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Abstract: The TDP1 (tyrosyl-DNA phosphodiesterase 1) enzyme removes the non-specific covalent
intermediates between topoisomerase I and DNA, thus playing a crucial role in preventing DNA
damage. While mammals possess only one TDP1 gene, in plants two genes (TDP1α and TDP1β) are
present constituting a small gene subfamily. These display a different domain structure and appear to
perform non-overlapping functions in the maintenance of genome integrity. Namely, the HIRAN
domain identified in TDP1β is involved in the interaction with DNA during the recognition of stalled
replication forks. The availability of transcriptomic databases in a growing variety of experimental
systems provides new opportunities to fill the current gaps of knowledge concerning the evolutionary
origin and the specialized roles of TDP1 genes in plants. Whereas a phylogenetic approach has been
used to track the evolution of plant TDP1 protein, transcriptomic data from a selection of representative
lycophyte, eudicots, and monocots have been implemented to explore the transcriptomic dynamics
in different tissues and a variety of biotic and abiotic stress conditions. While the phylogenetic
analysis indicates that TDP1α is of non-plant origin and TDP1β is plant-specific originating in ancient
vascular plants, the gene expression data mining comparative analysis pinpoints for tissue- and
stress-specific responses.

Keywords: tyrosyl-DNA phosphodiesterase; DNA damage; expression profiling; phylogenetic analysis;
sequence organization

1. Introduction

The story of TDP1 starts with its identification in yeast [1,2] and mammal systems [3] in the
late 1990s, whereas it started to be characterized in plants only by 2010 [4,5]. It presents itself as an
enzyme that can hydrolyze the covalent intermediates between topoisomerase I (Top1) and DNA [1],
being included within the phospholipase D (PLD) protein family that comprises many enzymes
involved in phospholipid metabolism [2]. As all PLD proteins, TDP1 is characterized by the presence
of two HKD (histidine, lysine, aspartate) motives, acting as a dimer and being responsible for the
catalytic activity [6,7]. When the crystal structure of the human TDP1 protein (hTDP1) was solved
in 2002, it was confirmed that the two-step catalytic mechanism (specific for the PLD family) is followed
with a unique approach since it possesses a chemically asymmetric active site where H263 acts as a
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nucleophile in the first step reaction [8]. To briefly summarize this catalytic mechanism, the first step
consists of a nucleophilic attack of the Top1-DNA phosphotyrosyl bond by H263 residue (HKD motif 1),
resulting in a transient covalent phosphoamide bond. Subsequently, the H493 residue (HKD motif 2)
hydrolyzes the covalent intermediate using an activated water molecule and generating a product
with a 3′ phosphate end that will be further processed by the endogenous DNA repair machinery [9].
Though the course of time, TDP1 had been extensively studied in human cells because of its implication
in neurodegenerative disorders [10] and cancer progression [11,12]. The latter is based on the idea that
TDP1 is a target for several DDR (DNA damage response) kinases [13], involved in the activation of
cell cycle checkpoints, apoptosis, and DNA repair pathways [14].

In plants, the story of TDP1 begun 10 years ago when the Arabidopsis thaliana homologue was
first identified by Lee et al. [4], who demonstrated that the AtTDP1 enzyme was able to hydrolyze
the 3′ phosphotyrosyl DNA substrates related to Top1-DNA damage. The Arabidopsis tdp1 mutants
presented a different developmental phenotype characterized by dwarfism caused by a decreased
number of cells, while the use of vanadate inhibited the AtTDP1 enzymatic activity and further retarded
the growth of the mutant [15]. More recently, it has been demonstrated that AtTDP1 participates in the
repair of DNA-protein crosslinks (DPC), as a backup pathway independent of MUS81 endonuclease
and WSS1 protease [16,17]. Interestingly, in 2010, a small subfamily of TDP1 genes was identified in the
model legume Medicago truncatula [5]. The two genes, TDP1α and TDP1β, encode two distinct proteins
both containing the highly conserved HKD domains; while the TDP1αprotein has been referred to as the
canonical one since it resembles most the hTDP1 organization, the TDP1β protein was shown to contain
an additional HIRAN (HIP116, Rad5p, N-terminal) domain, localized between the two HKD motifs.
At the time, the presence of this small subfamily of genes has been evidenced by sequence comparison
also in other plant species (e.g., A. thaliana, Populus trichocarpa, Oryza sativa, Triticum aestivum) [5].
Further insights into the function of the MtTDP1α gene were provided by Donà et al. [18] who
demonstrated that the maintenance of genome integrity in RNAi knockdown plants was severely
impaired. Events like the up-regulation of senescence-associated genes, telomere shortening, impaired
ribosome biogenesis, reduction in methylated cytosines, and differential transposons expression [18,19],
indicate that TDP1α plays an essential role in plant genome stability. Additionally, even if the
MtTPD1β gene was upregulated in the MtTDP1α-depleted plants, this was not sufficient to rescue the
altered phenotype, suggesting that the two genes do not have an overlapping function [18]. This is
supported also by the different expression patterns of the two genes observed in the model plants
A. thaliana and M. truncatula in response to several types of stresses, indicating that the TDP1β had
an immediate response while TDP1α is activated at a later time [20]. It has been hypothesized that
this might be related to the presence of the HIRAN domain, previously predicted to function as a
DNA-binding domain that recognizes several features associated with DNA damage and stalled
replication forks [21]. In eukaryotes, the HIRAN domain can be found in association with other motives
such as FHA (ForkHead-associated), SMARCA (SWI/SNF-related, matrix-associated, actin-dependent
related chromatin), and VRR-NUC (PD-(D/E)XK nuclease superfamily) [20]. When the crystal structure
of the HIRAN domain present in the human HLTF (helicase-like transcription factor) protein was
solved [22], it was evidenced that the domain interacted with both single- and double-stranded DNA.
The study also showed that the HIRAN domain specifically recognizes the 3′-end of DNA, indicating
that it functions as a sensor of stalled replication forks and may facilitate fork regression [22].

