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In the development of a brain-computer interface (BCI), some issues should be regarded in order to improve its reliability and
performance. Perhaps, one of the most challenging issues is related to the high variability of the brain signals, which directly
impacts the accuracy of the classification. In this sense, novel feature extraction techniques should be explored in order to select
those able to face this variability. Furthermore, to improve the performance of the selected feature extraction technique, the
parameters of the filter applied in the preprocessing stage need to be properly selected. ,en, this work presents an analysis of the
robustness of the fractal dimension as feature extraction technique under high variability of the EEG signals, particularly when the
training data are recorded one day and the testing data are obtained on a different day. ,e results are compared with those
obtained by an autoregressive model, which is a technique commonly used in BCI applications. Also, the effect of properly
selecting the cutoff frequencies of the filter in the preprocessing stage is evaluated. ,is research is supported by several ex-
periments carried out using a public data set from the BCI international competition, specifically data set 2a from BCIIC IV,
related to motor tasks. By a statistical test, it is demonstrated that the performance achieved using the fractal dimension is
significantly better than that reached by the AR model. Also, it is demonstrated that the selection of the appropriate cutoff
frequencies improves significantly the performance in the classification. ,e increase rate is approximately of 17%.

1. Introduction

,e performance of any task requires the coordinated acti-
vation of a set of neurons. ,is activity generates bioelectrical
signals which can be recorded by the electroencephalography
(EEG). ,e EEG is a recording technique of the brain activity
which is noninvasive, of low cost, and provides high time
resolution [1].

,e information extracted from EEG signals can be
useful for different applications such as diagnostics, analysis
of the reaction of the brain to any stimulus, or the devel-
opment of new technologies like brain-computer interface
(BCI). A BCI is a system that allows the communication of a
subject with a device only through brain activity, without
using peripheral nerves [2]. ,is technology is being applied
in different fields such as improvement of concentration,

hyperactivity treatment, control of wheel chairs, and spellers
[2–4]. ,e development of this kind of applications requires
the following stages: acquisition of the signal, preprocessing,
feature extraction, and classification [4]. However, there are
different issues that should be addressed in order to achieve
reliable and friendly applications that can be used in real life.
Some of these challenges are the number of electrodes used
in the signal acquisition, the noise sensitivity of the EEG
signals, the nonlinearity and nonstationarity of the EEG
signals, and the intersubject variability, among others [5, 6].
Perhaps, the most critical challenges are the nonlinearity
and nonstationarity of the EEG signals since they are
properties of the signal that depends on the organism and
on the environment [7–9]. ,erefore, it is important to
propose different feature extraction techniques that show
robustness to perturbations on the signal. In the same way,
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the intersubject variability is an important challenge since it
avoids to develop a generalized BCI. It has been demon-
strated that an event-related (de) synchronization in specific
frequency bands occurs when a mental task is performed
[10]. However, a variability in the EEG signals from different
subjects is present due to the anatomical and physiological
differences among subjects. ,erefore, it is necessary to
select an appropriate frequency band for each subject which
helps to increase the accuracy in the classification. In this
sense, several works have suggested to find the frequency
band which improves the performance of the BCI for each
subject. Most of these works propose to decompose the EEG
signals in different frequency bands. ,en, the most suitable
band is selected using different techniques, for example, the
mutual information computed for the different frequency
bands [11–14].

Some feature extraction techniques that have been widely
used in the EEG signal analysis are the Fourier transform and
the linear prediction. Although these techniques have shown
good performance, they do not consider the nonlinearity and
nonstarionarity of the EEG signals [15]. In this sense, a
nonlinear analysis can provide more information about the
signal dynamics related to the physiological phenomenon
being explored [15, 16]. Two nonlinear methods which have
been commonly used in the signal analysis are the fractal
properties and the entropy. ,ey have the ability to express
the dynamics of the signal and its complexity [16].

