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Abstract

Heritable trait variation is a central and necessary ingredient of evolution. Trait

variation also directly affects ecological processes, generating a clear link

between evolutionary and ecological dynamics. Despite the changes in variation

that occur through selection, drift, mutation, and recombination, current eco-

evolutionary models usually fail to track how variation changes through time.

Moreover, eco-evolutionary models assume fitness functions for each trait and

each ecological context, which often do not have empirical validation. We

introduce a new type of model, Gillespie eco-evolutionary models (GEMs), that

resolves these concerns by tracking distributions of traits through time as eco-

evolutionary dynamics progress. This is done by allowing change to be driven

by the direct fitness consequences of model parameters within the context of

the underlying ecological model, without having to assume a particular fitness

function. GEMs work by adding a trait distribution component to the standard

Gillespie algorithm – an approach that models stochastic systems in nature that

are typically approximated through ordinary differential equations. We illustrate

GEMs with the Rosenzweig–MacArthur consumer–resource model. We show

not only how heritable trait variation fuels trait evolution and influences eco-

evolutionary dynamics, but also how the erosion of variation through time may

hinder eco-evolutionary dynamics in the long run. GEMs can be developed for

any parameter in any ordinary differential equation model and, furthermore,

can enable modeling of multiple interacting traits at the same time. We expect

GEMs will open the door to a new direction in eco-evolutionary and evolution-

ary modeling by removing long-standing modeling barriers, simplifying the link

between traits, fitness, and dynamics, and expanding eco-evolutionary treatment

of a greater diversity of ecological interactions. These factors make GEMs much

more than a modeling advance, but an important conceptual advance that

bridges ecology and evolution through the central concept of heritable trait

variation.

Introduction

The effect of ecological processes on evolutionary dynam-

ics has long been acknowledged, but ecologists have histor-

ically dismissed the possibility of evolution affecting

ecological dynamics in the short term based on the

assumption that evolutionary processes occur on longer

timescales than ecological ones (Thompson 1998, 2005;

Hairston et al. 2005). Both experiments and theory, how-

ever, increasingly show that evolutionary and ecological

processes can occur on similar timescales (Hairston et al.

2005; Palkovacs and Hendry 2010; Schoener 2011; DeLong

et al. 2016). Although it is now clear that ecological

changes are generally faster than evolutionary changes

(DeLong et al. 2016), trait changes are often fast enough

to cause feedbacks or downstream effects on ecological

dynamics. Examples of evolutionary trait change directly

affecting population dynamics cover a wide range of sys-

tems from short-lived predator–prey systems of rotifers

and algae (Yoshida et al. 2003) to long-lived ungulates

evolving in response to changing environmental conditions

(Ozgul et al. 2009). These studies suggest that it is critical

to develop modeling approaches to characterize and pre-

dict the consequences of eco-evolutionary dynamics.
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A key determinant of how fast evolution occurs and

whether it has the potential to interact with short-term

ecological dynamics is the amount of heritable trait varia-

tion in a population. Variation is the raw material upon

which natural selection acts (Fisher 1930; Dobzhansky

1937; Price 1972), but selection can, in turn, erode trait

variation over time (Wright 1931, 1949). This may occur

even if other processes such as mutation or gene flow can

increase trait variation (Kimura 1991). Trait variation also

can have important ecological consequences (Bolnick

et al. 2011; Gibert and Brassil 2014). Indeed, trait varia-

tion has been theoretically shown to alter predator–prey
(Gibert and Brassil 2014; Gibert and DeLong 2015) and

eco-evolutionary dynamics (Nuismer et al. 2005; Schrei-

ber et al. 2011; Vasseur et al. 2011). Empirically, trait

variation affects the reproductive rate of sockeye salmons

(Oncorhynchus nerka, Greene et al. 2010), dispersal rate in

threespine sticklebacks (Gasterosteus aculeatus, Laskowski

et al. 2015), and tri-trophic consumer–resource interac-

tions in salt marshes (Hughes et al. 2015), among many

other effects (Bolnick et al. 2011; Gibert et al. 2015).

Thus, incorporating trait variation into eco-evolutionary

models is essential.

Current approaches to modeling eco-evolutionary

dynamics have important limitations. First, they require

the specification of fitness functions that link parameters

controlling ecological dynamics to traits (Jones et al.