Although in the past 10 years significant steps have been made to investigate the TDP1 family
in plants, many questions still remain open. For instance, at which point during plant evolution this
family of genes appeared? Are the differences between TDP1α and TDP1β gene expression patterns,
evidenced so far in M. truncatula and A. thaliana [20], observable also in other plant species? Based on
the advancements in genome sequencing, “omics” approaches, bioinformatics tools, and plant database
building software, the current study aims at answering precisely these questions. A phylogenetic
approach was hereby designed to investigate the origin, relation, and evolution of the TDP1 subfamily
in plants. In parallel, using a collection of transcriptomics data available at ePlant [23], we have
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compared the expression of the two genes in different tissues, developmental stages, and stress
conditions, taking into consideration archaic plants and agriculturally relevant crops.

2. Materials and Methods

2.1. Dataset

A total of 124 sequences were retrieved and divided into two datasets (Tables S1–S2). TDP1α
and TDP1β sequences were searched on separated BLASTp (https://blast.ncbi.nlm.nih.gov/Blast.cgi)
queries using as reference the sequences of M. truncatula [5] setting the max target sequences parameter
to 5000. Then, the species of interest were manually selected. For TDP1α, 86 sequences were retrieved
with the BLASTp query while the two sequences of Pinus sylvestris and Taxus baccata, not present
in NCBI, were obtained by using a BLAST query in the database GymnoPlaza1.0 under the repository
PLAZA4.0 [24]. The final number of sequences for TDP1α was 88 (Table S1) whereas for TDP1β 36
sequences were collected with the BLASTp method (Table S2). Fewer sequences were retrieved for
TDP1β as in this case the BLASTp annotation was often not sufficiently secure.

2.2. Sequence Alignment

Multiple sequence alignment (MSA) was performed on both TDP1α and TDP1βusing an R function
that exploits the msa package [25] with the ClustalOmega alignment method. This algorithm was
preferred for its robustness and accuracy even when many sequences are included [26]. The alignments
were converted into FASTA with the package seqinr [27] and the visualization was obtained using the
msaPrettyPrint function under the msa library.

2.3. Hierarchical Clustering

Explorative relationship analyses were carried out using both Neighbor Joining (NJ) and
Unweighted Pair Group Method with Arithmetic Mean (UPGMA) clustering methods using ape
R package [28]. The distance matrixes were generated with the package seqinr. Modifications after
visual inspection were performed using ggtree package [29].

2.4. Phylogenetic Analysis

Several phylogenetic analyses were carried out to exploit the wide range of bioinformatics tools
available and as many as possible methods to unveil the evolution and the relationship between amino
acid sequences.

The phylogenetic analyses on TDP1α and TDP1β proteins were carried out with MEGA X
software [30] using maximum likelihood (ML) clustering method after the evaluation of the best
substitution model with “Find best DNA/Protein Models” function available in MEGAX software.
For TDP1α, the substitution model (lowest BIC) was set as JTT + G, where JTT refers to the
Jones-Taylor-Thorton model [31] and G specifies that the rates are modelled as a gamma distribution.
For TDP1β, the best model was JTT + G + I + F; the value I indicates that some sites are invariant
while F indicates that the algorithm will use the observed aminoacidic frequencies. For each protein,
500 bootstrap replicates were run. Post-analyses modifications were performed with ggtree package as
mentioned in Section 2.3.

The phylogenetic analysis of the two proteins combined was performed with mrBayes v3.2 [32]
using the fixed Jones invgamma amino acid model, calculated for 1 million generations, sampling
every 500 generations and a burnin of 25% for the calculation of the consensus tree. The best model
was computed as before with MEGAX. In this case, because of the increased number of differences,
the alignment was refined with the Gblocks server (http://molevol.cmima.csic.es/castresana/Gblocks_
server.html, [33]) using the least stringent parameters. Final visualization was performed with
ggtree package.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://molevol.cmima.csic.es/castresana/Gblocks_server.html
http://molevol.cmima.csic.es/castresana/Gblocks_server.html
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2.5. Conserved Protein Motifs

To identify the conserved motifs of TDP1α and TDP1β proteins, the multiple expectation-
maximization for Motif Elicitation MEME 5.0.5 online suite software [34] was employed. After visual
inspection of preliminary results, anr and zoop were the chosen options as site distribution, 6 and 7
motifs were used for TDP1α and TDP1β, respectively, while for all the other parameters the default
values were maintained.

2.6. Gene Structure Analysis

An in-house bash script, that exploits the Entrez-Direct utilities [35], was used to retrieve the
coding DNA sequence (CDS) from NCBI database for each protein sequence present in this study.

The specific genetic structure (exons, introns, and untranslated regions) was evaluated with
Gene Structure Display Server (GSDS) (http://gsds.gao-lab.org/, [36]) only on a subset of selected
representative species.

2.7. Code Availability

All the codes used for the alignment, phylogenetic analyses, and conserved motives are available
in the GitHub repository (https://github.com/giacomomutti/TDP-phylogenetic-analysis).