Fractal analysis has been used in the brain signals
analysis, providing information about aging, dysfunctions,
and response of the brain to the anesthesia [17]. A fractal
property commonly used is the fractal dimension (FD),
which in the neuroscience field has been widely used for the
automatic seizure detection [18, 19]. In the field of the BCIs,
the behavior of the FD has been explored under the exe-
cution of different mental tasks when (de)synchronization
occurs. In this sense, there are reports indicating that the
discrimination of different mental tasks is possible using the
FD as feature [20–22]. Also, the relation between the FD
value computed from the EEG signals and the hand grip
force has been explored [23]. ,erefore, based on the be-
havior of the FD during different mental states and the fact
that it can be manipulated voluntarily, FD is an attractive
candidate to develop BCI applications. However, despite the
results obtained from the previous researchers, the esti-
mation of the FD is not a trivial problem that, for that reason,
it should be carefully addressed taking into account different
conditions such as the window length, the signal to noise
ratio, and the autocorrelation. It is well demonstrated that
these conditions have different impacts on the algorithms to
compute the FD. For example, Katz’s method is most
consistent in the discrimination of epileptic signals while
Higuchi’s method provides a more accurate approximation
using synthetic signals but is more sensitive to noise [24]. In
order to achieve a reliable BCI, it is important to evaluate the
robustness of the FD under the high variability of the EEG
signals. An extreme situation of this nonstationarity is ob-
served when the EEG recordings are performed on different
days. Also, it is necessary to analyze the behavior of the
performance of this feature when different frequency bands

are used.,us, this research is focused on demonstrating the
ability of the FD in the discrimination of the EEG signals
despite the high variability of them. ,is variability is
maximized due to the acquisition on different days. Another
point of interest is to show that selecting a correct cutoff
frequency can improve the accuracy of the classification.

,erefore, one contribution of this paper is focused on
evaluating and analyzing the accuracy of the FD during the
classification of different mental tasks employing EEG re-
cordings from different days and a linear discriminant as
classifier. ,e FD can be computed in the time domain or in
the phase space [25]. In this research, FD is computed in the
time domain by two different methods: Higuchi and Katz.
,e accuracy achieved by FD is compared with the accuracy
obtained with an autoregressive model which is a classical
linear technique. Furthermore, a Kruskal–Wallis test was
performed in order to evaluate if there exists a significant
difference accuracy using the FD.

,e second contribution is related to the impact of
determining the optimal filter configuration used for each
subject in the preprocessing stage. In this sense, we propose
to vary the parameters used in the preprocessing, specifically
the cutoff frequencies of the bandpass filter. ,e accuracy
reached with the optimal configuration is compared with
that obtained when the commonly filter configuration is
used (1–100Hz). Moreover, a hypothesis test was performed
in order to evaluate if there is an optimal filter configuration
that impacts significantly the classification accuracy.

,is paper is organized as follows: in Section 2, a detailed
description of the methodology is presented as well as the
theoretical concepts that were used. Section 3 shows a de-
scription and discussion of the results. Finally, the con-
clusions of this paper are presented in Section 4.

2. Methods

In this section, we present the methodology proposed to
evaluate the robustness of the FD and the impact in the
accuracy when an optimal filter configuration is selected.
,is methodology was segmented in the classical BCI stages:
preprocessing, feature extraction, and classification. ,e
proposal in each stage is explained in the following.

2.1. Preprocessing. In this stage, the window length and the
filter configuration were analyzed. Firstly, to assess the
window length impact on the performance of the fractal
dimension during classification task, we evaluate three
different lengths: 1 s, 1.5 s, and 2 s. After that, different cutoff
frequencies were applied in order to select the values which
help us to improve the results in the classification. ,e
parameters were fixed as follows: the value of the low cutoff
frequency varies from 1 to 125 W in steps of one, where W
represents the width of the passband and its value is varied
from 10 to 100 with increases of 10.

