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Abstract
Malaria detection throughmicroscopic examination of stained blood smears is a diagnostic

challenge that heavily relies on the expertise of trainedmicroscopists. This paper presents

an automated analysis method for detection and staging of red blood cells infected by the

malaria parasite Plasmodium falciparumat trophozoite or schizont stage. Unlike previous

efforts in this area, this study uses quantitative phase images of unstained cells. Erythro-

cytes are automatically segmented using thresholds of optical phase and refocused to

enable quantitative comparison of phase images. Refocused images are analyzed to

extract 23 morphological descriptors based on the phase information.While all individual

descriptors are highly statistically different between infected and uninfected cells, each

descriptor does not enable separation of populations at a level satisfactory for clinical utility.

To improve the diagnostic capacity, we applied various machine learning techniques,

including linear discriminant classification (LDC), logistic regression (LR), and k-nearest
neighbor classification (NNC), to formulate algorithms that combine all of the calculated

physical parameters to distinguish cells more effectively. Results show that LDC provides

the highest accuracy of up to 99.7% in detecting schizont stage infected cells compared to

uninfected RBCs. NNC showed slightly better accuracy (99.5%) than either LDC (99.0%) or

LR (99.1%) for discriminating late trophozoites from uninfected RBCs. However, for early

trophozoites, LDC produced the best accuracy of 98%. Discrimination of infection stage

was less accurate, producing high specificity (99.8%) but only 45.0%-66.8%sensitivity with

early trophozoitesmost oftenmistaken for late trophozoite or schizont stage and late tro-

phozoite and schizont stagemost often confused for each other. Overall, this methodology

points to a significant clinical potential of using quantitative phase imaging to detect and

stagemalaria infection without staining or expert analysis.
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Introduction
Malaria is a parasitic infectious disease caused by Plasmodium species, with P. falciparum
being the most deadly and clinically relevant. This parasite has a complex intra-erythrocytic
life cycle, moving through several stages of development while consuming the hemoglobin of
the red blood cell (RBC). The gold standard for malaria diagnosis is manual microscopic evalu-
ation of Giemsa stained blood smears. However, the utility of this approach is limited by the
skill of an expertmicroscopist. Further, both the staining process and microscopic examination
can be time consuming [1]. Therefore, there is an unmet need to bypass these requirements to
allow easy detection and staging of malaria infection.
The aim of this manuscript is to report on the development of a method to automatically

detect P. falciparum infection in unstained blood samples without human interpretation.
Hänscheid et al. reported automated malaria diagnosis, using the Cell-Dyn full blood count
analyzer that can distinguish abnormal monocytes and neutrophils containing birefringent
hemozoin, showing 48.6% sensitivity and 96.2% specificity [2,3]. Several previous efforts have
sought to use machine learning algorithms to detect malaria infection by automated analysis of
microscopic images of stained red blood cells [4–6], achieving 84–95% accuracy in detecting
parasites. These approaches can improve detection by removing the need for manual evalua-
tion. However, they still rely on brightfield imaging of fixed and stained red blood cells. New
imaging approaches can provide additional information that can potentially be used to
improve automated detection. For example, recent studies using quantitative phase measure-
ments have shown the ability to discern structural features indicative of P. falciparum infection
in live, unstained blood cells [7]. Quantitative phase imaging (QPI) has been previously used to
study morphological and temporal characteristics of individual cells in vitro by definingmany
metrics related to structuralmechanics [8], molecular content [9], and dynamic responses to a
wide range of stimuli with nanoscale sensitivity [10,11]. However, even with the wealth of
information available through QPI, we still lack an automated algorithm that can discriminate
malaria infection with sufficient accuracy to realize the clinical potential. Recent efforts from
the group of B. Javidi have examined shape correlation of RBC images across several focal
planes and achieved 86% discrimination accuracy [12]. Here, we seek to further improve the
discrimination capacity of automated analysis by using multiparametric characterization of
individual blood cells based on morphological descriptors extracted from quantitative phase
images of live, unstained red blood cells. We have constructedmachine learning algorithms
using morphological descriptors of each cell extracted from quantitative phase images rather
than the image data itself. Use of these parameters reduces the size of both training and test
sets to allow the analysis of larger numbers of cells than previous studies using QPI. The result-
ing algorithms allow identification of malaria infectionwith high accuracy (>99%) and good
discrimination of infection stage.

Materials andMethods

Ethics statement
This study was conducted with the approval of the Duke University Institutional ReviewBoard
(IRB), and the participant provided a written informed consent to participate in this study.