2.8. Gene Expression Data Mining

Data mining for gene expression studies was performed on the BAR Toronto eFP browser
(http://bar.utoronto.ca/eplant, [23]), a visual analytic tool for exploring multiple levels of expression
data in plants. Each RNA-seq data deposited in this database contains specific references to the
study in which the data were generated and the type of materials, treatments, and data analyses
that were used. Specifically, for gene expression data mining, we have retrieved gene expression
data for the following species: Selaginella moellendorffii [37–39], Zea mays [40,41], O. sativa [42,43],
M. truncatula [44,45], Glycine max [46,47], Solanum lycopersicum [48], and Solanum tuberosum [49].
The accessions of the TDP1α and TDP1β genes for the species taken into consideration are provided in
Table S3. For S. moellendorffii, the data is provided as transcripts per million (TPM) whereas for maize
the data were normalized as RPKM (reads per kilobase of transcript per million mapped reads) and for
all other indicated species the data is FPKM (fragments per kilobase of exon model per million reads
mapped)-normalized. The selected mode for all the species was “absolute,” indicating the expression
levels for each type of sample/condition is directly associated with the most intense signal recorded for
each gene. The intensities obtained through eFP (electronic fluorescent pictography) are normalized
using two different methods: RMA and MAS5. RMA (robust multichip analysis) is an algorithm that
uses a set of chips (>3) which are assumed to have the same background noise and ignore mismatches,
while MAS5, selected for the data in the current investigation, can be used with a single chip and
isolates individual signals by removing the background noise [50]. In all the studies, samples were
analyzed in triplicates while only the mean values were retrieved and used to represent the data
as heatmap models generated using the Shinyheatmap (http://shinyheatmap.com/) application [51].
Within this application, the expression values are represented as Z-score, a numerical measure that
describes the relationship of a value to the mean of a group of values.

3. Results

3.1. Phylogenetic Analyses Show that TDP1β Appeared in Ancestral Plants

To construct the phylogenetic tree of the plant TDP1 family, several approaches based on multiple
sequence alignments were tested and are presented in this work. The final alignment of TDP1α consists
of a total of 1384 amino acids of which only 12 are perfectly conserved in all the 88 species taken
into consideration (Figure S1). Notably, among the 12 residues, three (HH-K) belong to HKD motif 1;

http://gsds.gao-lab.org/
https://github.com/giacomomutti/TDP-phylogenetic-analysis
http://bar.utoronto.ca/eplant
http://shinyheatmap.com/
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the amino acid found between the catalytic histidine and lysine was serine in plants and threonine
in animals, Saccharomyces cerevisiae, and Physcomitrella patens (bryophyte). The H and K residuals
of the HKD motif 2 are highly conserved, except for pineapple (Ananas comosus) and clementine
(Citrus clementina) (Figure S1). The final alignment of TDP1β was more conserved when compared
to the one of TDP1α. In a total of 1523 amino acids, 131 residues are present in all the 27 species
considered, including the H and K residues of HKD motif I and motif II (Figure S2). The number of
sites highly conserved (present in more than 90% of the organisms considered) is higher in TDP1β
(17.6%) than TDP1α (10.9%). This may be likely attributable to the presence of very distant sequences
such as animals and fungi in the TDP1α alignment (Figure S3).

Hierarchical clustering, namely Unweighted Pair Group Method with Arithmetic mean (UPGMA)
and Neighbor Joining (NJ), of the two alignments was initially implemented to perform a preliminary
inspection of the relationship among the considered species (Figures S4 and S5). These analyses
showed that the TDP1α sequences from fungi, animals, algae, ancestral plants/gymnosperms are
grouped together. For TDP1β, S. moellendorffii acts as an outgroup. This plant is a lycophyte, one of
the most ancient groups of vascular plants, and shows the presence of both TDP1α and TDP1β
sequences. In the successive node, all the monocots diverge from the eudicots and Amborella trichopoda,
a basal angiosperm.

To better understand the evolutionary relationship between the species present in our dataset
based on the two TDP1 sequences, a maximum likelihood (ML) analysis was performed. From the 88
sequences of the TDP1α, the tree built (Figure 1a) reveals once again, the outgroup position of S. cerevisiae
together with the animals. Algae is the first clade to be separated from the outgroups followed by
the two gymnosperms, (T. baccata and P. sylvestris) and ancestral vascular plants (S. moellendorffi and
P. patens), which confirm A. trichopoda as the most basal lineage of the clade of the angiosperms [52].
In the monocots group, a division from commelinids and lilioid is observed, except for date palm
(Phoenix dactylifera), a species belonging to the commelinids clade, whose TDP1α seems to resemble the
one of the lilioids. Macleaya cordata, a basal eudicot species belonging to the Ranunculales order, is placed
as an outgroup of all the core eudicots species, a result supported by literature reporting the analysis of
its genome [53]. The results of the ML analysis shows that the core eudicots are well separated in the
two superclades of rosids and superasterids with only the exception of two species, common grape
(Vitis vinifera) and spinach (Spinacia oleracea) belonging to the order of the Vitales (the most basal clade in
the rosids) and Caryophillales (a clade of the superasterids), respectively. If the first one is well separated
from all the other clades, the S. oleracea TDP1α is more similar to the rosids than to superasterids.
However, few basal nodes in the Rosids clade have very low support values, whereas more recent nodes
seem to be better explained. M. truncatula is placed in the clade of Rosids in a cluster including all the
species present in the dataset belonging to the Fabaceae family. The grouping within this family is well
supported. This family has been confirmed to be monophyletic by different molecular analysis [54].
However, the sister groups of this node contain Eucalyptus grandis and S. oleracea, two very distant
species with respect to Fabaceae.

The evolutionary relationships observed in TDP1β ML tree have a high level of similarity with the
one of TDP1α (Figure 1b). The new outgroup, only consisting of the two ancestral plants, is different
from TDP1α because of the lack of this protein in fungi, algae, and animals. Also, in this case, monocots
and eudicots clades are the first to diverge after the outgroup, and, among the eudicots clade, it is
possible to notice the division between rosids and asterids. M. truncatula is once again clustered in
the family of Fabaceae together with other available species. These trees are both represented with the
corresponding multiple sequence alignment in Figures S6 and S7.

A Bayesian inference phylogenetic analysis (Figure 2, Figure S8) of all the sequences present in
the used dataset reveals two major clades belonging to the two TDP1 proteins, except for the TDP1α
algae species which groups with the TDP1β species (posterior probability—p.p. = 0.92). Within the
major clades, the relationships observed in ML trees are generally supported, with some differences in
nodes that were supported by a low number of bootstraps.
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(a)

(b)

Figure 1. Phylogenetic tree constructed based on the (a) TDP1α and (b) TDP1β sequences. For TDP1α,
500 bootstrap maximum likelihood tree of 88 protein sequences was used while 36 protein sequences
are representative for TDP1β. Bootstrap values are shown only if lower than 100. The different clades
are marked with different point and bar colors. M. truncatula branch is highlighted in red.



