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The development of unwanted immune responses (immu-
nogenicity) against a therapeutic protein, particularly the 
induction of antidrug antibodies (ADA), involves complex 
immunological mechanisms, such as antigen presentation, 
activation of immune cells, and cytokine production. Under-
standing immunogenicity of therapeutic proteins involves 
assessing their antigenic properties, while putting them 
into the context of the host’s immunological environment. 
To predict immunogenicity, various techniques have been 
developed to assess their antigenic potentials. For example, 
in silico prediction tools are available for predicting the T-cell 
or B-cell epitopes based on protein sequences or struc-
tures.1–7 Experimental approaches, such as in vitro major 
histocompatibility complex (MHC)-peptide binding assays,8,9 
T-cell proliferation assays10,11 and humanized mice,12,13 are 
being explored to assess the immunogenicity risk. Due to the 
complicated mechanisms for immunogenicity and the large 
number of impacting factors, it is often difficult to quantita-
tively integrate results for immunogenicity prediction.

Mathematical modeling may serve as a helpful tool for this 
purpose, since it can quantitatively recapitulate complicated 
mechanisms and incorporate the effect of multiple influencing 
factors. By mathematically describing the current knowledge 
of immunogenicity development, a multiscale, mechanis-
tic model was developed. While many mathematical models 
were developed to describe immune system dynamics, none 
of them were applied to the development of immunogenicity 
in a therapeutic setting.14–16 We developed a multiscale model 
of immunogenicity, described in detail in a companion report 

(Part 1). The current model is inherently compatible with para-
metric inputs informed by experimental results that correspond 
to various impacting factors for immunogenicity. For example, 
the model includes antigen presentation, during which the pro-
cessing of antigenic protein into T-epitopes, and the binding 
between T-epitopes and MHC-II, take place. This model com-
ponent allows for the integration of protein-specific informa-
tion, particularly the number and MHC-II binding affinities of 
T-epitopes, which can be obtained through in silico or in vitro 
experiments. This component also permits the incorporation 
of patient-specific information, such as MHC allele genotype, 
which is known to be a crucial factor for the immune response. 
Many other potential impacting factors for immunogenicity, 
e.g., initial number of naive T and B cells and number and 
binding affinity of B-cell epitopes, are designed as integral 
parts of the model structure; these can also be conceivably 
informed by conducting appropriate experiments.

In this work, we applied the mathematical model to the 
simulation of in vivo immune response in mouse and human 
using selected case studies. The model is able to simulate 
immunological responses to therapeutic proteins based on 
protein-specific characteristics (e.g., T-cell epitope, B-cell 
epitope) and host-specific characteristics (e.g., MHC-II 
 genotype). Model simulations include kinetics of immune 
cells, antigenic protein and ADA profiles, antibody affinity 
maturation profile, etc. Importantly, when certain population 
characteristics, e.g., MHC-II allele frequency, are known, the 
model can ultimately be used to simulate immunogenicity 
incidence within that population.
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A mechanistic, multiscale mathematical model of immunogenicity for therapeutic proteins was built by recapitulating key 
underlying known biological processes for immunogenicity. The model is able to simulate immune responses based on 
protein-specific antigenic properties (e.g., number of T-epitopes and their major histocompatibility complex (MHC)-II binding 
affinities) and host-specific immunological/physiological characteristics (e.g., MHC-II allele genotype, drug clearance rate). 
Preliminary validation was performed using mouse studies with antigens such as ovalbumin (OVA) or OVA-derived peptide. 
Further, using adalimumab as an example therapeutic protein, the model is able to simulate immune responses against 
adalimumab in individual subjects and in a population, and also provides estimations of immunogenicity incidence and drug 
exposure reduction that can be validated experimentally. This is a first attempt at modeling immunogenicity of biologics, so 
the model simulations should be used to help understand the immunogenicity mechanisms and impacting factors, rather than 
making direct predictions. This prototype model needs to be subjected to extensive experimental validation and refinement 
before fulfilling its ultimate mission of predicting immunogenicity. Nevertheless, the current model could potentially set up 
the starting framework to integrate various in silico, in vitro, in vivo, and clinical immunogenicity assessment results to help 
meet the challenge of immunogenicity prediction.
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reSUlTS
Simulation of immune response against OVA in mouse
A preliminary model validation/data fitting was performed using 
two mouse studies monitoring immune responses against an 
immunogenic protein, ovalbumin (OVA), or OVA-derived pep-
tide. Simulations of mouse immune response overlaid with 
experimentally determined data are illustrated in Figure 1a,b. 
In the first study, by injecting OVA323–339, a well-known T-epitope 
peptide in OVA, significant T-cell response was elicited, with a 
dramatic increase of total T-cell number, and the generation of 
a large number of memory T cells.17 Using parameters specific 
to the antigen (OVA323–339) and the host (C57BL/6 mice), e.g., 
dose and MHC-II binding affinity, the model simulation was 
reasonably consistent with the experimental results.