2009; Schreiber et al. 2011; Vasseur et al. 2011). Typically,

these fitness functions are based on the breeder’s equa-

tion, following seminal work by Abrams et al. (1993) and

Lande (1976), but other formulations are also possible

(Lande 1979). While these approaches are biologically

sensible, they nevertheless make mathematical assump-

tions about how underlying biological traits determine

the value of the parameters controlling ecological dynam-

ics and their evolution. Furthermore, fitness functions

may change through time (Siepielski et al. 2009), making

the assumption of a static fitness landscape unrealistic.

Because the fitness function that links ecological parame-

ters to evolving traits is such an important part of the

formulation of eco-evolutionary models, there is a need

to move toward more direct ways of incorporating the

relationship between underlying evolving traits, ecological

parameters, and fitness.

Second, current approaches do not incorporate trait

variation in a sufficiently realistic manner. Some classic

works do not incorporate trait variation at all (Fussmann

et al. 2003; Yoshida et al. 2003), while others keep it at a

fixed level (Schreiber et al. 2011; Vasseur et al. 2011).

Models that track the abundance of discrete morphs

whose frequencies in the population change over time

allow tracking of trait variance but do not show how

changes in variation may influence the dynamics (e.g.,

Jones et al. 2009; Ellner and Becks 2011). Integral projec-

tion models also enable the tracking of trait variation

(Easterling et al. 2000; Smallegange & Coulson 2013; Rees

et al. 2014), but they do not consider multiple species

and their interactions (Rees et al. 2014), making them

unsuitable for studying eco-evolutionary dynamics as of

now, except for those occurring on the focal population.

Other approaches model changes in trait variation given

the selective pressures defined in a fitness function (Nuis-

mer et al. 2005; Tirok et al. 2011). In this approach, vari-

ation is tied to the mean of the trait. This connection

may be appropriate for some trait distributions (e.g., a

normal distribution), but it does not allow for reduction

of variance by selection against one or the other end of

the trait distribution, preventing realistic loss of trait vari-

ation from influencing the ecological dynamics. Further-

more, this latter type of model uses the assumed fitness

gradient to generate changes in trait variation (Nuismer

et al. 2005; Tirok et al. 2011), bringing us back to the

need to find a more direct formulation of fitness gradi-

ents. In short, current theory does not provide sufficient

insight into how the erosion (through selection or genetic

drift) or amplification (through recombination, mutation,

or immigration) of variation may lead to different eco-

evolutionary scenarios and dynamics. Although modeling

the ways in which trait variation may change over time

clearly has been a long-standing problem (Bull 1987;

Steppan et al. 2002; Arnold et al. 2008), keeping realistic

track of trait variation must be considered a cornerstone

of the budding area of eco-evolutionary dynamics.

Here, we develop a new class of eco-evolutionary

model that incorporates and tracks the amount of herita-

ble variation in multiple traits controlling ecological inter-

actions while also eliminating the need for assumed

fitness functions. This new type of model, called a Gille-

spie eco-evolutionary model (GEM), involves adding a

side-loop to the standard Gillespie stochastic algorithm

(Gillespie 1977) in which (1) both the mean and variance

of a trait in the population may influence the dynamics;

(2) fitness is determined by the effect that a particular

parameter value has on birth and death rates of the evolv-

ing organism in the context of the model; and (3) off-

spring traits depend on the population variance and

heritability of the trait (Fig. 1). We argue that GEMs are

a powerful and general way of evaluating the effect of

contemporary trait evolution on ecological dynamics for

any process that can be modeled using ordinary differen-

tial equations (ODEs).

To illustrate how GEMs work and what insights we can

gain from such an approach, we show several examples

of eco-evolutionary dynamics based on the classic

Rosenzweig–MacArthur (RM) consumer–resource model

(Rosenzweig and MacArthur 1963). We first describe how
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GEMs work and set up the RM model as a GEM. We

then conduct three levels of analysis: (1) we run the GEM

with and without heritable trait variation to show how its

addition alters the consumer–resource dynamics relative

to the standard, nonevolutionary dynamics; (2) we run

the model allowing each parameter in the RM model to

evolve in turn; and (3) we connect model parameters to a

physical trait – body size – to illustrate trait-parameter

links and the potential for multiple functional conse-

quences of trait evolution. Our results show how trait

variation and its change over time due to selection and

stochasticity can lead to different eco-evolutionary out-

comes, and we discuss how these results may change the

way we study eco-evolutionary dynamics.