Genes 2020, 11, 1465 7 of 22

S. moellendorffii beta

S. italica beta
P. hallii beta

Z. mays beta
S. bicolor beta

B. distachyon beta
O. sativa Japonica Group beta

B. rapa beta
C. rubella beta

A. thaliana beta
A. lyrata subsp lyrata beta

C. follicularis beta

E. grandis beta

M. truncatula beta
T. subterraneum beta
T. pratense beta

M. pruriens beta
G. max beta

P. andersonii beta
T. orientale beta
M. domestica beta

P. persica beta
R. chinensis beta

F. vesca subsp vesca beta

C. sinensis beta

T. cacao beta
G. arboreum beta
G. raimondii beta

P. trichocarpa beta
R. communis beta
M. esculenta beta

V. vinifera beta

S. tuberosum beta
S. lycopersicum beta

A. chinensis var chinensis beta

A. trichopoda beta

C. subellipsoidea C-169 alpha

T. socialis alpha
C. sorokiniana alpha
M. conductrix alpha

P. patens alpha
S. moellendorffii alpha

P. sylvestris alpha
T. baccata alpha

A. trichopoda alpha

D. oligosanthes alpha
P. hallii alpha
B. distachyon alpha
T. urartu alpha
A. tauschii subsp tauschii alpha
S. italica alpha

Z. mays alpha
S. bicolor alpha

O. sativa Japonica Group alpha

A. comosus alpha
P. dactylifera alpha

P. equestris alpha
D. catenatum alpha

A. shenzhenica alpha
A. officinalis alpha

M. cordata alpha

A. annua alpha
L. sativa alpha

H. annuus alpha
C. cardunculus var scolymus alpha

C. arabica alpha
C. eugenioides alpha
N. attenuata alpha
S. tuberosum alpha
S. lycopersicum alpha
S. pennellii alpha
A. chinensis var chinensis alpha

S. oleracea alpha

B. rapa alpha
B. napus alpha

C. rubella alpha
E. salsugineum alpha

A. thaliana alpha
A. lyrata subsp lyrata alpha

P. trichocarpa alpha
R. communis alpha

J. curcas alpha
M. esculenta alpha
H. brasiliensis alpha

M. truncatula alpha
C. arietinum alpha
A. precatorius alpha

C. cajan alpha
M. pruriens alpha

V. radiata var radiata alpha
G. soja alpha
G. max alpha

E. grandis alpha
M. charantia alpha

C. sativus alpha
C. maxima alpha
C. moschata alpha
C. pepo subsp pepo alpha

Q. suber alpha

F. vesca subsp vesca alpha
R. chinensis alpha

M. domestica alpha
P. persica alpha
P. avium alpha

Z. jujuba alpha
M. notabilis alpha
P. andersonii alpha

T. orientale alpha

C. sinensis alpha
C. clementina alpha

V. vinifera alpha

C. papaya alpha

G. arboreum alpha
G. raimondii alpha

D. zibethinus alpha

T. cacao alpha
H. umbratica alpha

S. cerevisiae alpha
D. rerio alpha

H. sapiens alpha
H. glaber alpha
C. brachyrhynchos alpha

C. picta bellii alpha

X. tropicalis alpha

0.917

0.966

0.986

0.864

0.751

0.945

0.856

0.526

0.918

0.746

0.736

0.982

0.818

0.802

0.605

0.798

0.528

0.785

0.944

0.973

0.76

0.821

0.636

0.646

0.677

0.634

0.983

0.853

0.58

0.96

0.637

0.887
0.505

0.651

0.684

0.544

0.564

0.9730.978

0.877

0.9680.938

0.541 0.89

0.938

0.982

0.919

0.99

0.774

0.635

0.671

0.762

0.786
0.967

T
D

P
1β

T
D

P
1α

Ancestral

Monocots

Rosids

Asterids

Animals

Fungi

Algae

Gymnosperms
Ancestral Plants

Monocots

Superasterids

Rosids

Basal Eudicots
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The node comprising all TDP1α plant species is not resolved, trifurcating in ancestral
plants/gymnosperms, monocots, and eudicots. Asterids species are divided into Asterales at the
base and Solanales/Gentianales which are merged with the Rosids (p.p. = 0.65). Spinach (S. oleracea) and
kiwi (Actinidia chinensis), even though they represent basal species of Superasterids, are also grouped
with the Rosids (p.p. = 0.58). The Rosids node is not resolved, as indicated by the low bootstrap values
previously found (Figure 1b, Figure S7), and grape (V. vinifera) acts as an outgroup. Brassicales are
grouped together, except for papaya (Carica papaya), which groups with Malvales species (p.p. = 0.77),
differently from the ML tree. As in the ML tree, all Fabales are clustered together with high confidence
and again M. truncatula seems to be near the chickpea (C. arietinum). All TDP1β sequences share the
same node with TDP1α algae sequences, with Coccomyxa subellipsoidea being the closest. However,
their respective branches are much longer than the others. Both the ancestral plants act as outgroup
even if this node is not resolved. Monocots and eudicots are correctly divided (p.p. = 0.97) like
Asterids and Rosids species (p.p. = 1). V. vinifera sequence is at the basis of the Rosids clade, differently
from the ML tree. Malvales and Malpighiales are grouped together with high confidence (p.p. = 0.98).
Then, another polytomy is present, including among the other Brassicales, Rosales, and Fabales sequences.
E. grandis is the sister group of the Fabales, whereas in the ML tree it was basal to all eudicots species.
Overall, lower nodal support (mean of node support) is recorded in TDP1α compared to TDP1β.

The combined Bayesian phylogenetic analysis revealed that while the TDP1α is of non-plant origin,
the TDP1β is confirmed to be plant-specific and postulate its origin between the algae TDP1α and the
TDP1β vascular ancestral plants.