The second study measured the total plasma cell num-
ber after secondary immunization with OVA protein. To best 
describe the experimental data, we adjusted two parameter 
values, including g2 (percentage for activated B cells to dif-
ferentiate to short-lived plasma cells) and CCN (carrying 
capacity for a functional T cell to stimulate the activation and 
proliferation of target naive B cells), which are not available 
from the literature. The parameter g2 is necessary to account 
for the fact that there are both short-lived and long-lived 
plasma cells for ADA secretion.18 Another parameter, CCN is 
a parsimony parameter for modeling the activation of B cells 
via interacting with active T-helper cells.19 By using the values 
of g2 = 0.4, and CCN = 10, the model simulations are in rea-
sonable agreement with the literature results, thus increasing 
our confidence in model structure and parameter values.

Simulation of immune response against adalimumab in 
1,000 north American subjects
One potential application of the mechanistic model is the 
simulation of immune responses against therapeutic pro-
teins in a human subject, and eventually in a heterogeneous 
human population. Adalimumab (Humira), one of the anti-
TNF-α treatments for various inflammatory and autoimmune 
diseases, is a fully human IgG1 monoclonal antibody that 
was reported to induce varying degree of ADA responses in 
a subset of patients.20–22

The immune response profiles for one simulated subject are 
illustrated in Figure 2 as an example. This subject carries an 
MHC-II allele (DRB1*04:11) with strong binding affinity (57.44 
and 101.5 nmol/l) to the two predicted T-epitopes. Under the 
clinical regimen, this virtual patient gradually developed ADA 
against adalimumab, resulting in the reduction of drug expo-
sure at later time points (Figure 2a).  During antigen presenta-
tion (Figure 2c,d), the T-epitopes are efficiently presented onto 
DRB1*04:11 (binder), resulting in significant T-cell activation 
and proliferation (Figure 2e). Subsequently, naive B cells are 
efficiently activated upon strong T-cell help (Figure 2f), lead-
ing to the generation of a high number of plasma cells, which 
are responsible for secreting ADA. The dynamics of the anti-
body affinity maturation is also captured by the model (Figure 
2g,h), showing that ADA with higher antigen-binding affinities 
(clone 7 to 10, dashed lines) are preferentially produced over 
time, leading to a gradually increased average binding affinity.

A more powerful potential application of the model is the 
simulation of expected immunogenicity incidence in a human 
population against a therapeutic protein. This is illustrated by 

simulating the immune response against chronically dosed 
adalimumab in 1,000 North American patients (Figure 3). 
These virtual subjects carry different MHC-II alleles, whose 
frequency distribution follows the NCBI MHC database 
record. Another patient-specific variable illustrated here is 
the elimination rate of adalimumab, whose distribution was 
obtained from a population pharmacokinetics (PK) study. As 
discussed in Part 1 of this paper, the genetic background 
(MHC-II genotype) may have a strong impact on immunoge-
nicity; therefore, the patients can be stratified according to 
the number of strong T-epitope-MHC-binding pairs. For exam-
ple, for a patient with DRB1*04:01 and DRB1*04:03, the two 
T-epitopes can bind tightly to both 04:01 (123 and 85 nmol/l) 
and 04:03 (78.52 and 147.85 nmol/l). Therefore, the num-
ber of T-epitope-MHC pairs for this patient is 4. By stratifying 
patients using the number of binding T-epitope-MHC pairs, 
a significant impact of T-epitope on ADA response can be 
observed. Figure 3a,b provide an overview of the projected 
ADA and adalimumab concentration for the 1,000 subjects 
at the end of simulation. In  Figure 3c, there is a statistically 
significant difference in the ADA concentration between sub-
jects who carry 0, 1, or 2 T-epitope-MHC binding pairs. With 
more than three pairs, the ADA response appears to reach a 
plateau. The higher ADA response in group 3 is not statisti-
cally significant, since the patient number is very small (n = 
6, dictated by the MHC allele distribution frequency), and the 
variance is thus large. For Ag (adalimumab) concentration ( 
Figure 3d), when the subject carries at least 1 binding pair, 
Ag concentration is significantly decreased. The time profiles 
of ADA and adalimumab are presented in  Figure 3e,f.