How GEMs Work

Gillespie eco-evolutionary models use a Gillespie algo-

rithm to stochastically simulate an ODE model (Gillespie

1977; Yaari et al. 2012). A Gillespie algorithm approxi-

mates a continuous-time ODE with discrete time

“events,” such as births, predation, and deaths for a pop-

ulation of size N. In the example in Figure 1, the different

events that can happen at each time step are given by the

model, and in this cartoon example, we have arbitrarily

set the model terms as a(N), b(N), and c(N). To deter-

mine which event occurs, each term is divided by the

sum of all terms. This can be visualized as a “wheel of

fortune” where the sizes of the segments on the wheel are

set by the relative magnitude of the terms (gray pie chart

in Fig. 1). At each time step, the wheel is figuratively

“spun,” and a location on the wheel is randomly chosen,

determining which event occurs. The larger segments of

the wheel are more likely to be selected, making those

events more common in the simulation. The Gillespie algo-

rithm advances time after each event through a random

draw from an exponential distribution scaled to the num-

ber of individuals in the system. This process repeats until

some time limit chosen by the user is reached. Typically, as

long as stochastic extinctions are not common, the mean

output of a Gillespie simulation converges to a standard

numerical solution for the ODE (Fig. 2, top left).

A GEM is different than a standard Gillespie simulation

in that instead of using all constant parameters, some or

several parameters of interest are treated as heritable traits

and given distributions that are allowed to change over

time (Fig. 1). For each event, a value is randomly drawn

from the current parameter distribution, and that value is

used to set up the event probabilities (i.e., the size of the

segments of the wheel of fortune depend on the value

drawn). In this way, the likelihood of any event changes

with the parameter drawn. After the parameter is chosen,

the Gillespie algorithm proceeds as usual and time

advances. In this process, one can treat the model param-

eter as a trait in and of itself or make the parameter a

function of a physical trait such as body size. If the trait

is a physical trait, then the trait distribution is set up for

that trait, and the parameter is given by the trait-para-

meter map (e.g., an allometry). This is akin to the pheno-

type-demography map of Coulson et al. (2006), but it

links traits to parameters whether they are demographic

in nature (e.g., death rate) or not (e.g., functional

responses).

In a GEM, when the event is a death, the current value

of the parameter is removed from the parameter distribu-

tion. The consequence is that any parameter value that is

relatively likely to lead to a death tends to be removed,

causing the distribution to move away from that value.

Figure 1. Schematic of how Gillespie eco-

evolutionary models work.
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Whether a particular parameter alters the likelihood of a

death depends on the model and the role of that parame-

ter in setting the death rate. Similarly, when an individual

is born, the new individual takes on a value that is similar

to its parent’s (i.e., the value drawn at the beginning of

the current iteration), depending on how heritable it is,

and that new value is added to the population, thus alter-

ing the distribution of the trait. In this way, values that

are likely to lead to births tend to become more repre-

sented in the population. As with deaths, whether a par-

ticular parameter alters the likelihood of a birth depends

on the model and the role of that parameter in setting

the birth rate. The parameter distribution therefore moves

in a direction determined by the direct fitness conse-

quences of the parameter values present in the population

at a given time and in the context of the interactions

specified by the underlying model, and therefore, no fit-

ness function needs to be included. The output of a GEM

is an approximate solution to the system of ODEs where

both population sizes and a distribution of traits (param-

eters or physical traits) may change through time.

An example

We developed a GEM for the RM model (see Data S1 for

MATLAB code). This model is a set of coupled differen-

tial equations for the dynamics of a consumer population

(C) consuming a resource population (R):

dR

dt
¼ rR 1� R

K

� �
� aRC

1þ ahR
(1)

dC

dt
¼ eaRC

1þ ahR
� dC (2)

In this model, r is the resource intrinsic growth rate, K is the

resource carrying capacity, a is the area of capture (also known

as attack rate or attack efficiency), h is handling time, e is the

efficiency of converting resources into new consumers, and d is

the background death rate for the consumer. The events in this

model are resource births, rR.dt, density-dependent resource

deaths, rR2/K.dt, consumer-caused resource deaths, aR/

Figure 2. Four versions of the same GEM with

different levels of heritability and trait

variation. The model parameters used were

h = 0.01, e = 0.01, d = 0.1, r = 2, K = 500.