3.2. Similarities and Differences within the TDP1α and TDP1β Protein and Gene Structures

We applied gene structure analysis to uncover differences at the genetic level within the clusters
previously identified. It is possible to observe that the structure of TDP1α gene is very similar among
the Brassicaceae cluster (A. thaliana, A. lyrata, C. rubella, B. rapa) or the Cucurbitaceae (Cucumis sativus,
C. maxima, C. pepo), characterized by many short introns (Figure 3a). On the other hand, for the
well-known family of Fabaceae, to which M. truncatula belongs, the gene structure is quite diverse.
In particular, M. truncatula shares long introns with the C. arietinum, not present in the other two
species of this group (A. precatorius, G. max). The genes of monocots species are generally longer than
the eudicots because of long introns. Moreover, a high level of conservation along all the species
present in this analysis was observed from the six protein motifs identified by MEME5.0 analyses
(Table S4), in which the HKD is represented by motif 1 (red) and HKD-II by motifs 4 (blue) and
6 (purple). All sequences present these motifs in the same order and numerosity, except for O. sativa
and S. moellendorfii which have one extra motif 5 (orange) and one extra motif 2 (cyan), respectively.
However, these two motifs have lower confidence than the others (Figure 3a).

The gene structure on TDP1β (Figure 3b) revealed a higher level of conservation among all the
species compared to TDP1α. High differences were only observed in the structure of four species,
S. moellendorfili, V. vinifera, A. trichopoda, and E. grandis which contain long introns. Among the Fabaceae,
M. truncatula has a structure highly similar to G. max and it is quite different from the one of the
other species. The protein motif analysis evidenced the presence of seven conserved motifs for the
TDP1β protein along with the recurrence of HKD-I motif as motif 4 (blue) and HKD-II as motif 7
(dark green). The HIRAN domain is represented as recurrent motif 6 (purple) (Figure 3b, Table S5).

Overall, the TDP1α and TDP1β protein and gene structure analyses evidence similarities given
the conservation of the HKD domains and sequence length distinctions for monocots and dicots,
while pinpointing the specific presence of the HIRAN domain in TDP1β.
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Figure 3. Gene and protein structure of selected (a) TDP1α and (b) TDP1β sequences. In the gene
structure (central part of the figure), UTRs are represented as blue boxes, introns as black lines, and exons
as blue round boxes. The colored boxes in the right part of the figure are recurring motifs found
with MEME5.0 in the protein sequences (Tables S4 and S5). Lower boxes represent lower confidence.
The phylogenetic tree on the left is the same as in Figure 1, trimmed for a selected subset of species.

3.3. Expression Profiles of TDP1α and TDP1β in the Archaic Vascular Plant S. moellendorffii

Based on the data obtained from the phylogenetic analysis, S. moellendorffii is the first plant
that shows the presence of both TDP1α and TDP1β genes. This ancient vascular plant, member of
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lycophyte family, had been observed in the fossil record around 410 million years ago and is regarded as
an important model organism for comparative evolution genomics [55]. A recent publication evidenced
transcriptional gene modules that indicate duplication events, at least related to the biosynthesis of the
cell wall and secondary metabolism [56].

The gene expression data, recovered from BAR, refers to experiments carried out to study the
diurnal cycle [37], root meristems [38], and shoot meristems [39]. The generated heatmap (Figure 4)
evidences the expression patterns for the SmTDP1α (Smo170833) and SmTDP1β (Smo415650) genes in
the considered samples/conditions. The highest expression levels of SmTDP1α are revealed in the root
meristematic zone while for the SmTDP1β this is observed in strobili. Regarding the data related to the
diurnal cycle, it is possible to observe that both genes are differentially expressed after several hours
of treatment, with SmTDP1α generally showing higher expression values than SmTDP1βwhile both
genes are most expressed in control experiments as well as total darkness and high light exposure.
Contrasting temperatures (4 ◦C and 37 ◦C) seem to not activate the response of the genes.

Overall, these data show a prevalence of similitudes in the two gene expression patterns,
with distinct differences only in few tissues (e.g., strobili and rhizosphore).
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Figure 4. Expression profiles of the TDP1α (Smo170833) and TDP1β (Smo415650) genes in S. moellendorffii.
Data was collected from http://bar.utoronto.ca/efp_selaginella/cgi-bin/efpWeb.cgi and heatmaps were
generated using the Shinyheatmap (http://shinyheatmap.com/) application.

3.4. Expression Profiles of TDP1α and TDP1β in Monocots

To look into the expression patterns of the two genes in monocotyledonous plants, we have mainly
focused on rice (O. sativa) and maize (Z. mays) as these are cereal crops that have an overwhelming
agricultural and economic importance.

Data on rice tissue and stress conditions were mainly retrieved from the study of Jain et al. [42].
Tissues were collected from O. sativa subsp. indica var. IR64 grown under greenhouse conditions
while for stress treatments, 7-days-old seedlings were used as follows: salt stress—200 mm NaCl
solution for 3 h, desiccation—seedlings dried for 3 h between folds of tissue paper at 28 ◦C ± 1 ◦C,
cold—4 ◦C ± 1 ◦C for 3 h. Data on anoxia were retrieved from Lasanthi-Kudahettige et al. [43],
who used O. sativa subsp. japonica var. Nipponbare, hydroponically grown 20-day-old plantlets
under air/anoxia treatments (dark, 28 ◦C). The expression pattern of OsTDP1α (LOC_Os07g34598)

http://bar.utoronto.ca/efp_selaginella/cgi-bin/efpWeb.cgi
http://shinyheatmap.com/
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and OsTDP1β (LOC_Os04g33050) genes show similar profiles in plant tissues with both genes being
highly expressed in the shoot apical meristem (SAM). High expression levels of OsTDP1α gene are
observed also in young inflorescence tissues while for OsTDP1β relatively high gene expression is
observed in seedling roots (Figure 5a). Interesting data are available when looking at gene expression
during stress treatments, where contrasting responses can be seen; while the OsTDP1β gene is more
expressed during desiccation and salt treatments, the OsTDP1α gene is far less expressed under the
same conditions. Differently, the anoxic treatments triggered an elevated expression in OsTDP1α and
low levels of OsTDP1β (Figure 5a).
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Expression data from different tissues and stress conditions are given in heatmaps generated based on
Z-score values at http://shinyheatmap.com/.