The estimation of immunogenicity incidence, particularly 
the percentage of ADA+ patients, can vary significantly 

Figure 1. Simulation of immune response against OVA323-
339 or OVA in mouse. (a) Kinetics of total T helper cells after the 
challenge of OVA323-339 peptide. (b) Kinetics of total plasma cells after 
secondary challenge of OVA.
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Figure 2  The immune response profiles for one human subject with MHc-II allele (DrB1*04:11:01) under chronic adalimumab 
dosing. (a) Kinetics of antigenic protein, ADA, and immune complex. (b) Kinetics of dendritic cells. (c) Kinetics of T-epitope-1-MHC 
complexes on dendritic cell membrane. The MHCs include 2 DR, 2 DP, and 2 DQ alleles. (d) Kinetics of T-epitope-2-MHC complexes 
on dendritic cell membrane. (e) Kinetics of T helper cells. “T1” and “T2” indicate the T cells that are specific for T-epitope 1 or T-epitope 
2. (f) Kinetics of B cells. (g) Kinetics of polyclonal ADA, including 17 clones of ADA, whose antigen-binding affinity increase by twofold 
between clones from clone #1 to clone #17. (h) Time profile of average antigen-binding affinity of ADA. ADA, antidrug antibodies; MHC, 
major histocompatibility complex.
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depending on sensitivity and drug tolerance of the ADA 
assay. We arbitrarily set up a threshold for the absolute ADA 
concentration (250 ng/ml, the sensitivity recommended by 
the US Food and Drug Administration),23 and a threshold for 
drug tolerance (molar ratio of ADA over Ag at 1). A patient 
would be reported as ADA+ only when the two thresholds 
are exceeded. The predicted time course of ADA+ incidence 
(Figure 4a) indicates that a majority of this population would 

develop ADA after 3 months of treatment, with a suggested 
immunogenicity incidence of 75.3% after 574 days of treat-
ment. To investigate the reduction of drug exposure due to 
ADA emergence, cutoff values for adalimumab trough con-
centration were chosen at 1/2, 1/5, 1/10, 1/20, and 1/50 of 
the average drug concentration in patients who carry no bind-
ing pairs (and thus do not develop ADA). The percentages of 
patients with drug concentration lower than the cutoff values 

Figure 3  Summary of the immune responses in 1,000 human subjects from north America with chronic dosing of adalimumab.  
(a) ADA concentrations for 1,000 patients on day 574. Each symbol represents one patient. The patients are stratified according to the number 
of strong T-epitope-MHC binding pairs (e.g., ET-MHC = 0 suggests the patient carries no MHC allele that binds strongly to the T-epitopes). 
(b) Adalimumab (Ag) concentrations for 1,000 patients on day 574. (c) Histogram representation of the ADA concentration on day 574. n 
represents the patient number in each group. Student's t-tests are conducted to compare the average ADA concentrations (**P <  0.01;  NS, not 
significant). (d) Histogram representation of the Ag concentration on day 574. (e) Time profiles of ADA concentrations for patients in stratified 
groups. The solid line represents the average concentration, and the dashed line represents the 95% confidence interval. (f) Time profiles of 
Ag concentrations for patients in stratified groups. Solid line represents the average concentration, and the dashed line represents the 95% 
confidence interval. ADA, antidrug antibodies; MHC, major histocompatibility complex.
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were plotted in Figure 4b. The model predicts that up to 70% 
of the patients can have a twofold reduction, and 26.4% of 
the patients can experience severe (50-fold) reduction of the 
drug trough concentration after 574 days.

