrelevant parts of the filtered data were then removed

to select experimental trial segments ranging from 1000 ms prior
to the start of the trial (i.e., the presentation of the black fixation
cross) to 1000 ms after the response, with training session
trials included. Channels were defined as bad if the amplitude
difference exceeded 500 mV in more than 50% of 1000-ms time
windows, if their correlation with their robust estimates as
calculated from the signal of the 16 neighboring channels was
less than 0.75, or if their signal-to-noise ratio deviated with more
than 4 standard deviations (SDs) from the channel mean signal-
to-noise ratio of all channels. On average, five channels in each
participant data set was bad (min: 0, max: 27). Bad channels
were interpolated using spherical splines, and the data was
re-referenced to the average of all channels, using a full-rank
average.3 We then performed ocular artifact rejection using
independent components analysis (ICA). The data used for ICA
decomposition was high-pass filtered at 1 Hz, trimmed of noisy
data by visual inspection, and analyzed with the AMICA EEGLAB
plugin. The resulting ICA components were transferred back to
the original 0.2–40.0-Hz band-pass-filtered data. Ocular artifact
ICA components were automatically identified and removed
using the icablinkmetrics plugin (Pontifex et al. 2017), as based
on their relationships with activity in the vertical EOG channel,
the horizontal EOG channel, or the mean of channels Fp1, AF7,
FCz, Fp2, and AF8. We used a correlation coefficient threshold
of 0.9, a convolution coefficient threshold of 0.1, and an artifact
reduction threshold of 10% that had to be statistically significant
at the .001 alpha level. On average, three components were iden-
tified as artifactual in each participant data set (min: 0, max: 6).

The artifact-corrected data from the experimental trials were
again re-referenced to the full-rank average of all channels and

3 Before averaging, we included a dummy channel with zero activity
that was removed after averaging. This is done in order to avoid rank
deficiency, which can affect the subsequent ICA decomposition.
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then divided into −200 to 1000-ms epochs relative to onset
of the visual stimuli and onset of the auditory target. Epochs
were baseline-corrected by subtracting the mean of the 200-ms
prestimulus period. Epochs were removed if they had a ± 120-uV
amplitude difference in any channel, if the amplitude difference
in any channel deviated by more than 6 SDs from the mean
amplitude channel difference in all epochs, or if the amplitude
difference of four channels deviated by more than 4 SDs from
their mean channel amplitude differences in all epochs. We
removed 16% of all epochs using these criteria (per-participant
minimum, 5%; maximum, 58%). We also excluded epochs from
trials with RTs below 200 ms or above 5000 ms (similar to
Olofsson et al. 2012). Five participants with less than 15 epochs
remaining in any condition were excluded from subsequent EEG
data analyses.

Statistical Analyses
All results were analyzed in the statistical software R (R Core
Development Team 2018), using custom-made analysis scripts
(available at osf.io/7qnwu/). As stated in the preregistration, we
performed Bayesian mixed-effect modeling in the Stan model-
ing language (Stan Development Team 2017), using the R pack-
age Rstan (Stan Development Team 2018). Response times and
ERP amplitudes were analyzed with linear mixed-effect mod-
eling and accuracy with logistic mixed-effect modeling. Full
model specifications and model priors are presented in the
Supplementary Materials. Inferences about parameter effects
(e.g., the congruence × modality interaction) were done on the
basis of the parameter credibility intervals (CIs). We considered a
parameter 95% CI not including zero as evidence for an effect of
the parameter at hand. We also report the posterior probability
(P) of a parameter being zero or taking on values in the opposite
direction of the mean parameter estimate, multiplied by 2. All
Bayesian analyses were complemented with frequentist mixed-
effect modeling (see Supplementary Materials). All models con-
tained fixed effects for the independent variables congruence
(congruent vs. incongruent) and modality (visual vs. olfactory),
and for the congruence × modality interaction. The models also
included fixed effects for the following potential confounders.

Trial number. In order to control for any learning effects
remaining after the initial training session, we included trial
number as a control variable.

Delay. The delay between olfactory–visual cues and auditory
targets varied randomly between 1000 and 2000 ms, in steps of
200 ms. A longer delay gives participants more time for stimulus
processing and response preparation and might thus result in
shorter response times and higher accuracies. We also used
this varying delay as a control variable, to test whether longer
delay times would be more beneficial for any particular sensory
system.

Object category. The object category, fruit or flower, was also
included in order to control for any potential differences in
categorization.

Gender. The gender of the participant was also included as
some studies have found women to have somewhat better olfac-
tory perceptual abilities than men (e.g., see Doty and Cameron
2009 for a review).