However, this type of behavior is not maintained also in maize (Figure 5b) where the responses of
the two genes are similar under biotic (Colletotrichum graminicola infection causing the anthracnose of
maize disease) and abiotic (temperature, drought, salt) stresses. While the genes are highly expressed
under different osmotic pressures (−0.2 and −0.8 MPa after 6 and 24 h of exposure), their expression
levels are low under the rest of the imposed treatments. These data were collected from the maize
developmental gene atlas that reflects major transcriptional profiles involved in abiotic or biotic stress as
well as in plant development [40,41]. This trend seems to be maintained also in developmental tissues,
with few variations; ZmTDP1α (Zm00008a028998) highest expression is present in prepollination cob
while for ZmTDP1β (Zm00008a007514) this is evident in the apical scutellum. At the level of the
scutellar aleuronic layer, the expression of ZmTDP1α gene is prevalent.

Summarizing, the expression patterns of TDP1α and TDP1β genes in monocots, namely rice
and maize, indicate species-specific behaviors.

3.5. Expression Profiles of TDP1α and TDP1β in Dicots

To investigate the expression patterns of TDP1α and TDP1β genes in dicotyledonous, we focused on
agriculturally relevant families of plants, namely Solanaceae and Fabaceae (or Leguminosae). The model
plant A. thaliana was not included in this analysis for several reasons; first, we wanted to focus
especially on crops to evidence the applicability side of this basic research, and second, because the

http://shinyheatmap.com/
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Arabidopsis database is much more extensive, containing a big amount of information that could be
used as stand-alone.

Within the Solanaceae family, we investigated the gene expression patterns in S. tuberosum,
S. lycopersicum, and its wild relative S. pimpinellifolium (Figure 6). The data on potato were retrieved from
a transcriptome study that evaluated gene expression profiles in major organs, developmental stages,
and stress-related conditions, using the double monoploid S. tuberosum Group Phureja (clone DM1-3
516R44) [49]. Developmental tissues from vegetative and reproductive organs were collected from
greenhouse-grown plants whereas shoots and roots from plants grown in vitro were also considered.
A Phytophthora infestans inoculum (Pi isolate US8: Pi02-007) was used to induce biotic stress along with
other conditions such as wounded leaves to mimic herbivory attack and use of the known elicitors
of the immune response, acibenzolar-s-methyl (BTH, 100 µg/mL) and DL-β-amino-n-butyric acid
(BABA, 2 mg/mL). For the induction of abiotic stresses, plants were grown in vitro and treated for 24 h
with heat (35 ◦C), salt (150 mM NaCl), and mannitol (260 µM). Additionally, different plant hormones,
such as abscisic acid (ABA, 50 µM), indole-3-acetic acid (IAA, 10 µM), gibberellic acid (GA3, 50 µM),
and 6 benzyl amino purine (BAP, 10 µM) were used for hormone-induced stress. When considering the
expression of StTDP1α (PGSC0003DMG400024073) and StTDP1β (PGSC0003DMG400014226) genes in
plant organs, a differential, tissue-specific pattern is observed (Figure 6a). StTDP1α is highly expressed
in mature fruits and tubers while a low expression is present in leaves, petioles, and petals. Differently,
StTDP1β is highly expressed in stolon, young tubers, shoot apex, and whole in-vitro-grown plants.
Looking into the stress conditions, both genes are downregulated by biotic stresses and hormone
treatments and upregulated by osmotic stresses. On the other hand, while StTDP1α is downregulated
also during heat stress, the StTDP1β gene is upregulated under these conditions.
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Figure 6. Expression profiles of the TDP1α and TDP1β genes in cereal crops. (a) S. tuberosum.
(b) S. lycopersicum and S. pimpinellifolium wild relative. Expression data from different tissues and
stress conditions are given in heatmaps generated based on Z-score values at http://shinyheatmap.com/.

Less data are available for tomato plants. The data hereby retrieved come from the study of
Koenig et al. [48] which deals with comparative transcriptomics in domesticated (S. lycopersicum
var. M82) and wild tomato (e.g., S. pimpinellifolium), mainly related to the developmental context.
The tested materials consisted of roots, leaves, flowers, young green fruits, and mature fruits collected
from plants grown under greenhouse conditions. The generated heatmap (Figure 6b) shows that

http://shinyheatmap.com/
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SlTDP1α (Solyc03g031820.2) most intense expression is in fruits whereas for SlTDP1β (Solyc03g117960.2)
is mostly expressed in roots and flowers. Hence, the tissue-specific gene expression variation observed
for potato plants is maintained in tomatoes as well.

Within the Fabaceae family, we focused on M. truncatula (barrel medic), an important model species
for legume research as well as a relevant forage crop for the Mediterranean and semi-arid areas,
and G. max, widely grown for its edible beans (Figure 7). For M. truncatula, data regarding
transcriptomics in all major organ systems were retrieved from Benedito et al. [44] while data
on the effect of stress (temperature, osmotic) on dry seeds and during pod abscission were recovered
from the study of Righetti et al. [45]. In the latter case, the imposed conditions were as follows:
standard conditions (20/18 ◦C), low temperature (14/11 ◦C), high temperature (26/24 ◦C), osmotic stress
(20/18 ◦C; −0.1 MPa), and greenhouse conditions (variable temperature and light). Within the different
plant organs taken under consideration, MtTDP1α (Medtr7g050860) gene is highly expressed at the
early stages of seed development, while MtTDP1β (Medtr8g095490) gene is most expressed in roots,
mature nodules, vegetative buds, flowers, and pods (Figure 7a). As for the effects of stress, both genes
are upregulated by cold and downregulated by osmotic conditions, especially in dry seeds.Genes 2017, 8, x FOR PEER REVIEW  13 of 22 
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Expression data from different tissues and stress conditions are given in heatmaps generated based on
Z-score values at http://shinyheatmap.com/.