A preliminary comparison for adalimumab trough concen-
trations under chronic dosing was conducted by replicating a 
published clinical trial using model simulation24 (Figure 5). The 
overall trend for lower drug concentrations in ADA+ patients 
compared to ADA− patients is in agreement between model 
simulation and the trial observation, despite differences in 
absolute values. The trend for decreasing drug exposure over 
time in ADA+ patients is also captured by the model.

DIScUSSIOn

Successful prediction of immunogenicity in human is still 
mostly in its infancy, due to the intrinsic complexity of the 
immune system, lack of translation from preclinical spe-
cies to human, patient heterogeneity, and product-related 
 factors such as aggregates and adjuvant-like contaminants. 
Although many platforms have been established for immuno-
genicity assessment, they usually provide partial information 
regarding one or two impacting factors.25–28

Mathematical models are naturally suitable for describ-
ing complex systems, integrating information from various 
sources, and eventually generating simulations or predic-
tions that cannot be readily and intuitively processed. In this 
manuscript, we have used case studies to illustrate potential 

applications for a multiscale, mechanistic immunogenic-
ity model, including simulations for immune responses and 
population immunogenicity incidence.

In the first case study, by using OVA-specific T-epitope 
information and mouse strain-specific MHC alleles, the sim-
ulated kinetics for T cell and plasma cell are in reasonable 
agreement with the experimental data, provided two parame-
ters (whose values could not be obtained from the literature) 
are adjusted. Considering the model contains 88 parame-
ters, the current framework is probably reasonable as a start-
ing point. A future plan would be to perform controlled animal 
experiments with model antigenic proteins, to generate more 
immune response data, e.g., immune cell kinetics, antigenic 
protein PK, ADA kinetics, which can then be compared with 
model simulations. Upon the availability of more informative 
datasets, the model parameters can be calibrated by data 
fitting, thus increasing confidence in the model.

The second case study, a simulation of immune responses 
against adalimumab, aims to illustrate the potential of the 
current model to integrate antigen- and patient-specific infor-
mation for projecting a population response. Antigen-specific 
information, particularly number of T-epitopes and their bind-
ing affinities to MHC, are incorporated. Patient-specific infor-
mation includes the MHC allele population frequency and 
the population distribution of antigen elimination rate (drug 
PK). Figure 2 illustrates immune response simulations in a 
patient who carries an MHC that binds strongly to the T-epit-
opes. By simulating 1,000 patients, population-level immune 
responses against adalimumab were obtained (Figure 3). 
The model suggests that T-epitopes have a strong impact 
on the ADA response, since more T-epitope-MHC binding 
pairs generally lead to higher ADA response, until a plateau 
is reached (Figure 3c). ADA development has a significant 
impact on drug level, as the patients who developed ADA 

Figure 4 Model simulations for ADA response and drug 
exposure in 1,000 virtual patients. (a) Time course of the 
percentage of ADA+ patients. (b) Time course of the reduction in 
drug exposure. The percentage of patients with 2-, 5-, 10-, 20-, and 
50-fold reduction in adalimumab trough concentration was plotted.
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have significantly lower drug concentration (Figure 3d), and 
this result agrees with clinical observations.24

By summarizing the population ADA responses, an immu-
nogenicity incidence of adalimumab in the North American 
population was calculated to be 75.3% after 19 months of 
treatment (Figure 4a). Most of the patients are predicted to 
become ADA+ after about 3 months. Compared to the immu-
nogenicity incidence observed in clinical trials (5–89%),20–22 
our simulation result lies at the higher end. Several potential 
confounding factors may explain the large variation in immu-
nogenicity incidence between clinical studies, and between 
the clinical observations and model simulations. From a tech-
nical perspective, the sizes, duration, and dosing regimens 
of the clinical studies, together with the ADA assay format, 
its sensitivity and drug tolerance, may potentially affect the 
immunogenicity assessment. The inaccuracy in Immune 
Epitope Database (IEDB) prediction for T-epitopes and their 
binding affinities may also account for errors in the model 

prediction, since the in silico prediction of class II T-epitope 
is not absolutely correct.29 On the other hand, patient-related 
variability, such as population genetic background (e.g., MHC 
allele frequencies), disease indication, immune status, and 
comedications, can further complicate the immune response 
outcome. For instance, certain MHC alleles have shown 
genetic association to diseases,30 so that patients with auto-
immune diseases (some indications for adalimumab) may 
have a different distribution for MHC alleles compared to 
normal patients, which are simulated currently. In addition, 
immunosuppressive compounds such as methotrexate are 
known to reduce the immune responses to many therapeutic 
proteins,31–33 and may also partially contribute to the discrep-
ancy between the clinical trials and our simulation.