2.2. Feature Extraction. Once the signal has been pre-
processed, the next stage consists in to extract descriptive
information of the signal to generate a feature vector y.,en,
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considering the brain activity is recorded with a set of M
electrodes, a feature vector y is computed by the features
extracted from each one of the M electrodes, using the
technique selected for this goal. ,e complexity and the
dynamics of a signal can be analyzed through different
nonlinear methods, like its fractal properties. A fractal
property commonly used is the FD, and it is computed in the
time domain and in the phase space. In this research, the FD
is computed in the time domain by the most known
methods: Higuchi and Katz. In addition, FD is compared
against AR coefficients [26]. ,e feature vector was M-di-
mensional when the FD was used and p∗M-dimensional for
the AR model, where M expresses the number of channels
and p indicates the order of the AR model.

2.3. Classification. In this stage, a linear discriminant was
used. In order to evaluate the robustness of each feature, the
classifier was trained with a data set recorded on one day and
the evaluation of the classification was performed using the
data recorded on a different day. Focused on performing a
statistical test, the training and evaluation stages were done
several times with subdata sets generated randomly from
original data sets.

3. Results and Discussion

In this section, the proposed methodology is evaluated to
assess its robustness under the variability of the EEG signals
recorded on different days. ,e experimental results were
obtained using the database 2a from the BCI International
competition IV. ,is data set is made up of four imaginary
motor tasks executed during three seconds: left hand, right
hand, both feet, and tongue. For this research, a two-class
discrimination task was performed using two different
combinations: left vs right hand and both feet vs tongue. A
set of 22 electrodes was used to record the EEG signals, and
the sampling frequency was 250Hz.

,e data set provides the recordings of nine subjects. For
each subject, two sessions were performed on different days,
recording six runs for each one. One run is composed by 12
trials for each mental task (i.e., 48 trials per run).

,e classification was performed in two different
conditions:

(i) Condition A. ,e data recorded during the first
session were employed to train the classifier, and it
was tested using the data recorded during the second
session.

(ii) Condition B. ,e classifier was trained with the data
recorded during the second session, and the data
recorded during the first session were employed to
test the classifier.

In order to obtain statistically significant results, we
performed 30 experiments using training and testing subsets
that were randomly built using 70% of the trails from the
original data sets. ,is percentage was fixed regarding the
minimum number of trials necessary to train the classifier,
given the dimension of the feature vector.

Before starting the analysis, we evaluate the impact of the
window length in the accuracy of the FD during the clas-
sification task. To this goal, three different lengths were used:
1 s, 1.5 s, and 2 s. In order to evaluate all the possible sce-
narios using different window lengths, we take into account
Condition A and Condition B. For both conditions, the data
were filtered using the classical cutoff frequencies and the
optimal cutoff frequencies for each subject.

We compare the average accuracy for each feature ex-
traction technique. Although slight differences were found,
these differences are not statistically significant. Even so, in
most of the cases, the highest accuracy was achieved when a
windows length of 2 s was employed. ,erefore, this length
was selected.

,e results obtained for Condition A filtering the signal
with the classical cutoff frequencies (1–100Hz) are shown in
Table 1. For each subject, the result in bold is the best average
accuracy achieved from the different feature extraction
techniques. In order to evaluate if a significant difference
exists among these accuracy values, a Kruskal–Wallis test
was applied. In the cases where a significant difference was
found, a multicomparison test was performed. ,e asterisks
in Table 1 indicate the accuracies that are significantly
different compared with the best result.

As can be observed, the best results were obtained mostly
when the fractal dimension is used as feature extraction
technique. A significant difference is also observed in the
comparison of the best accuracy obtained by the FD tech-
nique against that obtained by AR. Furthermore, for most of
the cases where the best results were obtained using AR, the
accuracy was close to the random level and in few cases, the
difference with the other techniques is significant. It is
important to notice that only for three subjects, an accuracy
greater than 70% was obtained.