Similarity index. In order to control for a potential influence of
between-modality differences in perceived stimulus similarity,
we also included a between-category similarity index as a
control variable. This index aimed to capture the participant-
specific between-category similarity, that is, the individually
perceived similarity between a cue category stimulus (e.g.,

lemon of the fruit category) and the two stimuli of the other,
competing category (i.e., lilac and lavender of the flower cate-
gory). We wanted to quantify whether a high between-category
similarity could render the categorization task more difficult,
as the cue stimulus should be harder to differentiate from the
stimuli of the competitor category. Within-category similarity,
on the other hand, should not influence categorization, since
a confound (e.g., confounding pear and lemon) would not
affect the categorical decision (fruit). This index was calculated
on the basis of between-category similarity ratings of the
stimuli (see Supplementary Materials). First, in order to make
similarity ratings comparable across participants, ratings were
standardized within participants, ensuring that participant
rating means and SDs were the same for each participant. The
between-category similarity index was then calculated within
each participant, cue stimulus, and modality as the mean of the
standardized similarity ratings involving the stimulus at hand.
Since participants rated the stimuli for their similarity to each
of the two competitor category stimuli twice (e.g., two similarity
ratings of lemon–lilac and two of lemon–lavender), this index
was the mean of four ratings.

All models also include random intercepts for participants
and items, the latter differentiating between all possible visual
and olfactory stimulus combinations. Thereby, we control for
any systematic differences between subject and stimulus pairs.
We also included a by-participant random slope for trial number,
thereby controlling for any differences in learning between
participants. RT data was log-transformed in order to ensure
normality. All continuous covariates were standardized by
subtracting the mean and, following Gelman and Hill (2006),
divided by 2 SDs. Categorical variables were effect-coded
through centering.4 The main effects are therefore tested
against the grand mean of the data. In the event of congruence ×
modality interaction effects, we conducted simple effect follow-
up analyses, testing the effect of modality in the congruent
and the incongruent conditions separately. This was done by
including three dummy-coded predictors either for visual-
congruent, olfactory-congruent, and visual-incongruent (testing
modality within incongruent trials), or for visual-incongruent,
olfactory-incongruent, and visual-incongruent (testing modality
within congruent trials).

ERP Analyses
We investigated corresponding ERP effects time-locked to the
auditory target that were related to the increased processing
demands of incongruent compared to congruent trials and their
observed interactions with sensory modality. However, since this
is the first study of its kind to include ERP data, we did not
make any specific predictions in terms of exact time windows
and regions of interest (ROIs). These were chosen on the basis of
previous literature and visual inspection of the data. In order to
further confirm our choice of time windows, we also performed
cluster-based permutation analysis (Maris 2012; similar too, e.g.,
Maris and Oostenveld 2007), using custom-made analysis scripts
(available at osf.io/7qnwu/). Although this method does not
provide evidence for whether an ERP effect occurs in a particular
spatiotemporal region (i.e., a specific cluster), it allows for the
identification of regions of interest for further investigation and
provides evidence for a difference in the ERP response to two

4 That is, by coding the variable as 0 or 1 and subtracting the mean, see,
for example, Gelman and Hill (2006), p. 55.

osf.io/7qnwu/
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa050#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa050#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa050#supplementary-data
osf.io/7qnwu/
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conditions more generally (i.e., by rejecting the null hypothesis
that the ERP data of both conditions come from the same proba-
bility distribution, see Maris and Oostenveld 2007; Sassenhagen
and Draschkow 2019). Importantly, cluster-based permutation
does not suffer from problems of making multiple compar-
isons, resulting in an inflation of the risk of falsely rejecting
the null hypothesis (e.g., Benjamini and Hochberg 1995; Dun-
nett 1955; Hochberg 1988). Our implementation of the cluster-
based permutation test is highly similar to that of the EEG
analysis tool FieldTrip (Oostenveld et al. 2011). First, t-values for
the ERP condition differences at each spatiotemporal location
are calculated. t-values above 2 or below −2 from neighboring
spatiotemporal locations are then grouped into positive and
negative clusters and summed for each cluster. Two probabil-
ity distributions of t-values is then calculated on the basis of
cluster-based Monte Carlo permutation. This involves randomly
assigning data sets to conditions multiple times and, for each
permutation, calculating cluster-based, summed t-values, in the
same way that was done in the original data. The distributions of
maximum and minimum t-values from each permutation then
serve as the probability distributions against which the observed
summed t-values are tested. This distribution approximates
the probability distribution for the largest t-values that can be
expected under the null hypothesis that the ERP data from both
conditions come from the same probability distribution and
therefore do not differ. In our analyses, we included clusters with
t-values that had at most a 5% probability to be observed under
the null hypothesis (i.e., α = <0.05). For stimulus presentation
ERP data, we performed a cluster-based permutation test that
compared the congruent and incongruent condition (reported
in the Supplementary Materials). For auditory target ERPs, we
first compared the congruent and incongruent conditions across
modalities and then compared modality differences within the
congruent and the incongruent conditions separately.