The reduction in drug exposure due to ADA emergence 
was also simulated by the model (Figure 4b). Depending on 
the disease indication, the reduction in drug exposure may 
ultimately result in variable degrees of loss of efficacy in the 

Figure 6 Process for simulating the in vivo immune responses against adalimumab in 1,000 virtual patients from north America. 
Step (1): Collect MHC-II allele frequency and epitope-binding affinity. Step (2): Generate profile for a virtual subject and simulate the 
immune response.  *Additional intersubject variability was added by randomly generating elimination rates for adalimumab according to 
the population distribution reported in the literature. For details, refer to the Methods section. Step (3): Repeat step (2) for 1,000 subjects.  
MHC, major histocompatibility complex.

MHC-II allele

MHC-II allele
Epitope binding affinity to MHC (nmol/l)

DRB1*04:01

DRB1 *04:01 123 85

DRB1 *04:07 124.73 104.16

DPA1 *02:01 4,000 4,000

DPA1 *03:01 4,000 4,000

DQA1 *04:01 4,000 4,000

DQA1 *05:01 4,000

Simulate immune reponse
for this virtual subject *

(3) Repeat step (2) for 1,000 subjects

4,000

0.089 123 85

DRB1*04:03 0.053 78.52 147.85

DRB1*04:04 0.036 180 38

DRB1*04:07 0.085 124.73 104.16

DRB1*04:11 0.15 57.44 101.5

DRB1*07:01 0.0083 75 77

DRB1*08:02
(1)

(2)

0.069 306 292

DRB1*08:11 0.0015 112.43 4,000

DRB1*11:01 0.0436 317 293

DRB1*14:04 0.00075 53.7 4,000

DRB1*15:01 0.0083 148 4,000

Rest of DRB1 alleles

Randomly select MHC-II
alleles for a virtual subject
based on allele frequency

Obtain MHC-II binding
affinity for the T-epitopes

Epitope 1 Epitope 2

0.46 4,000 4,000

Allele frequency
in North America

Epitope 1 binding
affinity (nmol/l)

Epitope 2 binding
affinity (nmol/l)
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patients. Upon the availability of suitable PK/pharmacody-
namic (PD) models for adalimumab’s efficacy end point in 
specific disease populations, the current mechanistic model 
may be flexibly extended for predicting loss of efficacy due to 
ADA development.

By replicating a clinical trial with adalimumab using simu-
lation, we obtained qualitative comparison for drug trough 
concentrations (Figure 5). For ADA+ patients, drug concen-
trations in the trial are lower than the model prediction. We 
speculate the lower drug concentrations could be confounded 
by the ADA assay, which has low drug tolerance.24 Only the 
ADA+ patients who show considerable reduction in drug 
exposure may be captured by the ADA assay. This is prob-
ably why the percentage of ADA+ patients in the trial is much 
smaller compared to the model prediction (see data labels). 
For ADA− patients, the model prediction is close to the obser-
vations at week 4, but underestimates the measurements at 
later time points; however, the published data are limited to 
67 patients where adalimumab trough exposure was mea-
sured after 4 weeks. Overall, despite these differences, the 
high-level trends are reasonably consistent between model 
simulation and the measurements. ADA generation greatly 
reduced drug exposure in ADA+ patients. Considering the 
presence of many potential confounding factors, e.g., small 
numbers of patients with ADA measurements and the lack of 
patient-specific information such as MHC genotype, a quali-
tative agreement constitutes a reasonable start.