,e second analysis was focused on the accuracy using
different cutoff frequencies, in order to determine the best
filter configuration (bandwidth and low cutoff frequency)
considering the intersubject variability. Figures 1 and 2 show
the results of this analysis for the worst (A4) and best (A8)
subject, respectively. Each plot shows the accuracy for the
different feature extraction techniques using a specific
bandwidth; the x axis indicates the low cutoff frequency, and
the y axis corresponds to the accuracy obtained for that filter
configuration.

Analyzing the graphical results for the worst subject, it is
possible to say that although there are some configurations
that slightly improve the accuracy, for most of the cases, the
improvement was not enough to surpass the minimum level
of randomness. Nonetheless, in the case of the best subject,
the best results are obtained when low cutoff frequencies are
used. Considering these low frequencies, it is important to
carefully select the bandwidth depending on the feature
extraction technique. However, the best results are obtained
using a narrow bandpass for Katz’s method; Higuchi and AR
methods provide better results using a wide bandpass.
Furthermore, the best results are obtained when Higuchi’s
method is used as feature extraction technique and with the
following filter configuration: low cutoff frequency� 4Hz;
width of the passband (W)� 100Hz. Table 2 shows the cutoff
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frequencies that provide the best accuracy for each subject
and each feature extraction technique. It is important to
remark that the selected frequencies are different to the
frequencies commonly used in the BCI applications.

,e results obtained with the selected configuration are
shown in Table 3. For each subject, the accuracy achieved
with each feature extraction technique is displayed and the
maximum value is in bold. As in the previous case, a
Kruskal–Wallis test was applied in order to know if there is a
significant difference among the accuracy values. ,e as-
terisks in Table 3 indicate a significant difference between the
value and the best accuracy.

Table 4 shows the increase rate achieved using the se-
lected filter configuration. As can be observed, the im-
provement in most of the cases is higher than 10% with
respect to the accuracy obtained using the classical filter
configuration (1–100Hz). In order to confirm if this im-
provement is statistically significant, a hypothesis test with a
significance level of 0.01 was applied. In most of the cases,
this difference was significant.

,e same analysis was applied for Condition B, when the
classifier was trained with the data recorded on the second
day and was tested with the data from the first day.

,e accuracies obtained for Condition B using the
classical cutoff frequencies (1–100Hz) are shown in Table 5.
,e best accuracy for each subject is in bold. As in Condition
A, in most of the cases, the best results are achieved when the
FD is used as feature extraction technique.

A Kruskal–Wallis test was applied to assess if there is any
significant difference. For the cases with significant differ-
ence, a multicomparison test was applied. ,e results are
indicated with the asterisks in Table 5.

Following with the study, the behavior of the accuracy
was analyzed using different filter configurations. ,e
graphical results for the worst (A4) and best (A8) subjects
are shown in Figures 3 and 4, respectively. Once more, for
the best subject, it is notorious that the accuracy depends on
the cutoff frequencies used in the preprocessing stage. Based
on this analysis, the selected frequencies for each subject and
each feature extraction technique are shown in Table 6.

Once the most appropriated cutoff frequencies were
selected, the accuracies using the different feature extraction

techniques were computed (Table 7). Once more, it can be
seen that the feature extraction technique that provides the
best results is the FD, mainly Higuchi’s method. ,e sig-
nificant differences found through a multicomparison test
are indicated with asterisks in Table 7.

,e increasing rates achieved using the selected filter
configuration are shown in Table 8. Based on these results, it
is possible to say that, as in Condition A, an adequate se-
lection of the cutoff frequencies has a positive impact in the
performance of the classification task, and this improvement
is present for all feature extraction techniques.

Furthermore, the improvement achieved on the accuracy
when the cutoff frequencies are carefully selected is statis-
tically significant with a significance level of 0.01.