We also performed analyses on ERP data on single-trial
(rather than subject average) mean ERP amplitudes across
time windows and electrode groups (similar to Frömer et al.
2018), using Bayesian and frequentist linear mixed-effect
models. These analyses were conducted on ERPs time-locked
to the stimulus presentation (reported in the Supplementary
Materials), on the one hand, and to the auditory target, on
the other. As motivated by the results of our cluster-based
permutation analyses (see below), we performed analyses on
mean amplitudes in the P300 time window, ranging from 320
to 580 ms, across the centro-frontal (CF) scalp region which
consisted of electrodes AF3, Afz, AF4, F1, Fz, F2, FC1, FCz, and
FC2. We also conducted three separate analyses in the late
600–700-, 700–800-, and 800–900-ms time windows across the
centro-occipital (CO) region, consisting of P4, P2, Pz, P1, P3, PO8,
PO4, POz, PO3, PO7, O2, Oz, and O1 (see Supplementary Fig. 8
in Supplementary Materials), where a positive slow wave (PSW)
effect was observed.

As a final step, we also investigated the relationship
between RTs and single-trial mean ERP amplitudes in the P300
and the late PSW time windows, again using both Bayesian
and frequentist linear mixed-effect models. In addition to
the fixed effects for the confounders listed above, these
models contained dummy-coded predictors for each condition
(olfactory-congruent, visual-congruent, olfactory-incongruent,
and visual-incongruent) and corresponding RT interaction
terms (e.g., RT × olfactory-congruent). Intercept terms were
excluded. Each interaction term therefore tests whether the RT
slope within each condition differs from zero, that is, whether

Figure 3. Log RTs (panel A) and RTs in seconds (panel B), differentiated on the
basis of congruence (congruent vs. incongruent) and the modality of the target
stimulus object (olfactory vs. visual). Error bars show 95% CIs as estimated by

the Bayesian model.

within-condition ERP amplitudes are negatively or positively
correlated with RTs.

Results
In the following, we first report results of behavioral data and
then results of ERP data.

Behavioral Data

Reaction Times
Mean RTs from each condition (i.e., olfactory-congruent, visual-
congruent, olfactory-incongruent, and visual-incongruent) are
shown in Figure 3. The results of the Bayesian linear mixed-
effect models of log RTs are shown in Table 1.

As expected, categorization RTs are faster for congruent than
for incongruent stimuli, as confirmed by the fact that the CI
of congruence does not include zero. Further, RTs for visual-
based responses are “slower” than olfactory-based responses,

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa050#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa050#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa050#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa050#supplementary-data
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Table 1 Results of the Bayesian linear mixed-effect models of log RT data

Parameter Beta SE CI lower CI upper P

Intercept 0.17 0.07 0.04 0.30 0.009
Congruence 0.45 0.03 0.38 0.52 <0.0001
Modality 0.04 0.02 0.00 0.08 0.041
Congruence ×
modality

0.06 0.03 0.00 0.11 0.041

Congruent: modality 0.01 0.03 −0.04 0.06 0.571
Incongruent:
modality

0.07 0.03 0.02 0.12 0.009

Category 0.02 0.02 −0.02 0.05 0.383
Sex 0.14 0.13 −0.11 0.40 0.280
Trial −0.35 0.03 −0.42 −0.28 <0.0001
Delay 0.02 0.01 −0.01 0.04 0.229
Similarity 0.01 0.02 −0.03 0.05 0.516

P values are the percentage of parameter samples being zero or taking on values in the opposite direction of the mean parameter estimate, out of a 4000-sample
parameter posterior distribution.

Table 2 Results of the Bayesian logistic mixed-effect models of accuracy data

Parameter Beta SE CI lower CI upper P

Intercept 3.68 0.26 3.18 4.18 <0.0001
Congruence −1.34 0.33 −1.96 −0.63 0.001
Modality 0.58 0.24 0.11 1.07 0.012
Congruence ×
modality

−0.8 0.35 −1.49 −0.11 0.023

Congruent: modality 1.13 0.36 0.44 1.83 0.001
Incongruent:
modality

0.12 0.24 −0.35 0.59 0.627

Category 0.19 0.17 −0.13 0.52 0.252
Sex −0.31 0.37 −1.07 0.46 0.391
Trial 0.54 0.24 0.07 1.04 0.020
Delay −0.12 0.15 −0.4 0.18 0.426
Similarity −0.26 0.21 −0.68 0.17 0.210

P values are the percentage of parameter samples being zero or taking on values in the opposite direction of the mean parameter estimate, out of a 4000-sample
parameter posterior distribution.

when the stimuli are incongruent. Although there is a main
effect of modality and therefore a general RT difference between
modalities, there is also a congruence × modality interaction
effect. Bayesian follow-up simple effect analyses did not find a
modality difference within congruent trials but instead within
the incongruent trials. Overall then, RTs do not differ between
olfactory and visual categorizations when the cues are congru-
ent. When the cues are incongruent, on the other hand, RTs are
on average 70 ms faster for olfactory than for visual categoriza-
tions, indicating a higher degree of olfactory interference with
visual categorization than vice versa.