The starting value for a was 0.1.
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(1 + ahR).dt, consumer births, eaR/(1 + ahR).dt, and con-

sumer deaths, dC.dt. These events have a certain likelihood of

occurring given the parameter values.

An interesting question that needs to be answered

when building a GEM is what assumptions should be

made about the distribution of the parameter that one is

interested in tracking. Many parameters in a model like

the RM model are likely to be driven by the additive

effects of multiple physical or behavioral traits, some of

which may have additive genetic variance. It is reasonable

then to think that the distribution of the parameters

within a population should be approximately normal. Yet

the parameters cannot be negative, so they also are likely

to have at least some tendency to skew positively.

Although a variety of options may be appropriate, in this

analysis, we assume that all parameters have a starting

variance of 0.2 times the initial trait mean and a slight

right skew. These assumptions provide realistic distribu-

tions that do not cross zero (Figure S1), but other distri-

butions are also possible, including empirically

determined distributions when available.

When a birth occurs in a GEM, the parameter value of

the new individual is randomly drawn from a distribution

of potential values (an “offspring sampling distribution”)

determined by the parent’s parameter (i.e., the value of the

parameter that was randomly chosen prior to the birth

event) and the heritability of that parameter (h2; Figure S2)

(this is inherently an asexual form of reproduction,

although approaches to approximating sexual reproduction

could be incorporated). Theoretically, traits can range from

being not heritable at all to being perfectly heritable. To

accommodate this range, we determined the variance of the

distribution from which the offspring trait value was sam-

pled as (1 � h2)r2, where r2 is the current variance of the
population parameter distribution. The mean of the distri-

bution from which offspring trait values were sampled was

given as h2(xparent � xmean) + xmean. Thus, when h2 = 0,

the mean of this sampling distribution is the current popu-

lation mean and the variance is the same as the whole

parameter distribution, such that the offspring could come

from anywhere in the current distribution. The more heri-

table the trait, the more the offspring will tend to look like

the parent, and when h2 = 1, the offspring is identical to

the parent.

Three levels of analysis

GEMs with and without heritable trait
variation

We first ran the GEM under four scenarios with heritabil-

ity at 0 or 0.95 (not 1 because it is highly unlikely for any

trait to be perfectly heritable) and starting parameter vari-

ance at 0 or 0.2*parameter mean. These four scenarios

depict the range of possible outcomes from a standard

Gillespie simulation to a GEM for a highly heritable trait

and show the independent consequences of adding vari-

ance and heritability to the simulation. In this first exam-

ple, the parameter of interest was the area of capture

from the functional response (eq. 1). This parameter here

is designated a predator trait.

GEMs for each model parameter

We then set the heritability at 0.75 and ran the GEM for

each of the six parameters in the RM model in turn (that

is, each simulation allowed one parameter to change at a

time). The area of capture, handling time, conversion effi-

ciency, and death rate parameters were designated preda-

tor traits, and the intrinsic growth rate and carrying

capacity were designated as prey traits. Although some of

these parameters may reflect contributions from both

predator and prey (for example, both prey and predator

velocities influence the area of capture; Aljetlawi et al.

2004), we assign each parameter to one population for

simplicity in this illustration. Furthermore, some parame-

ters, such as carrying capacity, clearly emerge from the

interactive effects of physical traits and environmental

inputs. We allow each parameter to evolve, including car-

rying capacity, given that each has at least some geneti-

cally based trait or set of traits that influence the

parameter. Each simulation involved 200 runs, and we

extracted the median and inner 50% quantile range of the

runs to display. Finally, we calculated the level of parame-

ter variation and the change in the median trait through

time to assess the dependence of parameter change on the

level of variance using general linear models.

GEMs for body size with trait-parameter
maps

Finally, we set up the GEM with predator body size as

the evolving trait, because body size is linked to many

parameters in consumer–resource models (DeLong and

Vasseur 2012a). Here, we start body size at the approxi-

mate average cell volume of the predatory ciliate Didi-

nium nasutum (~1 9 105 lm3) (DeLong et al. 2014). We

made a trait-parameter map to link cell volume to the

area of capture parameter (a = 1.1 9 10�7 M1) and the

conversion efficiency (e = 2.16 M�0.5) based on the allo-

metric relationships for protists given in DeLong et al.