In summary, a mechanistic model for immunogenicity was 
constructed, and its potential applications were illustrated 
using case studies. Preliminary model validation was per-
formed using mouse immunization studies. The capability of 
the model to simulate population responses was demonstrated 
by simulating immune responses against adalimumab in a 
North American population as well as in a European clinical 
trial. By integrating protein-specific antigenic properties and a 
subset of subject-specific characteristics, the model provides 
predictions of the relevant immune response features that are 
subjected to validation, including drug and ADA exposure, as 
well as immunogenicity incidence. It is worthwhile to point out 
that the current model is a prototype model, which needs to be 
further improved and vigorously validated before attempting to 
predict immunogenicity. The examples are provided to illustrate 
its potential applications, and to highlight the impacting factors 
for immunogenicity, such as the MHC genotype, ADA assay 
sensitivity and drug tolerance, etc.

The main limitation of the model is that it is inherently diffi-
cult to validate some of the model predictions, both for mouse 
and human, and thus this initial development is hypothesis 
generating. A direct comparison of study end points, such as 
ADA titer, immunogenicity incidence, or loss of clinical effi-
cacy, against model simulations is not straightforward. For 
instance, the concentration and affinity of ADA from model 
simulation cannot directly translate into titer values, due to 
the heterogeneous nature of ADA and the lack of a reference 
standard in the titer assay. Our hope is that experimental 
efforts can be directed to independent model validation by us 
as well as the broad scientific community.

Model validation using clinical data will be critical. Since 
many confounding factors can greatly impact immunoge-
nicity incidence, more granular information, such as patient 

genetic background, immune status, use of comedication, 
needs to be collected in clinical studies. A suitable clinical 
trial can then be applied toward model validation by compar-
ing ADA status, drug concentration, etc. In addition, model 
improvements are expected by incorporating other impact-
ing factors, for example comedication, aggregation, excipient 
in the formulation, or patient immune status. Upon vigorous 
validation and improvement, the current model can poten-
tially be applied to integrate preclinical and clinical data, and 
ultimately aid the risk assessment of immunogenicity for 
therapeutic proteins.

MeTHODS

The model structure has been discussed in detail in the com-
panion manuscript (Part 1). The current manuscript intends 
to demonstrate practical applications for the mechanistic 
model, using some case studies as examples. The software 
Matlab (The MathWorks, Natick, MA) was used for model 
implementation and for the simulations described below.

Simulation of immune responses against OVA in mouse
For model validation/data fitting purposes, two sets of exper-
imental data were obtained from the literature on mouse 
immunization studies, where OVA or OVA-derived peptide 
was used as an antigen. We chose OVA because it is a well-
studied antigenic protein for various animal species, and the 
antigen-specific parameters (e.g., T-epitope and its MHC-II 
affinity) can be readily obtained from the literature.

The first study determined the number of T-helper cells 
specific for the OVA peptide (OVA

323–339) before and after 
immunization with OVA323–339 in mice.17 As described in the 
original reference, C57BL/6 mice were given i.v. injection 
of 50 μg of OVA323–339 plus 5 μg LPS. Mean total number 
(±SD, n = 2–8) of OVA323–339-specific helper T cells were 
determined using MHC-peptide tetramers, which are com-
posed of four identical biotinylated OVA peptide:I-Ab MHC 
molecules complexed to a fluorochrome-labeled streptavidin 
core. Kinetics of total T-helper cell number after OVA323–339 
challenge in Figure 5c of the ref. 17 was extracted using 
DigitizeIt (ShareIt, Eden Prairie, MN). For model simulation, 
antigen-specific parameters, including the MHC-II binding 
affinity and the elimination rate of OVA323–339 in mouse, were 
obtained from the literature. Since MHC-II genotype is an 
important determinant for binding affinity between T-epitope 
and MHC, the MHC-II genotype of C57BL/6 mice, I-Ab, is 
used. The binding affinity for OVA323–339 peptide against I-Ab 
was reported to be 400 nmol/l.34 The elimination rate of 
OVA323–339 peptide was assumed to be the same as OVA due 
to lack of available data in the literature, and was calculated 
to be 2.088 day−1 by fitting the PK data with a one-compart-
ment model35 using the exponential curve fitting function in 
Microsoft Excel. The antigen-specific parameters, together 
with the dosing regimen, were fed to the mouse model for 
simulation. The numbers of total T-helper cells, including 
naive, activated, functional, and memory T cells were cal-
culated from the simulation results and compared with the 
experimental result.