Blood sample preparation
A whole blood sample was collected from a healthy, non-pregnant donor with informed writ-
ten consent. In order to isolate red blood cells, purification protocols outlined by Sangokoya
et al. were followed [13]. The fresh human blood sample was diluted in half by adding a volume
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of PBS equal to the blood volume. Then, the blood suspension was carefully layered on top of
Ficoll, in an amount equal to the blood volume, in 50 cc conical tube. The cells were spun at
1500 rpm for 35 minutes at 25°C with no break. After the spin, RBC pellets at the bottom were
isolated by removing the supernatant top layer, including white blood cells (WBC), and washed
once in PBS.
RBCs were infected with P. falciparum strain, 3D7A, and synchronized using methods

describedby Saliba and Jacobs-Lorena [14]. During the 48-hour life cycle, infected RBCs were
isolated from the general RBC population by magnetic sorting via a MACS magnet (Miltenyi
Biotec) to separate uninfectedRBCs from those containing parasites. Briefly, when most para-
sites are observed to be trophozoites or schizonts in a 30 mL culture, 5 mL of cultured cells are
centrifuged at room temperature for 5 minutes at 1000 rpm (201 x g). Meanwhile, a prewarmed
LS column (Miltenyi Biotec) is placed on a MACS magnet and is equilibrated with 5 mL of
incomplete medium at 37°C. Supernatant from pelleted culture is removed, resuspended in 5
mL of incomplete medium and run through the LS column. The column is washed three times
with 5 mL of incomplete medium at 37°C. The column is then carefully removed from the
magnet, placed in a 15 mL conical tube, and eluted with 3 mL of incomplete medium at 37°C.
The resuspended parasites are centrifuged at room temperature for 5 minutes at 1000 rpm
(201 x g). The supernatant is removed, and the parasites are resuspended in 1 mL of PBS con-
taining calcium chloride and magnesium chloride.
Parasite-infected red blood cells that were isolated using the magnetic sorting technique

were imaged label-free in an aqueous environment (99:1 Dulbecco’s phosphate buffered saline,
D8662 Sigma-Aldrich, to bovine albumin fractionV (7.5%), 15260–037 Gibco) using the QPS
system at multiple time-points throughout the 48-hour life cycle: early trophozoite (24 hrs),
late trophozoite (36 hrs), and schizont (48 hrs) stages (Distribution of RBC types, Table 1).
Since RBCs with malaria parasites in ring stage, 12 hours post synchronized infection, could
not be isolated with the magnetic sorting technique, they are not included in this study. Bright-
field images of the histologic slides were made by fixing and staining RBCswith parasites at dif-
ferent stages of infection along with uninfected RBCs as shown in Fig 1.
White blood cells were also separated from the whole blood sample following the RBC isola-

tion protocol, outlined above, until the centrifugation step. After spinning the cells, the upper

Table 1. Distribution of RBC types used for imaging experiments.

Sample type # of cells (N) Time after infection [hours]

Uninfected (S1 Fig) 413 —

Early trophozoite (S2 Fig) 173 24

Late trophozoite (S3 Fig) 314 36

Schizont (S4 Fig) 337 48

doi:10.1371/journal.pone.0163045.t001

Fig 1. Bright-field microscopy images.Bright-field microscopy images: (A) uninfected RBC (B-D)RBCs with malaria parasite in
early trophozoite, late trophozoite, and schizont stages respectively (scale bars = 5μm).

doi:10.1371/journal.pone.0163045.g001
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layer containing plasma and platelets was removed without disturbing theWBC layer. WBC
are carefully collected and washed in PBS + 10% FBS. The solution was then pelleted at 1500
rpm for 10 minutes and the supernatant was aspirated to isolate theWBCs. The isolatedWBCs
were washed and resuspended in PBS.

Quantitative phase spectroscopy
We have used our quantitative phase spectroscopy system (QPS, Fig 2) [15] to image red blood
cells. The digital holography system uses a supercontinuum laser source (Fianium SC-400-4)
that is spectrally filtered to select a 1.12nm spectral full-width at half-maximum bandwidth
from the broadband light with a variable center wavelength that is tuned across 475nm–700nm
in 5 nm increments. This bandwidth is broad enough to reduce speckle from coherent artifacts
but produces a reasonably long coherence length (ranges from 83–193 μm, depending on the
center wavelength) such that the interferometric efficiency is not significantly degraded across
the field of view.
The system employs a custom scheme to implement a rapidly-tunable spectral filter [15].

The filter uses a 300 lp/mm transmission diffraction grating (DG) with a galvanometric scan-
ning mirror (GSM) to couple the selectedwavelengths into a single-mode fiber so that it may
be introduced to the interferometer. The fiber output passes through a linear polarizer (LP)
before entering the off-axisMach-Zehnder interferometer as a collimated beam. In the interfer-
ometer, a beam splitter (BS) separates the illumination light into sample (S) and reference (R)
arms that are path-matched within the coherence length of the filtered light using mirror-
based retroreflectors (RR) on translation stages. The propagation angle of the reference arm is
offset with respect to the sample arm to cause an angle difference between the two beams, cre-
ating off-axis interferograms (Fig 2C) that are detected by the CMOS camera (Photron Fas-
tCam SA-4, 1024×1024 px, 10-bit data capture). Matched microscope objectives,MO1 and
MO2 (Zeiss Plan-NeoFLUAR 40× 0.75NA) are used in each arm, creating an image of the sam-
ple with an effectivemagnification of ~107x.
The interferograms are digitally processed, as describedpreviously [15,16], to produce

quantitative phase images, Δϕ(x,y). Processing steps include: (1) Fourier transforming the