(2015), where M = cell volume of the predator. We ini-

tialized the trait distribution in the same way as the

parameter distributions above, and each time a particular

value of cell volume was drawn, the trait-parameter maps

specified the parameters to be used in the next time step
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of the GEM. We ran these simulations with cell volume

evolving only when connected to area of capture, only

when connected to conversion efficiency, and when con-

nected to both parameters simultaneously. Each simula-

tion involved 200 runs, and we extracted the median and

inner 50% quantile range of the runs to display.

Results

GEMs with and without heritable trait
variation

Our GEM for the RM model clearly shows the eco-evolu-

tionary consequences of allowing model parameters to

take on distributions and be heritable. When both the

standard deviation and the heritability are zero, the out-

put of a GEM is equivalent to a standard Gillespie simu-

lation and reproduces well a standard numerical solution

to the ODE (Fig. 2, left column). Adding heritability to

the trait does not by itself cause any changes to this out-

come as there is no variation in the parameter (Fig. 2,

second column). Adding variation alone to the model

produced changes in the model output (Fig. 2, third col-

umn). Overall, there was an increase in the variation of

the simulation outcomes, which is a consequence of hav-

ing variation in the parameter. Due to the increased vari-

ation of the population trajectories, there was increased

extinction, and the median trajectory declined slightly

through time. Although the parameter showed little

change, the stochastic progression of the model eroded

the parameter variance through time. Finally, including

both variance and heritability in the model (Fig. 2, right

column) caused shifts in the dynamics, the mean parame-

ter value, and the level of variance.

GEMs for each model parameter

When allowed to evolve in the GEM, all of the parame-

ters except for the handling time showed changes in

magnitude and variance that led to population dynamics

that are different from those predicted by the nonevolu-

tionary RM model (Fig. 3). As expected, the variance of

Figure 3. The Rosenzweig–MacArthur model solved with GEMs for each model parameter. Starting parameters were the same as in Figure 2.
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all parameters was eroded through time, regardless of the

direction of selection or the lack thereof (Fig. 3). More

precisely, the variance was reduced on both sides of the

distribution until there was no variance left (see Figure S3

for an example with the resource intrinsic rate of

growth).

As the variance in the parameter distributions

decreased through time, so did the rate of trait change,

for all traits except for the handling time, which did not

evolve (Fig. 4). Thus, through either selection, drift or

both, the decrease in the parameter distribution’s variance

tended to bring trait changes and eco-evolutionary

dynamics to a halt. For each unit increase in variance, a

increased by 1.43 (�0.43 SE), e by 16.24 (�4.95 SE), r by

0.40 (�0.01 SE), K by 0.0006 (�0.00018 SE), and d

decreased by 1.96 (�0.44 SE). There are arguments

against using traditional statistical tests in analyses of sim-

ulations, due to the effect of arbitrarily high sample sizes

(White et al. 2014), so we present the relationships

between parameter variance and rate of trait change in

Figure 4 but do not include significancy levels of the

slopes reported above.

GEMs for body size with trait-parameter
maps

When linked to area of capture, body mass increased

through time, but when linked to conversion efficiency,

body mass decreased through time (Fig. 5). When linked

to both parameters, body mass increased but to a lesser

extent than it increased when linked only to area of cap-

ture. As with the evolution of the parameters, heritable

trait variation is eroded through time, reducing the rate

of trait evolution and limiting the degree of eco-evolu-

tionary dynamics in the long run.

Discussion

Gillespie eco-evolutionary models represent a major step

forward in eco-evolutionary modeling because they incor-

porate the effects of trait variation and fitness into

ecological dynamics generated by multiple interacting spe-

cies without the need for assumptions about fitness gradi-

ents. Our example with the RM consumer–resource model

shows that when sufficient heritable trait variation occurs,

Figure 4. For most parameters, the rate of

change in the trait (parameter) is positively

related to the amount of variance still present

in the population. Note that for d (consumer

death rate), the trait is declining more quickly

as variance increases. The parameter h

(handling time) did not change much during

the simulations, and so unsurprisingly its rate

of change was not related to the variance.
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some parameters will tend to increase (area of capture, con-

version efficiency, intrinsic rate of growth, carrying capac-

ity), some will tend to decrease (predator mortality rate),

and some will not change at all (handling time). These

shifts are all consistent with expectations about how each

parameter influences the fitness of the consumer or the

resource. For example, a higher value for the area of cap-

ture (a) parameter will lead to more food acquisition and

more births for a predator bearing a high area of capture,

so the trait should increase through time.