The situation is relatively different for soybean (Figure 7b) as, in this case, both genes are
expressed at low levels during seed development and at high levels in young leaves, flowers, and pods.
Data deposited in BAR came from the RNA-seq soybean transcriptomic study of Severin et al. [47] for
the different tissues while data for root hair cells in response to Bradyrhizobium japonicum (USDA110)
infection were reported by Libault et al. [46]. The seeds were inoculated with B. japonicum cell suspension
or water (mock inoculation) after 3 days of germination (under sterile conditions). The Illumina
transcriptome data were compared between inoculated and mock-inoculated root hair cells harvested
at 12, 24, and 48 h after inoculation (HAI), as well as stripped roots (roots devoid of root hairs), harvested
at 48 HAI. Comparing mock with inoculated samples at the different time points, it is observed that
the GmTDP1β (Glyma.08G005800) gene is highly induced after 12 h of inoculation while the GmTDP1α
(Glyma.04G064300) gene is upregulated after 48 h. The high expression of GmTDP1α gene is maintained
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also in the roots devoid of root hairs (stripped) at 48 h after inoculation. So, in this case, the differential
expression of GmTDP1 genes upon B. japonicum infection is time-dependent.

Overall, the results gathered from dicot species indicate a tissue-specific expression, in the case
of potato, tomato, and barrel medic, as well as a time-dependent behavior as in the case of soybean
response to biotic infections.

4. Discussion

For the first time, the current study investigated the evolutionary origin of the TDP1 gene family
in plants alongside explorative RNA-seq data mining to provide further insights into the function of
the two genes. As evidenced by the literature in mammalian and plant kingdoms, the TDP1 genes
encode important proteins assigned to DNA damage repair biological processes. Hence, because of the
essential role that DNA repair has in preserving genome integrity and in plant defense against both
biotic and abiotic stresses, the study of the TDP1 origin and gene expression data provide additional
support for potentially developing highly tolerant plants.

To understand when the two sequences appeared from an evolutionary perspective, a phylogenetic
approach was implemented. The methodologies applied in this study are in line with other recent
publications investigating the phylogenetic relations in plant gene families [57–60]. Our evolutionary
analyses reveal that the phylogenesis of the TDP1 protein subfamily broadly overlaps the taxonomic
division, often clustering together species belonging to the same clade, order, and family. This division
is observed for both proteins and a high degree of similarity is found when the topology is compared.
TDP1α outgroup comprised also protein sequences of non-plant species, suggesting a non-plant
origin of this specific isoform. Therefore, we suggest a putative origin of the TDP1α plant protein
in the non-plant kingdom, likely in the last common ancestor between plants and opisthokonts
(animal and fungus kingdom). Moreover, from our results and from the sequences available in our
dataset an α origin of the β sequence is proposed, and precisely it is placed in between the TDP1α of
unicellular green alga C. subellipsoidea and the TDP1β of the ancestral vascular plants S. moellendorfili,
and A. trichopoda. The appearance of this sequence may have happened based on its likely important
role in the adaptation to a harsh environment, with extremely low temperatures and low atmospheric
humidity to a more temperate environment. Indeed, all the plant species that carry the TDP1β are
Tracheophytae and recently has been shown that this node is not characterized by a great number of
novel genes, oppositely to the Embryophyta node (including the bryophyte P. patens) that is regarded
as one of the most drastic transition in plants evolution [61]. Nonetheless, the novel genes acquired
during the vascular adaptation are enriched in the defense response to biotic (bacterial infection)
and (water and salt) abiotic stresses [61]. So, our results indicate that TDP1β is specific to plants,
and believed to have appeared ~410 million years ago at the divergence into euphyllophytes and
lycophytes lineages [62]. A. trichopoda is considered as the single sister species to all angiosperms.
The Amborella Genome Project [63], revealed the presence of an ancient genome duplication event
previous to angiosperm diversification, but no specific evidence of lineage-specific genome duplications
was seen. The Consortium also identified new gene families (mostly involved in floral development)
and gene duplications, presuming that a whole-genome duplication event preceded the evolution of
this ancestral angiosperm. On the other hand, the sequencing of the S. moellendorffii genome indicated
that the transition from non-seed vascular to flowering plants required the acquisition of a considerable
number of new genes, mainly related to developmental pathways (e.g., meristems, hormone signaling,
and biogenesis) [55].