Finally, the proposed methodology was applied to the
data recorded when the subject performs less-common
imaginary motor tasks. ,e movements imagined by the
subjects were the feet and tongue. ,e first analysis was to
select the most suitable window length. In this case, when the
fractal dimension is used as feature extraction technique for
some subjects, the use of 1 s length is better than 2 s, and for
other subjects, the best results are obtained using 2 s length.
In the case of AR, for most of the subjects, the best length is
2 s. In the comparison of the window lengths for the same
condition but filtering the data with the optimal cutoff
frequencies, for all the feature extraction techniques, the
accuracy is higher when the window length is 2 s. For the
case of Condition B, it is not possible to say that there are
better results with a specific window length used. Finally,
using the best cutoff frequencies for each subject during
Condition B, for most of the subjects, the best results are
obtained using a window length of 2 s.

Based on the described observations, we selected a 2 s
window length since for most of the experiments, this length
provides the best results.

Under these conditions, Table 9 shows the accuracies for
the three feature extraction techniques. ,e maximum value
is in bold, and the asterisks indicate a significant difference
with the maximum value. As it can be seen, for most of the
subjects, the accuracy is close to randomness; this could be
caused by the fact that the subjects are less familiarized with
these movements. On the other hand, for most of the
subjects, the best results are achieved when FD is used as
feature.

Following the methodology, we achieved the analysis of
the accuracy varying the cutoff frequencies. In Table 10 are
shown the frequencies selected for each subject and each
technique. Using these cutoff frequencies, the results of the
classification are shown in Table 11. As it can be seen, the
increase achieved with the frequencies selection is highly
noticeable. For most of the subjects, the best results are
achieved by Katz’s method and in most of the cases, the
improvement was significant. ,e increase rate is shown in
Table 12.

Finally, we analyzed Condition B using this movement
combination. As in Condition A, using the classical filter
configuration, the accuracies are close to randomness (Ta-
ble 13), and the higher results are obtained when the FD is
used as feature.

Table 1: Average accuracy for Condition A using the classical filter
configuration (1–100Hz).

Subject Higuchi Katz AR
A1 0.65± 0.04 0.58± 0.03∗ 0.61± 0.04∗
A2 0.49± 0.05∗ 0.51± 0.02 0.52± 0.03
A3 0.78± 0.03 0.51± 0.05∗ 0.65± 0.04∗
A4 0.45± 0.04∗ 0.47± 0.03 0.48± 0.04
A5 0.54± 0.05 0.51± 0.03∗ 0.51± 0.03∗
A6 0.54± 0.04 0.55± 0.03 0.53± 0.05
A7 0.53± 0.04∗ 0.55± 0.04 0.55± 0.04
A8 0.85± 0.03 0.66± 0.04∗ 0.78± 0.04∗
A9 0.65± 0.05∗ 0.78± 0.07 0.69± 0.06∗
Average 0.61± 0.04 0.57± 0.04 0.59± 0.04
∗Accuracies that are significantly different compared with the best result.
Values in bold indicate the best average accuracy achieved from the dif-
ferent feature extraction techniques.
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Figure 1: Accuracy using different cutoff frequencies for the worst subject for Condition A. (a) Width of the passband 10Hz. (b) Width of
the passband 20Hz. (c) Width of the passband 40Hz. (d) Width of the passband 60Hz. (e) Width of the passband 80Hz. (f ) Width of the
passband 100Hz.
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Figure 2: Accuracy using different cutoff frequencies for the best subject for Condition A. (a) Width of the passband 10Hz. (b)Width of the
passband 20Hz. (c) Width of the passband 40Hz. (d) Width of the passband 60Hz. (e) Width of the passband 80Hz. (f ) Width of the
passband 100Hz.
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As equal as in the previous experiments, we selected the
best cutoff frequencies for each subject; these frequencies are
listed in Table 14. Using these frequencies, it was possible to
improve the results considerable, as is reported in Table 15.
Furthermore, this increase is statistically significant for most
of the cases.

Finally, the increase rate is reported in Table 16.
Based on this analysis, considering both conditions and

the different mental tasks performed by the subjects, we can
observe that the selection of appropriate cutoff frequencies
highly impacts the accuracy of a BCI application. ,is
impact was more notorious with the less-common move-
ments (tongue and feet).