Accuracy
Accuracy of each condition is shown in Figure 4. The results of
the Bayesian logistic mixed-effect model on the accuracy data is
shown in Table 2.

As expected, accuracy is higher for congruent than for incon-
gruent stimuli, as shown by the congruence main effect. Fur-
ther, accuracy is higher for visual targets when the stimuli
are congruent, but do not differ between modalities when the
stimuli are incongruent. There is a modality main effect and
therefore a general difference in accuracy between modalities.
However, there is also a congruence × modality interaction

effect. Follow-up simple effect analyses showed that accuracy
is higher for visual targets in the congruent trials but that there
is no accuracy difference between modalities in the incongruent
trials.

Taken together, although visual stimuli are categorized more
accurately when the stimuli are congruent, there is no catego-
rization advantage for visual stimuli in the incongruent con-
ditions, neither in terms of RTs nor in terms of accuracy. That
is, our behavioral data do not provide any evidence for over-
all visual dominance when incongruent odors are presented.
Instead, incongruent odors seem to interfere more with visual
decisions than vice versa, as indicated by the faster catego-
rization RTs for incongruent olfactory targets in comparison
to incongruent visual targets. Contrary to the well-established
notion that visual processing dominates other sensory input,
these findings instead suggest olfactory dominance over visual
input.

ERP Data

Cluster-Based Permutation Analyses
We first conducted a cluster-based permutation analysis com-
paring the incongruent to the congruent condition, collapsing
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Figure 4. Accuracy in log-odds (panel A) and percent (panel B), differentiated
on the basis of congruence (congruent vs. incongruent) and the modality of the
target stimulus object (olfactory vs. visual). Error bars show 95% CIs as estimated

by the Bayesian model.

over modality. This analysis identified one positive cluster with
a centro-frontal and centro-parietal distribution within the 300–
580-ms time window and another positive cluster with a centro-
parietal and centro-occipital distribution in the 550–750-ms time
window. These clusters are illustrated in Figure 5.

We also conducted analyses within the visual and olfactory
conditions separately, comparing the incongruent to congruent
condition within each modality independently. Our analysis
within the visual conditions identified one significant positive
cluster with a centro-frontal and centro-parietal distribution in
the 320–600-ms time window and another positive cluster with a
centro-parietal and centro-occipital distribution in the 550–900-
ms time window. These clusters are illustrated in Figure 6.

The analysis in the olfactory conditions identified one
centro-frontally and centro-parietally distributed positive
cluster in the 300–550-ms time window, illustrated in Figure 7.

These findings suggest that there is a domain-general con-
gruence effect in the centro-frontal/centro-parietal scalp region

around the 300–600-ms time region (i.e., a P300 effect). They
further indicate that there also is a congruence effect in the
centro-parietal/centro-occipital region around the 550–900-ms
time window (i.e., a PSW effect) that, importantly, has a longer
latency and is more pronounced for visual than for olfactory
decision trials.

Mean ERP Analyses
We present grand average auditory target ERPs across the CF
and CO ROIs, together with topoplots of congruent–incongruent
grand average differences in the P300 (320–580 ms) and PSW
(600–700, 700–800, and 800–900 ms) time windows (Figs 8 and
9). The congruence and modality effects in the Bayesian linear
mixed-effect models conducted on mean ERP amplitudes are
shown in Table 3. We first present analyses of the P300 effect
and then analyses of the PSW effects.

P300 (320–580 ms)
As illustrated in Figure 8, incongruent trials engender a positive
response in the P300 time window in the CF ROI. The analysis of
this effect showed a main effect of congruence, but no congru-
ence × modality interaction. In other words, incongruent trials
elicit a fronto-centrally distributed positivity in the P300 time
window which is independent of cue modality.