Fig 2. QPS systemdiagram. (A) Quantitative phase spectroscopy system: (DG) diffraction grating, (GSM) galvanometric scanning
mirror, (LP) linear polarizer, (BS) beam splitter, (RR) retroreflectors, (MO)microscope objective. Path-matched sample (S) and
reference (R) beams create off-axis interferograms imaged by a CMOS camera. (B) Interferogram spectral sweep from 475–700nmat
5nm increments in ~6s (C) Interferogramwith corresponding fringes created by off-axis angle difference between the sample and
reference arms.

doi:10.1371/journal.pone.0163045.g002
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interferogram, (2) spatially filtering around the carrier frequency in the Fourier domain to iso-
late one of the complex conjugates, (3) re-centering the filtered two dimensional spatial fre-
quency information and demodulating the complex wave, (3) inverse Fourier transforming the
frequency information to produce a complex image of the wavefront differences containing
both amplitude and phase information. A hyperspectral set of reference holograms of media-
only fields of view (FOV) is captured separately and subtracted from the corresponding sample
images of RBCs to remove phase artifacts due to non-uniformities in illumination. Any low-
order background phase, variations caused by temporal drift between the two interferometer
arms, are then removed by fitting the images to 5th-order polynomials. Changes in optical path
length are calculated as:

DOPLðx; y; lÞ ¼ Dnðx; y; lÞ � hðx; yÞ ¼ D�ðx; y; lÞ � l=2p ð1Þ

where h(x,y) is the height map of the object and Δn(x,y,λ) is the refractive indexmap. Each data
set comprises a distribution of optical path lengths across a range of several wavelengths. The set
of optical path lengthmaps are then averaged across the wavelengths to obtain an image with
further reduced coherent noise artifacts [15]. Spatial noise of media-only background images is
measured to be 7.5 mrad, corresponding to a ΔOPL sensitivity of 0.69 nm. Spectrally-averaged
images are digitally refocusedusing a previously describedalgorithm [17] and red blood cells are
automatically segmented from each FOV by applying joint optical path length and area thresh-
olds.Within each FOV, all objects with ΔOPL> 10nm are identified as potential RBCs.Upper
and lower area thresholds are used to exclude objects that are significantly bigger or smaller than
known RBC size [18] such as cell clumps or fragments, free parasites, and non-RBCobjects.

Morphologicalparameters
In order to characterize the different types of RBC populations, 23 morphologicalmetrics,
listed in Table 2, are extracted from the isolated cells using both standard packages in
MATLAB and customized algorithms.
Quantitative measurements describing the geometric shape of the cells are calculated by

analyzing the OPL maps (Fig 3A–3H) of the uninfected and malaria infected RBCs at various
stages. Examples of geometric parameters used here are: 1) Elongation—the ratio of major axis
length to minor axis length where major and minor axis are the longest and shortest lines
across the centroid of an RBC’s binarymask, 2) Equivalent diameter—the diameter of a circle
with the same area as that of the RBC, 3) Eccentricity—the ratio of the distance between the
foci and the major axis length of a RBC describing the roundness of its shape.0020
In addition, statistical features based on the histograms of the OPL distribution for each cell

(Fig 4A–4D) are also used to characterize the RBCs. Both skewness and kurtosis, also known as
3rd and 4th central moments respectively, describe the shape of the histogram: skewness repre-
sents asymmetry of data points around the mean value while kurtosis characterizes the heavy
tails of a histogram that can be related to the shape of the peaks in the distribution. These
parameters can be calculated as:

Skewness ¼ E DOPLðx; yÞ � DOPLðx; yÞ
� �3

=sOPL
3 ð2Þ

Kurtosis ¼ E DOPLðx; yÞ � DOPLðx; yÞ
� �4

=sOPL
4 ð3Þ

where E(t) is the expected value.
Further parameters can be obtained by calculating the gradient of each cell’s phase changes.

The rate of change in the height of different types of RBCs, as represented by gradient maps
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Table 2. Morphological parameters used to describeRBCs.

Parameters Definition

Max OPL ΔOPLMAX(x,y)
MeanOPL DOPLðx; yÞ

MedianOPL D gOPLðx; yÞ

Optical volume [17]
Z Z

DOPLðx; yÞdxdy

Minor axis length Shortest line across a cell’s binarymask through its centroid

Major axis length Longest line across a cell’s binarymask through its centroid

Perimeter Outline of a cell’s binarymask

Area Extent of a cell’s binarymask

Elongation Major axis length
Minor axis length

Equivalent diameter
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cell area

p

q

Eccentricity Foci length
Major axis length Foci length ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Major axis length

2

� �2

�
Minor axis length

2

� �2
r !