The changes in the parameters that are seen in Figure 3

reflect, in essence, the fitness landscape dictated by the

RM model. By allowing the parameters to evolve as traits,

we show how the model sets up opportunities to increase

fitness for the consumer or the resource. For example,

increasing the conversion efficiency increases birth rates,

increasing fitness for the consumer. Any physical trait that

influences the conversion efficiency parameter, then, can

evolve by following this path. Our analysis with body

mass (Fig. 5) shows that a smaller body mass increases

conversion efficiency (by making the cost of an offspring

smaller), so body mass evolves to a smaller size to

increase fitness. In contrast, larger size increases foraging

rates by increasing the area of capture, so body mass

evolves to a larger size to increase fitness. The speed of

this process depends on the actual functional link

between the trait and the parameter, the amount of heri-

table variation, and the model itself.

Our body size (cell volume) analysis also reinforces the

potential for links or trade-offs among parameters

(Yoshida et al. 2003; Becks et al. 2012; DeLong and Vas-

seur 2012b, 2013). Body mass is linked to conversion effi-

Figure 5. The Rosenzweig–MacArthur model

solved with GEMs with body size as the

evolving trait. Body size was linked first to the

area of capture parameter (left column), then

to the conversion efficiency parameter (middle

column), and finally to both parameters (right

column). Body mass was mapped to area of

capture and conversion efficiency using

allometries from DeLong et al. (2015), and the

remaining parameters were h = 0.005,

d = 0.005, r = 0.6, K = 500.
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ciency and area of capture with opposing fitness effects.

We argue that this is a case of “ecological pleiotropy,”

wherein a physical trait (rather than a gene) influences

more than one ecological process (such as area of capture

and conversion efficiency) that is linked to fitness. Simi-

larly, some traits may influence the fitness of more than

one species in an ecological interaction. For example, prey

defense traits might influence both prey and predator fit-

ness (Jeschke and Tollrian 2000). Co-eco-evolutionary

dynamics therefore may arise in a GEM if the parameters

can be matched to different traits of the different interact-

ing populations in the system.

All of the changes in mean parameters were also

accompanied by changes in their associated variance,

which leads to dynamics that are qualitatively different

from the prediction of models that do not consider

changes in variance. The simulations show that the

changes in traits slow down as the level of variance

diminishes through time (Figs. 3–5), whether due to

selection or random erosion of variance or both. Thus,

eco-evolutionary dynamics are more pronounced at the

beginning of the simulations, and although they come to

a halt, there remains a longer-term shift in the parameters

that cause the dynamics to remain different even after

evolution stops. Alternatively, the actual changes in the

parameters through time could be responsible for changes

in the magnitude of selection and also contribute to the

slowdown in the rate of trait change. The ability of GEMs

to track and incorporate current trait variation into the

dynamics reveals patterns that would be hard to detect if

we utilized a constant level of variance throughout. This

illustrates both the importance of tracking variance in

eco-evolutionary models and the efficacy of GEMs in

accomplishing this crucial goal.

These results, however, call attention to the question of

how variance should be increased or maintained in a

GEM, or indeed any other eco-evolutionary model (Smal-

legange and Coulson 2013), especially given how trait

variation also affects the pace at which traits evolve

(Figs. 3–5). It is also possible to consider other factors

leading to higher trait and parameter variance through

time, by allowing for mutations when drawing offspring

distributions, or to boost trait variation when, for exam-

ple, a parthenogenetic organism like Daphnia switches to

sexual reproduction under certain scenarios or when new

genetic variants immigrate to the population (Tirok et al.

2011). GEMs provide the framework for dealing with

such complexities, but how to mathematically incorporate

these increases in variance may vary by system.

In summary, GEMs are a novel and important addition

to the eco-evolutionary modeling toolbox. Although they

represent a natural and direct characterization of selection

in an ecological context, GEMs are still models, and so

they should be compared to empirical data to see how

well they perform (along with competing modeling

approaches as well). GEMs can be developed for any

ODE model, including predator–prey, parasite–host, epi-
demiological, energy budget, and many other types of

models. GEMs provide all the benefits of traditional ODE

models, stochastic models, integral projection models,

and individual-based models with fewer assumptions,

inherent fitness effects, and less computational demand.

We envision a slew of new insights into eco-evolutionary

dynamics arising from the use of GEMs to study a wide

variety of eco- and co-ecoevolutionary dynamics.
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