PSW (600–900 ms)
As shown in Figure 9, incongruent trials elicit a more pro-
nounced positive slow wave in the 600–900-ms time window in
the CO ROI, an effect that is likely to reflect increased processing
demands. Importantly, this effect differs between modalities in
that it has a later amplitude peak (683 vs. 652 ms) and longer
latency when the target stimulus object is visual compared
to when it is olfactory (see Fig. 9). In order to investigate the
latency difference, we conducted three separate analyses on
ERP amplitude averages in each of the three consecutive 100-ms
windows. In the 600–700-ms latency range, we found a main
effect of congruence, but no congruence × modality interaction,
similar to the P300 results. In the 700–800-ms time window,
the congruence main effect remained but, importantly, was
complemented by a congruence × modality interaction. In the
800–900-ms time window, finally, there was no main effect of
congruence but instead a congruence × modality interaction.
Follow-up simple effect analyses showed no modality difference
in the 600–700-ms time window. In the 700–800- and 800–900-
ms time windows, on the other hand, there was a modality
difference in the incongruent condition, but not in the congruent
condition. In other words, whereas incongruent olfactory stimuli
only engender a positive slow wave in the 600–700-ms time
window, incongruent visual stimuli engender a slow wave with
a 600–900-ms latency. These findings suggest additional costs
during the categorization of visual stimuli when distracted by
the presence of incongruent odors, compared to vice versa. This
asymmetrical interference is present in terms of a late and
temporally extended interference period from 700 to 900 ms
after target onset. These findings therefore complement the
behavioral results in that they indicate substantial olfactory
interference with visual categorizations.

Correlations Between ERP Amplitude and RT
The relationships between single-trial mean ERP amplitudes
and RTs in the P300 and the full PSW time windows are illus-
trated in Figure 10.
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Figure 5. Results of the cluster-based permutation analysis of the auditory target ERPs, comparing the incongruent condition to the congruent condition (collapsed
over modality). The top panel illustrates the scalp topographies of the identified clusters (ordered by size) at selected time points. The bottom panel illustrates the
spatiotemporal distribution of the identified clusters. The dashed lines correspond to the selected time points of the topoplots in the upper panel.

Our analysis in the P300 time window found that P300
amplitudes are unrelated to RTs in the congruent conditions
(olfactory: β = −0.24, standard error [SE] = 0.24, CI = [−0.7, 0.23],
P = 0.321; visual: β = 0.40, SE = 0.24, CI = [−0.07, 0.85], P = 0.094) but
negatively correlated with RTs in the incongruent conditions
(olfactory: β = −0.97, SE = 0.30, CI = [−1.55, −0.40], P = 0.001; visual:
β = −2.21, SE = 0.33, CI = [−2.87, 1.57], P < 0.0001). Thus, the P300
effect engendered by incongruent stimuli is stronger in trials
with fast responses. Under the assumption that P300 amplitude
correlates with attentional demands needed to inhibit the
interfering stimulus, this is to be expected. In trials were subjects
are successful at inhibiting the interfering stimulus, RTs should
be faster, and P300 amplitude should be higher due to the
allocation of additional attentional resources for inhibition,
resulting in a negative P300 amplitude–RT correlation. In order to
further investigate whether this correlation also differs between
modalities, we again performed a follow-up simple effects
analysis. This was done by using a model with a log RT main
effect predictor, the dummy-coded olfactory-congruent, visual-

congruent, and olfactory-incongruent condition predictors,
and their corresponding log RT × condition interaction terms.
Here, the visual-incongruent condition serves as the reference
condition against which the other conditions are compared.
Any RT × condition effect entails that the ERP amplitude–RT
association of those conditions differs from that of the visual-
congruent condition. Strikingly, this analysis showed that
the P300 amplitude–RT correlation is modality dependent, in
that it is more pronounced in visual, compared to olfactory,
categorization, β = −1.36, SE = 0.39, CI = (−2.14, −0.60), P = 0.0001.
In other words, RTs during categorization of incongruent targets
are to a greater extent predicted by P300 amplitude for visual
than for olfactory stimuli. This in turn suggests that successful
categorization of visual stimuli to a greater extent is dependent
on attentional resources needed to inhibit the interfering
olfactory percept. These findings further support the notion that
incongruent odors interfere more with visual categorization
than vice versa. We also conducted separate analyses of ERP
amplitudes in the three PSW time windows (600–700, 700–800,
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Figure 6. Results of the cluster-based permutation analysis of the auditory target ERPs during visual decisions, comparing the incongruent condition to the congruent

condition. The top panel illustrates the scalp topographies of the identified clusters (ordered by size) at selected time points. The bottom panel illustrates the
spatiotemporal distribution of the identified clusters. The dashed lines correspond to the selected time points of the topoplots in the upper panel.

and 800–900 ms). These found that PSW amplitude is unrelated
to RTs in all of the conditions (see analyses in Supplementary
Materials).