Standard deviation OPL
sDOPL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðDOPLðx;yÞ� DOPLðx;yÞÞ2

n

q

Variance OPL s2
DOPL

Interquartile range OPL Difference between the upper and lower quartiles that measuresmidspread of ΔOPL

Skewness Asymmetry of ΔOPL’s histogramwith respect to its mean

Kurtosis Shape of peaks in ΔOPL’s histogram

Mean symmetry Average rotational symmetry value

Min symmetry Minimum rotational symmetry value

Maximumgradient Maximum of krOPL(x,y)k

Mean gradient Average of krOPL(x,y)k

Centroid vs. Center of mass Physical skewness of a cell

Upper quartilemeanOPL Average of largest 25% ΔOPL values

Upper quartilemean gradient Average of largest 25%rOPL values

doi:10.1371/journal.pone.0163045.t002

Fig 3. OPLmaps.Uninfected RBC and RBCs infected by P. falciparum in early trophozoite, late trophozoite, and schizont stages
represented respectively as: (A-D)OPLmaps, (E-F)OPLmaps from different viewpoint (scale bars = 5μm).

doi:10.1371/journal.pone.0163045.g003
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(Fig 5A–5D), identifies sharp changes in the thickness of infected RBCs, which could arise due
to parasite infection. The magnitude of the gradient can be calculated as:

krOPLðx; yÞk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@OPLðx; yÞ
@x

� �2

þ
@OPLðx; yÞ

@y

� �2
s

ð4Þ

The symmetry of each cell can also provide valuable discrimination. Symmetry is calculated
as the dot product of a rotated image of the RBC and the original image across a range of angles
up to a full rotation referenced to the scalar product of the original cell image.

Symmetry yð Þ ¼
ðDOPLðx; yÞ � DOPLðx0; y0ÞÞ

kDOPLðx; yÞk2
where

x0

y0

" #

¼
cosy siny

� siny cosy

" #
x

y

" #

ð5Þ

Symmetry values for the uninfected RBC and the three different stages of parasite-infected
RBCs shown in Fig 3 are plotted in Fig 6 across the range of rotation angles. Bothmean and
minimum symmetry values are used as descriptors of the red blood cells.
Another way of representing asymmetry is by analysis of the differences between the cen-

troid and center of mass. These both represent geometric centers of an RBC; however, centroid
assumes uniform density across its area. For example, in Fig 7, the centroid of an RBC contain-
ing a parasite at schizont stage is calculated with a binarymask of the cell while the center of
mass is calculated using the OPL map as a surrogate measure of mass distribution. Therefore,
the difference between the two positions can be related to the magnitude of an RBC’s physical
asymmetry.

Fig 4. OPL histograms. (A-D) OPL histograms of uninfected RBC and RBCs infected by P. falciparum in early trophozoite, late
trophozoite, and schizont stages respectively as shown in Fig 3.

doi:10.1371/journal.pone.0163045.g004

Fig 5. Gradientmaps. (A-D)Gradientmaps of uninfected RBC and RBCs infected by P. falciparum in early trophozoite, late
trophozoite, and schizont stages respectively as shown in Fig 3 (scale bars = 5μm).

doi:10.1371/journal.pone.0163045.g005
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Finally, the upper quartile of the OPL and OPL gradient histograms for each RBC are aver-
aged to produce descriptors that reflect the differences in the thickest regions and greatest tran-
sitional regions, of cells, respectively. These metrics are expected to be directly related to the
presence of parasites.
When the uninfectedRBC population is compared against the malaria parasite-infected

RBC population, all of the 23 morphological parameters listed in Table 2 show differences that
are highly statistically significant when considered individually (P-value << 0.001). However,
uninfected and infected RBC populations cannot be separated from each other when only one
of these morphological parameters is used. For example, maximum optical path length, which
produces the smallest p-value, can be used to determine a threshold of classification as shown
in Fig 8. This parameter separates the two populations with 94.0% specificity, 88.8% sensitivity,

Fig 6. Symmetry values.Symmetryvalues of uninfected RBC and RBCs infected by P. falciparum in early
trophozoite, late trophozoite, and schizont stages respectively as shown in Fig 3 versus angles of rotation.

doi:10.1371/journal.pone.0163045.g006

Fig 7. Centroid vs. Center ofmass.Binarymask used to calculate centroid and ΔOPLmap used to calculate
center of mass for an RBCwith P. falciparumat schizont stage (scale bars = 5μm).

doi:10.1371/journal.pone.0163045.g007
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and 90.5% accuracy. Since all of the 23 metricsmeasured by QPS result in highly statistically
significant differences in describing the two different populations, machine learning systems
are used to combine the parameters in a logical way to formulate algorithms that can better
separate the populations.