The second study determined the absolute number of 
OVA-specific plasma cells (PCs) in the spleen and bone 
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marrow following secondary immunization with OVA.18 
Briefly, for primary immunization, BALB/c mice received 100 
μg alum-precipitated OVA through i.p. injection. After 3–5 
weeks, primed mice were boosted by i.v. injection of 100 μg 
OVA. The OVA-specific PCs were defined as surface Ig low/
intracellular OVA-binding blasts. Data were extracted using 
DigitizeIt (ShareIt) from Figure 6a in ref. 18. The whole body 
total number of PCs was calculated based on the equation: 
total PCs = spleen PCs × 4 + bone marrow PCs. The sca-
lar “4” reflects the fact that the spleen contains about ¼ of 
the PCs in the body.36 For model simulation, antigen-spe-
cific parameters were obtained from the literature. Since 
OVA323–339 is the only widely and consistently reported strong 
T-epitope on OVA, it is assumed that OVA323-339 is the only 
T-epitope on OVA. The binding affinity between OVA323–339 
and I-Ad (MHC-II genotype for BALB/c mice) is 150 nmol/l,37 
and the elimination rate for OVA was calculated to be 2.088 
day−1 (ref. 35) The simulated total PC number was calculated 
by adding up short-lived and long-lived PCs, and was com-
pared against the experimental data. Some adjustment to 
the model parameters was necessary to account for the data 
(see Results section).

Simulation of immune responses against adalimumab in 
a human population
To demonstrate the potential of the model to simulate 
immune responses in a human population, adalimumab 
(Humira) was used as a representative therapeutic protein. 
Although it is a fully human monoclonal antibody, adalim-
umab elicits immune response in a subset of patients. The 
model was used to simulate human immune responses 
against adalimumab under clinical dosing regimen in 1,000 
virtual patients in North America. The simulation intends to 
predict the immune response under chronic dosing; there-
fore, adalimumab was dosed subcutaneously at 40 mg 
every 2 weeks (41 doses) in the simulation for 574 days. The 
simulated immune responses depend on (i) protein-specific 
antigenic characteristics, e.g., the number of T-cell epitope, 
their MHC-II binding affinities, and therapeutic protein dos-
ing regimen; and (ii) patient-specific characteristics, e.g., 
patient-specific MHC-II genotype and individual clearance 
rate for adalimumab.

To obtain the protein-specific parameters (particularly, 
T-epitope information) for adalimumab, the IEDB prediction 
tool for MHC-II (http://tools.immuneepitope.org/analyze/
html/mhc_II_binding.html) was applied to predict strong 
T-epitopes.1,29 It was assumed that T-epitopes on adalim-
umab only reside within the complementarity determin-
ing region (CDR): adalimumab is a fully human antibody, 
thus other regions would be conceivably well tolerated by 
the immune system. We defined the predicted T-epitopes 
as the top 2% of hits based on IEDB ranking. Two strong 
promiscuous T-epitopes are predicted, including “AKVSYL-
STASSLDYW” on the heavy chain CDR-3 region, and “KLLI-
YAASTLQSGVP” on the light chain CDR-2 region. The 
binding affinities of the epitopes against individual MHC-II 
alleles were then predicted by the IEDB class II prediction 
tool, by using the IC50 values from SMM_align or NetMHCI-
Ipan method. The two T-epitopes were predicted to bind to 

some MHC-II DR alleles, but not to any DP and DQ alleles. 
For MHC-II alleles that are predicted to have no binding, 
a binding affinity of 4 μM is assumed, same as the bind-
ing affinity between endogenous competing peptides and 
MHC-II.38 The binding affinity predictions are summarized 
in Figure 6.