Discussion
A well-established notion in psychological research is that
visual stimulus processing “dominates” processing in other
sensory modalities. Visual dominance has been suggested to
involve asymmetric inhibition between sensory systems (e.g.,
Spence et al. 2012). If visual processes generally inhibit nonvisual
processes, this should hold true also in categorization tasks with
bimodal stimuli. We designed an odor–picture categorization
task with cross-modal interference, testing the assumption
of visual dominance using olfaction as a novel modality of
comparison. Unexpectedly, our results provide converging
behavioral and neurophysiological evidence for olfactory,
rather than visual, dominance; incongruent odors exert more
influence on visual processing than vice versa.

Our behavioral findings may provide new insights regarding
the complimentary roles of olfaction and vision. In particular,
when visual and olfactory inputs are congruent, visual pro-
cessing indeed offers superior speed and accuracy, as would be
expected by a purportedly dominant sensory system. But during
incongruent input, it is instead olfactory cues that are surpris-
ingly distracting, effectively impairing visual categorizations by
disproportionally delaying responses and reducing their accu-
racy. The results of our study provide support for the notion that
a foundational characteristic of olfaction is to effectively attract
attention and processing resources in other senses. Early work
(Herrick 1933) postulated that mammalian brain evolution was
characterized by a rapid growth in visual, but not olfactory cor-
tex, such that a key role for human olfaction would be to provide
alerting cues for further visual processing. More recently, Köster
et al. (2014) suggested that the olfactory system is particularly
sensitive to contextually inappropriate odors, which might serve
as an especially alerting cue to other senses, but is rather indif-
ferent to expected odors. In a similar vein, our findings show

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa050#supplementary-data
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Figure 7. Results of the cluster-based permutation analysis of the auditory target ERPs during olfactory decisions, comparing the incongruent condition to the congruent
condition. The top panel illustrates the scalp topographies of the identified clusters at selected time points. The bottom panel illustrates the spatiotemporal distribution
of the identified clusters. The dashed lines correspond to the selected time points of the topoplots in the upper panel.

a behavioral advantage for olfactory decisions only when odor
and picture cues are incongruent. In other words, it is only when
odors are inappropriate relative to the visual information that
odors receive privileged processing. A possible objection to these
conclusions may be that our experimental paradigm, employ-
ing a delayed response task, would not generalize to real-life
situations where people can respond to stimuli directly. How-
ever, multisensory cues in ecological environments are arguably
rarely perceived in exact synchronicity. Most real-life perceptual
decisions instead require integration across sensory channels,
as well as with motivational states, and are thus not instan-
taneous. Future variations of our experimental paradigm may
explore the scope and limits of our observed results.

ERP effects provided valuable information about the cortical
processing sequence underlying our behavioral observations.
We were particularly interested in the idea that dominance
stems from asymmetric inhibition between sensory systems
(e.g., Spence et al. 2012). We reasoned that if asymmetric inhi-
bition is responsible for sensory dominance, participants would

require additional processing resources to compensate for the
strong interference effect caused by incongruent input in the
dominant modality. In line with this notion, we found a cortical
processing sequence that started with overall effects of stimulus
incongruency, gradually giving way to modality interactions that
support our behavioral results of olfactory dominance. First, a
more pronounced fronto-central P300 wave was observed during
the categorization of incongruent stimuli. This effect was found
to be negatively correlated with RTs and therefore to be stronger
in trials with fast responses, in particular during categorization
of incongruent visual stimuli. As the P300 amplitude is
related to the mobilization of attentional resources during
categorization tasks (e.g., Kok 2001), we interpret this P300
effect to reflect the additional attentional resources needed to
inhibit the interfering percept in the incongruent condition. This
interpretation is further supported by our observed negative
RT–P300amplitude correlation in incongruent trials. In order to
make a quick categorization decision, participants need to allo-
cate additional attentional resources to inhibit the interfering
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Figure 8. Panel A: Grand average ERPs time-locked to the presentation of the auditory targets, averaged across the CF ROI, and differentiated on the basis of congruence
and modality. Shaded areas show 95% confidence intervals. Gray areas mark the 320–580-ms time window. Panel B: Topography of the incongruent–congruent grand
average difference of the P300 (320–580 ms) time window.