Machine learning algorithms
Machine learning systems build a predictive model based on identified inputs as a teaching or
learning set and classify new datasets using a customized algorithm instead of following explic-
itly programmed instructions. In order to classify RBCs, 3 different types of machine learning
techniques were examined based on their prediction accuracy and speed: linear discriminant
classification (LDC), logistic regression (LR), and k-nearest neighbor classification (NNC).
LDC, also known as Fisher discriminant classification, relies on linear combinations of training
data that best separate different populations by finding a multidimensional axis that maximizes
the between-population variability while minimizing the within-population variability. LR is
an algorithm that determines a linear combination of parameters from training data based on
the maximum likelihoodmethod with logit link function.Unlike LDC and LR which create
algorithms from the training data, NNC is an instance-based learner, which directly uses the
training dataset for classification.When a new dataset is in need of classification, NNC finds k-
number of closest points (k = 3) and classifies the new data according to the majority identifica-
tion of those nearest neighbors. For our experiment, the k parameter has been determined by

Fig 8. Population identification usingmaximumOPL.Comparison of maximumOPL for uninfected RBCs and
RBCs with parasites at all of the stages combined. Optimal threshold for population identification based on
maximumOPL results in 90.5% accuracy.

doi:10.1371/journal.pone.0163045.g008
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testing NNC’s performance using different k ranging from 2–5. These algorithms are used to
make binary classification between uninfected cells and cells with malaria parasites in different
erythrocytic stages. Also, their performances for determining the different stages of infection
are evaluated through multinomial classification.
The predictive power of the supervised learningmethods is assessed using k-fold cross-vali-

dation (k = 10). In order to validate a machine learningmodel, the dataset (N = 1237) which
includes both infected and uninfected cells is randomly partitioned into 10 subsets that are
roughly equal in size. Then, 9 of the subsets are used as the training dataset to create a model
and the remaining subset is used as the testing set to measure its performance. Analysis with a
different testing set is repeated until all 10 subsets have been used once as a testing set. To mini-
mize variability, average performance of a model using 100 rounds of cross-validation with
new subsets which are randomly partitioned each time is reported.

Results

Uninfected vs infected RBC
Machine learning algorithms are used to distinguish uninfectedRBCs from 3 different hemo-
zoin containing stages of P.falciparum infected RBCs (early trophozoite–ET, late trophozoite–
LT, schizont–S). The performance of the three supervised learningmethods, as evaluated using
the 10-fold cross-validation technique, is summarized in Table 3.
All of the classificationmethods have higher specificities compared to their sensitivities

when distinguishing uninfected from infected RBCs for all 3 stages of infection. The specifici-
ties ranged from 98.4% for LR with the early stage of infection (ET) to 100% for the best per-
forming method (LDC) for both LT and S stages. Among all three methods, the worst
performance was in distinguishing ET, with NNC offering the lowest sensitivity for this stage
(87.8%) while that of LDC and LRmethods were 93.5% and 90.8%, respectively. The overall
accuracy of the classificationmethods are compared graphically in Fig 9A. Note that the accu-
racy remains over 95% for all of the stages and machine learningmethods examined here.
ROC curveswith corresponding AUC values are shown in Fig 9B–9D.
All of the methods show very high accuracies, especially when they are applied to classify

uninfectedRBCs from RBCs with P.falciparum parasites in later stages: they are able to classify
RBCs with P.falciparum parasites in schizont stage at or above 99.6% accuracies. These results
are supported by the perfect and near-perfect AUC values in Fig 9B–9D. As expected, all of the
machine learning algorithms show lower accuracies when differentiating RBCs with ET para-
sites because this early stage of infection exhibits less morphological changes.
The clinical utility of these approaches can be illustrated by calculating the positive and neg-

ative predictive values (PPV & NPV, Table 4). For cells with parasites in LT and S stages, the
PPVs are both 100% using LDC. The perfect positive predictive values and specificities indicate
that the classifier did not have any false positive outcomes where uninfected RBCswould be
incorrectly classified as RBCs with parasites in either LT or S stages. The NPV values for all of
the stages are above 95% indicating that there are only a few false negatives where infected

Table 3. Performance of machine learningalgorithms: Uninfected vs Infectionstage.