It is also important to mention that the window length
has an effect in the accuracy as well. Based on the experi-
mental results, we observed that the best accuracy is ob-
tained in general with a 2 s window length, but in other cases,
better results are obtained with different window lengths.
,erefore, the results could be improved if a suitable window
length is selected for each subject.

4. Conclusions

,is paper presented a careful evaluation of the robustness
of the fractal dimension (FD) as feature extraction tech-
nique in the classification of the EEG signals under high
variability conditions, particularly when training and
testing data sets are recorded on different days. ,is
problem represents a crucial challenge in the BCI appli-
cations due to the nonstationarity of the EEG signals. In
order to assess the accuracy of the proposed methodology,
we use the data set 2a from BCIIC IV under two conditions.
Firstly, the classifier was trained with the data from the first
day and was tested using the data from the second day. For
the other condition, the data from the second day were used
to train the classifier and the data from the first session were
used to test it.

In the preprocessing stage, different windows lengths
(1 s, 1.5 s, and 2 s) were evaluated in order to select the most
suitable. Although in most of the cases, a higher accuracy
was obtained when a window length of 2 s was employed, for
some cases, the highest accuracy was achieved with other
windows length. ,erefore, a detailed analysis for each
subject is recommended in order to achieve the most reliable
BCI in each case. After the selection of window length, the
EEG signals were filtered applying a bandpass filter with
1–100Hz as cutoff frequencies. To generate the feature
vector, the FD was computed in the time domain by two
different methods: Higuchi and Katz. In order to know if FD
provides better results than those obtained with classical
feature extraction techniques, the performance achieved
with FD was compared with that reached when an ARmodel
of second order is used. For most of the cases, the results
obtained by the FD (computed with the Higuchi or Katz
method) are better than those obtained using the AR model.
Additionally, through a Kruskal–Wallis test and a multi-
comparison test was shown that several of these differences
are significant.

Table 2: Cutoff frequencies selected for each subject forCondition A.

Subject Higuchi Katz AR
A1 9–109 9–29 3–13
A2 34–44 13–23 22–32
A3 10–20 4–14 10–40
A4 38–48 83–93 58–88
A5 5–35 25–35 33–43
A6 17–37 24–34 2–32
A7 3–23 2–32 2–42
A8 4–104 3–13 10–80
A9 26–36 4–64 14–94

Table 3: Average accuracy for Condition A using the selected filter
configuration.

Subject Higuchi Katz AR
A1 0.68± 0.04 0.70± 0.04 0.66± 0.05∗
A2 0.57± 0.03 0.57± 0.05 0.58± 0.04
A3 0.83± 0.03 0.82± 0.04 0.77± 0.04∗
A4 0.57± 0.04 0.55± 0.03 0.56± 0.04
A5 0.62± 0.03 0.57± 0.03∗ 0.57± 0.05∗
A6 0.58± 0.04∗ 0.63± 0.05 0.59± 0.03∗
A7 0.61± 0.04∗ 0.65± 0.05 0.61± 0.04∗
A8 0.86± 0.03 0.86± 0.03 0.81± 0.04∗
A9 0.82± 0.03 0.83± 0.06 0.80± 0.06
Average 0.68± 0.03 0.69± 0.04 0.66± 0.04
∗Accuracies that are significantly different compared with the best result.
Values in bold indicate the best average accuracy achieved from the dif-
ferent feature extraction techniques.

Table 4: Increase rate for Condition A.

Subject Higuchi Katz AR
A1 4.91 21.41 7.17
A2 15.67 12.38 12.02
A3 7.70 61.42 17.12
A4 25.72 16.86 17.01
A5 14.50 11.92 9.92
A6 8.47 14.93 11.23
A7 15.23 18.56 10.39
A8 1.69 30.23 4.42
A9 27.08 6.13 15.42
Average 13.44 21.53 11.63

Table 5: Average accuracy for Condition B using the classical filter
configuration (1–100Hz).