Figure 9. Panel A: Grand average ERPs time-locked to the presentation of the auditory targets, averaged across the CO ROI, and differentiated on the basis of congruence

and modality. Shaded areas show 95% confidence intervals. Gray areas mark the 600–700-, 700–800-, and 800–900-ms time windows. Panel B: Topography of the
incongruent–congruent grand average differences of the 600–700-, 700–800-, and 800–900-ms time windows.
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Table 3 Congruence and modality effects in the Bayesian linear mixed effect models of mean ERP amplitudes in the P300 and PSW time
windows

ERP effect Parameter Beta SE CI lower CI upper P

P300 Congruence 0.71 0.15 0.40 1.01 0.001
Modality 0.14 0.18 −0.20 0.50 0.433
Congruence × modality 0.13 0.23 −0.31 0.56 0.605

PSW1 Congruence 0.66 0.17 0.31 1.00 <0.0001
Modality 0.14 0.22 −0.29 0.58 0.549
Congruence × modality 0.22 0.29 −0.34 0.78 0.458
Congruent: modality −0.01 0.27 −0.54 0.53 0.949
Incongruent: modality 0.30 0.26 −0.21 0.80 0.262

PSW2 Congruence 0.54 0.20 0.15 0.93 0.014
Modality 0.26 0.22 −0.17 0.69 0.245
Congruence × modality 0.55 0.27 0.03 1.07 0.039
Congruent: modality −0.06 0.26 −0.59 0.45 0.809
Incongruent: modality 0.57 0.27 0.05 1.08 0.033

PSW3 Congruence 0.28 0.19 −0.10 0.63 0.137
Modality 0.22 0.23 −0.23 0.66 0.338
Congruence × modality 0.77 0.30 0.17 1.35 0.012
Congruent: modality −0.19 0.27 −0.71 0.33 0.480
Incongruent: modality 0.60 0.27 0.07 1.13 0.032

P values are the percentage of parameter samples being zero or taking on values in the opposite direction of the mean parameter estimate, out of a 4000-sample
parameter posterior distribution.

Figure 10. Correlations between mean ERP amplitudes in the P300 (CF ROI) and the PSW (CO ROI) time windows, differentiated on the basis of congruence and modality.
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percept. Fast responses during categorization of incongruent
stimuli are therefore associated with higher P300 amplitudes,
resulting in the observed negative correlation. Crucially, our
findings show that this correlation is stronger for visual than
for olfactory decisions, providing further support for asymmetric
interference between visual and olfactory modalities; fast
responses during categorization of incongruent visual stimuli
are to a greater extent dependent on attentional resources
needed to inhibit the interfering olfactory percept.

Our behavioral interaction effects were further reflected in a
late, centro-occipital positive slow wave in the incongruent con-
dition. Importantly, this effect had a later amplitude peak and
longer latency for visual categorizations (peak 738 ms, latency
600–900 ms) than for olfactory categorizations (peak 673 ms,
latency 600–700 ms). In other words, these findings provide
evidence for olfactory dominance over visual input also in terms
of differences in cortical activity. Positive slow wave activity
has been found in tasks where target identification prompts
the execution of additional tasks (García-Larrea and Cézan-
ne-Bert 1998). In the congruent condition, the categorization
response can be prepared already before the auditory target
is presented. In the incongruent condition, on the other hand,
the task consists of categorization based on the auditory tar-
get, selecting between visual and olfactory working memory
representations, and finally making a categorization response
based on the selected working memory representation. Positive
slow wave activity has been linked to such response decision
costs (Kok and De Jong 1980; Ruchkin et al. 1980; Ruchkin and
Sutton 1983), response selection (Falkenstein et al. 1993, 1994),
working memory updating operations prompted by a secondary
task (Johnson and Donchin 1985), sustained attention to task
performance (Gevins et al. 1996), or working memory load during
retrieval (Honda et al. 1996; García-Larrea and Cézanne-Bert
1998). Thus, although several accounts of late positive slow
waves have been suggested, including the proposal that they
reflect the completion of a broad array of task-dependent cog-
nitive operations following target detection (García-Larrea and
Cézanne-Bert 1998), it seems clear that slow wave latency and
amplitude reflect processing speed and processing effort. Our
ERP findings therefore complement the behavioral results in
that they show additional categorization costs for visual stimuli
compared olfactory stimuli during cross-modal interference,
thus indicating that incongruent olfactory stimuli interfere with
visual categorization decisions more than vice versa.

It should be pointed out that our study differs from earlier
studies of sensory dominance in that it investigates dominance
in terms of inhibition between representations on the category
level. Whereas earlier studies were concerned with mere stim-
ulus detection (Sinnett et al. 2007; Koppen and Spence 2007a,
2007b, 2007c; Koppen et al. 2008), in some cases by using seman-
tically meaningful stimuli (Koppen et al. 2008), the present study
involved categorization of representations in incongruent con-
texts. In order to perform the task, participants were there-
fore required to activate two conceptual representations of the
stimuli and to briefly hold those conflicting representations in
working memory until the presentation of the auditory target.
Rather than reflecting low-level asymmetric inhibition between
sensory systems, our findings might therefore stem from asym-
metric interference between working memory representations
at the conceptual level. The observed categorization advantage
of representations originating from olfactory input could result
from a bias in the activation of the olfactory representations
due to, for example, the focus on olfaction in the experimental