NNC LR LDC

Stage (# of cells) ET (173) LT (314) S (337) ET (173) LT (314) S (337) ET (173) LT (314) S (337)

Sensitivity [%] 87.8 ± 0.7 99.2 ± 0.3 99.0 ± 0.2 90.8 ± 0.4 98.9 ± 0.2 99.4 ± 0.2 93.5 ± 0.3 97.7 ± 0.3 99.4 ± 0.04
Specificity [%] 99.2 ± 0.2 99.8 ± 0.01 100 98.4 ± 0.2 99.3 ± 0.1 99.7 ± 0.1 99.9 ± 0.1 100 100

Accuracy [%] 95.8 ± 0.3 99.5 ± 0.1 99.6 ± 0.09 96.1 ± 0.2 99.1 ± 0.1 99.6 ± 0.1 98.0 ± 0.1 99.0 ± 0.1 99.7 ± 0.02

doi:10.1371/journal.pone.0163045.t003
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RBCs are classified to be uninfected,mostly for early trophozoite stage. The NPV show errors
ranging from 0.5% to 4.8% depending on infection stage (NNC: 8, 1, 2 / LR: 7, 3, 2 / LDC: 5, 6,
2 misclassified cells respectively for ET, LT, and S).

Discriminationof infection stages
The results of multinomial classifications using the supervised learning algorithms, NNC, LR,
and LDC, are shown in Fig 10. The classification of the cells, as determined by time after syn-
chronized infection and confirmedwith histological analysis, are listed in the left column and

Fig 9. Uninfected vs. InfectedRBC.A) Accuracy of nearest neighbor classification (NNC), logistic regression (LR), and linear discriminant classification
(LDC) used to distinguish uninfected RBCs fromRBCs infected with P.falciparum parasites in early trophozoite (ET), late trophozoite (LT), and schizont (S)
stages. B- D) ROC curves and their corresponding AUC for NNC, LR, and LDC respectively.

doi:10.1371/journal.pone.0163045.g009

Table 4. Positive and negativepredictivevalues.

NNC LR LDC

Stage (# of cells) ET (173) LT (314) S (337) ET (173) LT (314) S (337) ET (173) LT (314) S (337)

PPV [%] 97.8 ± 0.6 99.7 ± 0.03 100 95.9 ± 0.6 99.1 ± 0.2 99.7 ± 0.2 99.8 ± 0.3 100 100

NPV [%] 95.2 ± 0.3 99.4 ± 0.2 99.2 ± 0.2 96.3 ± 0.2 99.2 ± 0.2 99.5 ± 0.1 97.3 ± 0.1 98.3 ± 0.2 99.5 ± 0.06

doi:10.1371/journal.pone.0163045.t004
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the percentages of predicted identities using the supervised learning systems are listed along
the rows of the table. The highlighted diagonal table elements indicate the correct classifica-
tions. Fig 11 presents these classification results graphically in stacked bar plots.
As can be seen in Fig 10, NNC, LR, and LDC all have high specificities, the rate of true unin-

fected cells classified as uninfected, of 99.1%, 98.7%, and 99.8% respectively. Furthermore,
none of the uninfectedRBCs are classified as RBCswith schizont stage parasites and very few
(1–7 cells) are classified as ET or LT. The majority of the cells across the different stages of
infection are identified correctly using all three algorithms (NNC: 45.0%, 50.1%, 59.7% / LR:
46.6%, 59.1%, 66.8% / LDC: 50.6%, 57.4%, 63.6% respectively for ET, LT, and S). The perfor-
mances of the classification algorithms for discriminating the various infection stages from

Fig 10. Infectionstaging.Table showing performanceof multinomialmachine learningalgorithms: Infection
stages.

doi:10.1371/journal.pone.0163045.g010
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Fig 11. Stacked bar plot–infection staging.Performance of multinomialmachine learningalgorithms:
Infection stages.

doi:10.1371/journal.pone.0163045.g011
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each other are lower than the specificities of the multinomial classifications. However, the clas-
sification errors rarely confuse an infected cell for an uninfected one. 9.9% (~17 cells), 3.8% (~7
cells), 6.5% (~12 cells) of the total ET population are classified to be uninfectedRBCs by NNC,
LR, and LDC respectively. This type of misclassification is even lower for RBCswith parasites
in LT and S stages for the algorithms, with the error rate dropping to 0.6% (2 cells) for LT and
zero for S stage cells using both the NNC and LDC algorithm.

Discriminationof white blood cells
In a further demonstration of the capabilities of this approach, white blood cells are separated
from the red blood cells by fractionating whole blood and are imaged by QPS. Fig 12 below
shows the OPL maps of fractionatedWBCs.
The machine learning algorithms from the previous experiments, includingmultinomial NNC,

LR, and LDC, that are trainedwith the uninfected and parasite-infectedRBCs are used to classify
WBCs in Fig 12. NNC and LDCpredicted 24/27WBCs (89%) and 19/27WBCs (70%), respec-
tively, to be uninfectedRBCs and the rest to be RBCswith parasites in the early trophozoite stage
while LR classified 9/27 cells (33%) to be uninfectedRBCs and the other cells as RBCswith para-
sites in ET stage. Since our algorithms classify some of theWBCs as cells infectedwithmalaria par-
asites, our system is limited to RBC samples that are isolated by whole blood fractionation.