Subject Higuchi Katz AR
A1 0.59± 0.06∗ 0.55± 0.04∗ 0.66± 0.04
A2 0.55± 0.03 0.49± 0.04∗ 0.55± 0.05
A3 0.80± 0.05 0.53± 0.05∗ 0.65± 0.04∗
A4 0.49± 0.03∗ 0.49± 0.02∗ 0.55± 0.04
A5 0.52± 0.04 0.51± 0.03∗ 0.53± 0.04
A6 0.58± 0.04∗ 0.61± 0.04 0.54± 0.04∗
A7 0.52± 0.02 0.53± 0.02 0.52± 0.03
A8 0.88± 0.03 0.70± 0.04∗ 0.81± 0.04∗
A9 0.62± 0.04∗ 0.74± 0.07 0.63± 0.08∗
Average 0.62± 0.04 0.57± 0.04 0.60± 0.04
∗Accuracies that are significantly different compared with the best result.
Values in bold indicate the best average accuracy achieved from the dif-
ferent feature extraction techniques.
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Figure 3: Accuracy using different cutoff frequencies for the worst subject for Condition B. (a) Width of the passband 10Hz. (b) Width of
the passband 20Hz. (c) Width of the passband 40Hz. (d) Width of the passband 60Hz. (e) Width of the passband 80Hz. (f ) Width of the
passband 100Hz.
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Figure 4: Accuracy using different cutoff frequencies for the best subject for Condition B. (a) Width of the passband 10Hz. (b) Width of the
passband 20Hz. (c) Width of the passband 40Hz. (d) Width of the passband 60Hz. (e) Width of the passband 80Hz. (f ) Width of the
passband 100Hz.
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Furthermore, the impact of selecting the cutoff fre-
quencies for each subject in the preprocessing stage was
analyzed as well. For this goal, the low cutoff frequency and
the width of passband of the filter used in the preprocessing
stage were varied. By the obtained results was demon-
strated that the frequency selection allows an average in-
crease for both conditions close to 18% and this increase is
significant for most of the subjects for the three evaluated
techniques. Particularly for Higuchi and Katz, we obtained
an average increase of 18% and 21%, respectively. ,e
methodology was also applied during the classification of
two movements less common; in this case, the

Table 6: Cutoff frequencies selected for each subject for Condition B.

Subject Higuchi Katz AR
A1 9–29 18–28 2–82
A2 9–39 25–45 4–84
A3 8–48 7–17 8–48
A4 14–24 14–24 112–122
A5 5–35 27–37 16–36
A6 8–68 10–90 4–34
A7 3–23 6–16 3–23
A8 7–107 6–16 1–41
A9 26–36 9–19 2–12

Table 7: Average accuracy for Condition B using the selected filter
configuration.

Subject Higuchi Katz AR
A1 0.69± 0.03 0.71± 0.03 0.69± 0.03
A2 0.60± 0.03 0.58± 0.03∗ 0.60± 0.04
A3 0.87± 0.03 0.83± 0.04∗ 0.83± 0.04∗
A4 0.60± 0.05 0.58± 0.03 0.57± 0.05
A5 0.68± 0.04 0.67± 0.04 0.64± 0.03∗
A6 0.64± 0.03 0.65± 0.04 0.61± 0.04∗
A7 0.64± 0.03 0.63± 0.05 0.62± 0.05
A8 0.89± 0.04 0.90± 0.03 0.86± 0.03∗
A9 0.82± 0.04∗ 0.88± 0.03 0.82± 0.03∗
Average 0.71± 0.04 0.71± 0.04 0.69± 0.04
∗Accuracies that are significantly different compared with the best result.
Values in bold indicate the best average accuracy achieved from the dif-
ferent feature extraction techniques.

Table 8: Increase rate for Condition B.