context. A way of addressing this question would be to perform
the same experimental paradigm, comparing visual input to
input in another nonvisual (e.g., auditory) sensory modality. If
such a study would find a categorization advantage for visual
input, we would have more robust evidence for concluding that
our findings of dominance of olfactory representations stems
from differences between the olfactory and other nonvisual
sensory systems. Further, our study does not test whether asym-
metric inhibition also holds for within-category incongruencies
(e.g., the smell of lilac interfering with the categorization of a
picture of rose). Investigating this further could potentially shed
more light on the question of whether our findings stem from
low-level sensory inhibition or interference between higher-
level, conceptual representations. Findings showing that the
olfactory dominance effect is restricted to between-category
incongruencies would suggest that asymmetric inhibition oper-
ates on the conceptual level, involving interference between
categorical representations. Conversely, findings showing that
the effect also applies to within-category incongruencies would
indicate that inhibition occurs on lower levels of representation,
involving interference between perceptual objects or sensory-
level representations. Future research could also test whether
olfactory input would have a similar influence on nonvisual
(e.g., auditory) processing, thereby addressing the question of
whether olfactory dominance stems from asymmetric inhibi-
tion between the olfactory and nonolfactory sensory systems
more generally.

In this study, we have made the assumption that any
observed differences in behavioral results between congruent
and incongruent conditions reflect asymmetric “interference”
among incongruent percepts. However, the observed congru-
ence effects on the behavioral results could also, theoretically,
stem from asymmetric “facilitation” in the congruent conditions
(similarly to, e.g., Gottfried and Dolan 2003; Olofsson et al. 2013).
That is, visual categorization could be facilitated by congruent
olfactory information, more than vice versa. Importantly, both
interference and facilitation would support the notion that
olfaction has disproportional influence on visual process-
ing, which was our a priori operationalization of olfactory
dominance. Future work, however, could include visual and
olfactory unimodal control conditions, against which it is
possible to evaluate both interference and facilitation effects
in the incongruent and congruent conditions, respectively. We
speculate that, given our experimental design, we would be
unlikely to observe any differences between unimodal and
multimodal congruent conditions. In the congruent condition,
participants can make their response selection directly after the
stimuli is presented, and they have ample of time (1000–2000 ms)
to categorize the stimuli before it is presented. It is therefore
unlikely that their response decision would critically benefit
from the information being multimodal (see Supplementary
Materials for further discussion).

Another potential concern in this study is whether our
observed modality differences could be explained in terms of
a modality difference in stimulus similarity. A high degree of
between-category stimulus similarity should make it harder
to accurately differentiate between the cue stimulus and the
stimuli of the other category (e.g., differentiating lemon odor
from lavender/lilac), rendering the categorization task more dif-
ficult. In order to control for a potential confound, we included
a participant-specific similarity index as a covariate in all of
our statistical models that was based upon between-category
stimulus similarity ratings (see Supplementary Materials). This

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa050#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa050#supplementary-data
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covariate had zero effect in any of our models; thus, our results
does not seem to have been affected by a modality difference in
perceived stimulus similarity.

Further, in the present study, we did not measure respi-
ration and could not explore possible differences in sniffing
activity between congruent and incongruent conditions. Cru-
cially though, since the auditory target informing about the
categorization modality was presented 1–2 s after stimulus pre-
sentation, we have no reason to assume that there should be
a difference in respiration patterns between these conditions.
Prior work on similar paradigms also showed no such respiration
differences (Olofsson et al. 2014).

Our findings clearly show that, contrary to the widely
held notions in neurocognitive perception research, olfactory
representations can dominate visual representations under
conditions of equal task relevance. While the notion of visual
dominance is well-established (Colavita 1974; Sinnett et al. 2007;
Koppen and Spence 2007a; Koppen et al. 2008; Hartcher-O’Brien
et al. 2010; Spence et al. 2012) and olfaction was traditionally
viewed as a “primitive” or underdeveloped sense (see Laska
2015; McGann 2017 for reviews), our findings, along with recent
cross-cultural evidence (Majid et al. 2018), provide reasons to
reconsider such generalizations.

Conclusions
This study shows that, contrary to the widely held notion of
visual dominance, olfactory processing can dominate visual
processing under conditions of equal task relevance and when
differences in sensory encoding speed are controlled for. It
extends earlier research by investigating cross-modal interfer-
ence on the category level, using a categorization task with
cross-modal interference. As such, it provides a novel paradigm
for perceptual interference and competition for processing
resources across sensory systems. Our findings provide support
for the notion that visual behavioral categorization is especially
disrupted by contextually incongruent odors. We speculate
that incongruent odors might be particularly alerting, thereby
attracting further processing in other senses.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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