Discussion
Malaria infection is a leading cause of death worldwide that can be managed with early detec-
tion and proper treatment using artemisinin-basedcombination therapies [19]. The

Fig 12. WBCs.WBCs, N = 27 (square tile = 20μmx 20μm).

doi:10.1371/journal.pone.0163045.g012
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parasitemia percentage at which patients display symptoms of infection can range anywhere
from 0.0002% to 0.7% depending on the severity of the infection and the level of immunity
towards malaria parasites [20]. Peripheral blood smear screening using the light microscope
can be very sensitive with the ability to detect malaria parasite densities as low as ~0.0001%.
However, the accuracy of the technique is reduced for low-density parasitemia. Errors of iden-
tification have been previously reported for samples with parasitemia densities below 0.4%
[21]. Also, microscopic examination of stained blood smears depends upon the expertise of
trainedmicroscopists and, therefore, is subject to humanistic error and variability. In regions
where malaria is not endemic and malaria microscopy examination is not routinely performed,
the sensitivity of malaria detection decreases significantly. A recent study in U.S. acute care set-
tings showed 88% sensitivity in distinguishing patients infected with P. falciparum [22] and an
earlier study in Canada reported that 59% of malaria cases were misdiagnosed [23]. In addition,
manual diagnosis procedures are time consuming and labor intensive. This aspect is especially
problematic since the majority of malaria-related deaths occur in low resource settings where
the needed expertise is not easily found [24]. Therefore, quantitative assessment of malaria
infection using automated methods can reduce the need for trainedmicroscopists and assist
clinicians to make better, faster decisions regarding malaria diagnosis.
Previously, Hänscheid et al. showed that a full blood count analyzer can be implemented as

an automated malaria diagnosis tool using the depolarizing characteristic of hemozoin [2,3].
Although erythrocytes can produce depolarizationwhen illuminated by laser light, monocytes
and neutrophils do not unless they contain hemozoin, a birefringent byproduct of malaria par-
asites. The full blood count analyzer can detect malaria by measuring changes in the intensity
of depolarized scattered light fromWBCs, effectively detecting those with hemozoin. Although
this approach showed specificity as high as 96.2%, the sensitivity was much lower at 48.6%.
Also, hemozoin-containingmonocytes have been found 2–3 weeks after the patients were
parasitologically cured which may result in false positives after the treatment.
QPI has also been used to analyze RBCs infected by P. falciparum by characterizing their

physical properties such as RBC volumes and shape correlation [7,12]. Kim et al. reconstructed
3-D optical refractive index (RI) tomograms of RBCs with malaria parasites at different stages
of infection that were used to quantify various features such as cytoplasmic and parasite vol-
umes.While this approach produces highly detailedmaps of RI, the computation time is exten-
sive. Further, although the examined parameters offer a useful characterization of cell changes
due to infection, they do not appear to provide a suitable method for discrimination. Anand et
al. used correlation coefficients based on the thickness distribution of RBCs at multiple recon-
structed axial planes to separate RBC populations. This approach produced reasonable accu-
racy but did not provide sufficient discrimination to point to clinical utility. Computation
times were not given but may be a barrier to examination of large numbers of cells with this
approach.
In this work, we have usedmorphological parameters extracted from phase images of RBCs

to build machine learning algorithms that show great performance in distinguishing uninfected
vs. infected RBCs. One improvement is reducing the total processing time needed to evaluate a
sample. After obtaining raw images from unstained blood samples, we can extract all of the rel-
evant morphological features of the RBCs in a FOV (~10 cells) in less than 150 seconds which
is much faster than previous efforts (15 sec/cell vs. 3000 sec/cell for Kim et al [7]). All data anal-
ysis was executed with custom scripts in MATLAB on a desktop computer (Intel Core i5 2400
CPU, 3.10GHz, 32 GB RAM). For clinical use, general machine learning algorithms, such as
LDC and LR, can be created ahead of time with training data of known samples. Since it is not
necessary to reconstruct new algorithms for each test sample, the analysis procedures can be
accomplished within a short time. Also, population identification using extracted features and
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pre-built machine learning algorithms takes ~5ms for all of the cells in a FOV, which allowed
us to characterize relatively large populations of different types of RBCs. Although the overall
computation time is not yet clinically feasible, the approach can be further developed to enable
higher throughput evaluation. Use of the parallel computing capabilities of a graphics process-
ing unit (GPU) in addition to optimization of morphology extraction scripts could significantly
reduce this computation time and will be an area of future work in this development.
As shown in Table 3, all of the machine learning algorithms identify uninfected and infected