Subject Higuchi Katz AR
A1 16.12 27.67 3.56
A2 9.35 16.56 8.79
A3 7.68 56.52 27.48
A4 22.93 17.99 4.82
A5 30.71 30.95 20.79
A6 8.85 5.57 13.26
A7 22.10 19.02 20.90
A8 1.98 28.60 5.02
A9 32.99 18.78 31.41
Average 16.97 24.62 15.11

Table 9: Average accuracy for Condition A during the classification
of feet and tongue movements and using the classical filter con-
figuration (1–100).

Subject Higuchi Katz AR
A1 0.55± 0.04∗ 0.55± 0.04∗ 0.58± 0.03∗
A2 0.52± 0.04 0.55± 0.03 0.54± 0.04
A3 0.64± 0.03 0.58± 0.04∗ 0.62± 0.05
A4 0.48± 0.04∗ 0.52± 0.03 0.50± 0.03
A5 0.53± 0.04 0.50± 0.02∗ 0.50± 0.01∗
A6 0.54± 0.04∗ 0.57± 0.03 0.54± 0.04∗
A7 0.54± 0.03∗ 0.59± 0.06∗ 0.64± 0.05
A8 0.73± 0.03 0.68± 0.04∗ 0.62± 0.05∗
A9 0.68± 0.04∗ 0.75± 0.06 0.70± 0.06∗
Average 0.58± 0.04 0.59± 0.04 0.58± 0.04
∗Accuracies that are significantly different compared with the best result.
Values in bold indicate the best average accuracy achieved from the dif-
ferent feature extraction techniques.

Table 10: Cutoff frequencies selected for each subject for Condition
A during the classification of feet and tongue movements.

Subject Higuchi Katz AR
A1 22–102 10–20 11–101
A2 3–33 7–37 13–33
A3 11–61 10–20 12–52
A4 85–105 71–81 78–98
A5 8–18 8–38 14–24
A6 10–20 2–32 12–42
A7 23–103 21–31 3–33
A8 8–38 3–23 8–98
A9 6–96 7–27 6–96

Table 11: Average accuracy for Condition A during the classifi-
cation of feet and tongue movements and using the optimal filter
configuration.

Subject Higuchi Katz AR
A1 0.65± 0.04∗ 0.67± 0.03 0.62± 0.04∗
A2 0.63± 0.04 0.65± 0.06 0.60± 0.04∗
A3 0.74± 0.03∗ 0.79± 0.03 0.70± 0.04∗
A4 0.56± 0.03 0.56± 0.05 0.56± 0.04
A5 0.60± 0.05 0.59± 0.04 0.57± 0.05∗
A6 0.64± 0.03∗ 0.68± 0.05 0.59± 0.05∗
A7 0.73± 0.04∗ 0.78± 0.04 0.72± 0.05∗
A8 0.74± 0.03∗ 0.78± 0.04 0.72± 0.02∗
A9 0.74± 0.06∗ 0.84± 0.03 0.73± 0.06∗
Average 0.67± 0.04 0.70± 0.04 0.65± 0.04
∗Accuracies that are significantly different compared with the best result.
Values in bold indicate the best average accuracy achieved from the dif-
ferent feature extraction techniques.

Table 12: Increase rate for Condition A during the classification of
feet and tongue movements.

Subject Higuchi Katz AR
A1 16.91 22.72 5.70
A2 19.34 18.69 12.41
A3 14.71 37.13 11.85
A4 16.08 9.51 12.41
A5 12.67 17.26 13.04
A6 18.47 19.98 8.80
A7 33.93 31.25 13.06
A8 0.91 14.18 15.32
A9 8.89 11.45 4.59
Average 15.77 20.24 10.80
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improvement of the accuracy due to the frequencies se-
lection was more remarkable.

,e obtained results suggest that it is possible to design a
robust BCI able to face the nonstationarity of the EEG
signals whose performance can be improved by selecting
the most appropriate cutoff frequencies. Nowadays, we are
evaluating the performance of the FD using different clas-
sifiers such as spiking neural networks in order to improve
the obtained results. Furthermore, we are working to

establish a robust methodology to develop a BCI based on
FD and spiking neural networks.
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