Patient-specific characteristics currently include popula-
tion MHC-II allele frequency and population elimination rate 
for adalimumab. The MHC-II allele frequency for HLA-DRB1 
in North America was obtained from the database “dbMHC” 
(http://www.ncbi.nlm.nih.gov/projects/gv/mhc/). The popula-
tion distribution of the elimination rate of adalimumab was 
based on a population PK study,39 reporting a log-normally 
distributed half-life with variability estimated at 54.6% coef-
ficient of variation. The PK profile of adalimumab after 
subcutaneous injection was modeled using a modified two-
compartment model (manuscript Part 1), based on a single 
i.v. dose PK study40 and the Tmax (time to reach maximum 
serum concentration, reported to be 131 h) after subcutane-
ous dosing.41

Upon the availability of the protein- and patient-spe-
cific information, simulations were conducted for immune 
responses against adalimumab in 1,000 virtual subjects 
(Figure 6). Since the two T-epitopes were predicted to 
bind to some MHC-II DR alleles, but not to any DP and DQ 
allele, only specific DR alleles were simulated for each vir-
tual patient, and the DP and DQ alleles were simplified as 
generic nonbinding alleles with binding affinity of 4 μmol/l. To 
generate the genotype of the DR alleles for a virtual patient, 
two DR alleles were randomly chosen from the candidate 
alleles listed in Figure 6. The probability of choosing each 
allele is based on the allele frequency. Once the two DR 
alleles were determined, the binding affinities between T-epi-
topes and DR alleles were obtained from the table. Another 
patient-specific variability is added by randomly sampling 
elimination rates of adalimumab from the predefined distri-
bution determined from the population PK study.39 The sub-
ject-specific MHC-II binding affinities and elimination rate of 
adalimumab were then applied for simulating this subject. By 
repeating the above processes, simulations were performed 
for 1,000 subjects. All the parameters used for this simula-
tion are in the model code and provided as Supplementary 
Material online.

Simulation of immune responses against adalimumab in 
a clinical trial
A clinical trial of adalimumab therapy24 was used for 
 comparison with the model simulation. The patient number  
(N  = 168) and dosing regimen were replicated in the simula-
tion as in the reference. In the trial, dose escalation was given 
to overcome the loss of clinical efficacy. We tried to replicate 
the dose escalation in Figure 2a of the ref. 24 by raising the 
dose in patients who had the lowest drug concentration at 
designated time points. The European population MHC-II 
allele frequency was used since the trial was conducted in 
Europe. Other variables in the simulation, such as T-epitopes 
and the population eliminavation rate of adalimumab, were 
the same as in the previous simulation for a North American 
population.

http://tools.immuneepitope.org/analyze/html/mhc_II_binding.html
http://tools.immuneepitope.org/analyze/html/mhc_II_binding.html
http://www.ncbi.nlm.nih.gov/projects/gv/mhc/


www.nature.com/psp

Immunogenicity Mathematical Model Applications
Chen et al.

9

Acknowledgments. We thank Bonita Rup for her valuable 
suggestions on the manuscript, and thank Mary Spilker and 
Michael Zager for their help during the model building pro-
cesses. Portions of this work were presented at the 2013 
AAPS National Biotechnology Conference, 20–22 May 2013, 
San Diego, CA (Poster Abstract NBC-13-0644).

Author contributions. X.C., T.P.H., and P.V. wrote the man-
uscript. X.C., T.P.H., and P.V. designed the research. X.C., 
T.P.H., and P.V. performed the research.

conflict of Interest. X.C., T.P.H., and P.V. are employed by 
Pfizer. X.C., T.P.H., and P.V. hold stock in Pfizer. Associate Edi-
tor P.V. was not involved in the review or decision process for 
this paper.

 1. Wang, P., Sidney, J., Dow, C., Mothé, B., Sette, A. & Peters, B. A systematic assessment of 
MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS 
Comput. Biol. 4, e1000048 (2008).

 2. Bui, H.H. et al. Automated generation and evaluation of specific MHC binding predictive 
tools: ARB matrix applications. Immunogenetics 57, 304–314 (2005).

 3. Nielsen, M., Lundegaard, C. & Lund, O. Prediction of MHC class II binding affinity using 
SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics 8, 238 
(2007).

 4. Reche, P.A., Glutting, J.P., Zhang, H. & Reinherz, E.L. Enhancement to the RANKPEP 
resource for the prediction of peptide binding to MHC molecules using profiles. 
Immunogenetics 56, 405–419 (2004).

 5. Rammensee, H., Bachmann, J., Emmerich, N.P., Bachor, O.A. & Stevanović, S. 
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