RBCswith high accuracies. They have higher specificities for all of the stages of infection indi-
cating that they discriminate uninfected RBCsmore effectively. Also, high PPV values in
Table 4, which indicate low false positive outcomes, show the system’s potential application as
a screening tool to exclude blood samples that do not require further examination by expert
microscopists therefore expediting the total diagnostic process. Although the classifiers per-
formed with lower NPV values indicating that some infected cells were incorrectly identified in
this study, these rates are comparable to those obtained by trainedmicroscopists [25].
Typically, malaria diagnosticmodalities are compared to one another by the lowest detect-

able parasitemia percentages. Currently, the ability to evaluate our technique is limited by the
total number of uninfected cells (413) that were imaged with the system. Due to the sample
size, our technique cannot show diagnostic performance with samples that have parasitemia
percentages below 0.2%. Further work with QPI and machine learning algorithms will seek to
define their accuracy in determining parasitemia percentages in samples with controlled levels
of infection that match the levels of the typical patients by increasing the sample size and creat-
ing a synthetic population of uninfected cell data based on random samples of the distribution
of the 23 morphological parameters. Also, the ring stage, the earliest stage of the parasites that
would complete the erythrocyticcycle, will be explored in the future which could require the
use of additional parameters as input to the machine learning algorithms.
Currently, our system is limited to classifying red blood cells that have been separated using

a whole blood fractionationmethod such as the one described in the blood preparation section.
Confounding cells in whole blood samples, such as white blood cells and reticulocytes, each
representing ~1% of the total number of blood cells, are likely to be misclassified by our algo-
rithms which have been trained only with uninfected and parasite-infectedRBCs. The classifi-
cation results of the additional experiment withWBCs in Fig 12 show that current algorithms
would only be useful if samples were prepared for analysis so that only RBCs were imaged by
the QPS system. Also, patients with hemoglobinopathies and auto-hemolytic anemia, such as
spherocytosis, will have RBCs that have different morphology compared to RBCs that were
used to train our algorithms. These patients would require development of new algorithms
which are trained with control groups that are more relevant to their conditions. In the future,
we will conduct a more complete analysis of whole blood samples by training our algorithms
on samples which include these confounding cells in order to make our systemmore clinically
applicable.
Classification of different erythrocyticstages of malaria parasites can help choose treatment

based on stage-specific sensitivity of antimalarial drugs [26–28]. Although the algorithm based
classification of infection stages does not perform as well as binary classification of uninfected
vs. infected RBCs, the multinomial classification still has high specificity and sensitivity where
the vast majority of the cells are accurately classified according to the infection timeline. Also,
it should be noted that the multinomial classifications maintain high performances when the
cells with parasites are grouped across the different stages of infectionwith sensitivities as high
as 97.7%, 98.9% and 98.4% respectively for NNC, LR, and LDA. While higher performance
would be needed to rely on the automated algorithm for selecting treatment courses, the ability
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of the approach to detect infection suggests it can be used as a screening tool with further stage
discrimination conducted via manual interpretation, if warranted.

Conclusion
In our study, QPS is used to image RBCs infected by different stages of P.falciparum to distin-
guish them from uninfectedRBCs. The physical descriptors of each population, extracted from
the phase images, are used to train machine learning algorithms that classify RBCs with great
accuracies. One of the main strengths of using machine learning algorithms to analyze the
extracted parameters is that the identification of RBC infectionwill be based on quantifiedmet-
rics and pre-built classifiers that requires minimal operator training. In order to enable auto-
mated imaging in the future, a microfluidic device with controlled flow rates can be combined
with the analysis approach that would allow high throughput. This would permit rapid analysis
of a blood sample at the point of care to assist the clinical decision of physicians. TheWorld
Health Organization has recommended a minimal standard of 95% sensitivity and specificity
for diagnostic tools to be clinically useful when evaluating patients infected with P. falciparum
densities of 0.0002% [29]. In the future, experiments involving samples that match parasitemia
levels of typical malaria patients will be evaluated using our combined imaging and analysis
modality. Currently, the supervised learningmodels are created exclusively with morphological
parameters but further studies can be conducted to extract more information from additional
cell properties, such as spectral features, to strengthen performance in distinguishing parasite-
infected cells as well as their infection stages.

Supporting Information
S1 Fig. Uninfected RBCs.Uninfected RBCs, N = 413 (square tile = 20μm x 20μm).
(TIF)

S2 Fig. RBCs infectedwith P.falciparum in early trophozoite stage. RBCs infected with P.fal-
ciparum in early trophozoite stage, N = 173 (square tile = 20μm x 20μm).
(TIF)

S3 Fig. RBCs infectedwith P.falciparum in late trophozoite stage. RBCs infected with P.fal-
ciparum in late trophozoite stage, N = 314 (square tile = 20μm x 20μm).
(TIF)

S4 Fig. RBCs infectedwith P.falciparum in schizont stage. RBCs infected with P.falciparum
in schizont stage, N = 337 (square tile = 20μm x 20μm).
(TIF)

S5 Fig. Overall pipeline. Pipeline showing the overall procedure.
(TIF)

S1 Table. Cell properties. 23 morphological parameters for all of the RBCs.
(XLSX)
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