The HKD motifs are extremely conserved, especially regarding the catalytic amino acids, with a
notable difference in the amino acids between the fundamental H-K sites in TDP1αHKD-I motif in
P. patens which is identical to the one in animals and S. cerevisiae. These motifs are present in almost all
the species included in our analysis, except for TDP1αHKD-II motif in A. comosus and C. clementina.
These exceptions, here recorded for the first time, may be related either to an ancestral residual in the
case of P. patens or to a different environmental adaptation and evolutionary selective pressures [61].
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The TDP1α gene structure analysis shows that there is a great difference between species belonging to
the Fabaceae clade. The main difference follows the distinction between millietioid legumes (Glycine and
Abrus) and IRLC (Inverted Repeat-lacking clade) represented by Medicago and Cicer. These clades
are characterized by an ancestral WGD (Whole Genome Duplication) that may have caused genomic
rearrangements [64,65]. Also, papaya has a differentiated structure from all other Brassicales species.
This species genome is three times the size of the Arabidopsis genome, although containing far fewer
genes supposedly due to the lack of recent duplication events [66]. Differently, the TDP1β gene structure
is more conserved (except for E. grandis, V. vinifera, and A. trichopoda). E. grandis is a species belonging
to the Myrtales order which is characterized by a lineage-specific WGD [67]. V. vinifera genome is
characterized by a considerably lower number of genes with respect to the close P. trichocarpa [68].
Finally, Amborella, despite being the sister lineage to all extant flowering plants, shows no evidence
of lineage-specific duplications or transposons insertions [63]. A recent publication investigating the
PLD family of proteins, to which TDP1 belongs, has revealed the importance of multiple conserved
motifs that may have different regulatory and catalytic functions [69]. One common feature found in
the plant PLDα isoform, along with other PLDs from microbes and eukaryotes, was the duplicated
catalytic HKD motif, found as well in TDP1α and TDP1β. Among the different organisms investigated
in this study, the authors reported some initial anomalies present in algal sequences (e.g., the presence
of an unorthodox HKS motif), which were however dismissed upon further analyses, concluding
that some of the deposited sequences are unreliable [69]. The origin of plant PLDα still needs to
be clarified as well, since green algae do not seem to possess this sequence, with few exceptions
(C. subellipsoidea, Phaeodactylum tricornutum) hypothesized to be the result of a horizontal transfer from
microbes [70]. As for the TDP1β sequence, this is quite a unique combination considering the presence
of a HIRAN domain between the two HKD motifs. Phylogenetic studies into the distribution of the
HIRAN domain demonstrated that it was acquired early in the evolution of eukaryotes from bacteria
or phages, whereas the presence of the HIRAN domain in TDP1 is unique to plants [21]. Nonetheless,
an evolutional analysis of the domain architecture of all HIRAN domain-containing proteins indicated
that it is most prevalent in eukaryotes and predominantly coupled with SWI2/SNF2 helicase-like and
RING-finger domains [71]. Taken together, all these studies, including the current one, strengthen the
need to further investigate this unique association of HKD-HIRAN-HKD organization present in the
plant TDP1β sequence, along with the function of this gene/protein.

As evidenced by the cited literature, our interest in plant TDP1 started 10 years ago when we
first identified the presence of the TDP1α and TDP1β genes in the model legume M. truncatula [5].
Since then, we have demonstrated the crucial role that the TDP1α gene plays in maintaining genome
integrity [18,19] as well as the differential expression of the two genes in response to different stress
conditions [5,72,73], especially the early temporal responsiveness of TDP1β compared with TDP1α
observed in both model species A. thaliana and M. truncatula [20]. Taking advantage of the increasing
amount of data derived from RNA-seq analyses and elegantly stored in dedicated databases, such as
BAR (BioAnalytic Recourse), in this work we extracted the data relative to these two genes and
compared their responses in different tissues, organs, developmental stages, and stress conditions in
several species. Figure 8 gives a schematic representation of the observations made based on the mined
data. Relevant information that derives from the results gathered from S. moellendorffii is the high
expression of TDP1α and TDP1β in root apical meristem (RAM) concomitant with low expression in
shoot apical meristem (SAM). Conversely, in higher plants (monocots and dicots) the genes seem to be
more expressed in SAM, shoot apexes, or vegetative buds. Transcriptomics studies have been conducted
to investigate the differential gene expression patterns and the origin of both root [38] and shoot [39]
development. An extensive comparative analysis of gene expression patterns during root formation
carried out in seven plant species (A. thaliana, S. lycopersicum, G. max, C. sativus, O. sativa, Z. mays, and
S. moellendorffii), pinpoints that despite the considerable variation in the size and cellular anatomy of
roots in these species, the root developmental program is well conserved [38]. On the other side, the
transcriptomic analysis of SAM collected from Equisetum arvense and S. moellendorffii, and compared to
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maize, indicates the presence of independent molecular genetic programs for shoot development [39].
By conducting an interspecies heatmap comparison of SAM to visualize the relative transcript
accumulation of genes involved in meristem function, the authors evidenced several transcriptional
regulators, hormone-related genes, components of small RNA biogenesis, and DNA repair, that are
all up-regulated in angiosperm SAMs [39]. Both SAM and RAM contain specific regions where
subpopulations of stem cells (the progenitors of all cells that make up the entire plant body and
presumed offspring) are present, and that these stem cells niches (e.g., root quiescent center, QC) are
characterized by slower rates of division compared to the rest of the cells. Importantly, it is rather critical
to maintaining the genome integrity of this fraction of cells [74], and, for this reason, these cells are more
resistant to DNA damage [75], probably because of their slow-paced cell division. For instance, in the
event of stem cell loss as a result of DNA damage, Arabidopsis QC cells seem to be engaged in a cell
division program to supply the lost stem cells, thus enabling rapid recovery of root growth following
plant transfer from DNA stressed to non-stressed conditions [75]. To this purpose, high expression
levels of TDP1 genes in RAM may as well contribute to the proper maintenance of genome integrity in
important cell stem niches.
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Besides the important role that DNA repair has during plant development, for instance as
shown by the presence of specific DNA stress checkpoint controls [76], it is well ascertained that
different types of stress conditions induce DNA damage and DNA repair pathways are activated to
counteract it [77,78]. In this context, the function of TDP1 was associated with the base excision repair
(BER) pathway [18,79], as well as with the repair of DNA-protein crosslinks [16,17]. In this work,
concerning the response of the TDP1 genes to abiotic stress conditions, two distinct patterns can be
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discussed: (1) a similar behavior of the genes in response to osmotic and temperature-related stresses
(e.g., salt, cold); and (2) opposing behavioral patterns in response to desiccation and anoxia. Under biotic
stress, it is possible to observe a decreased expression of both genes in maize whereas a more interesting
situation is evident in soybean where a time-dependent differential expression is encountered. In
this latter case, early induction of TDP1β and late induction of TDP1α is observed. As already
mentioned, this type of time-dependent behavior was evidenced in M. truncatula and A. thaliana
under different types of abiotic stresses [20]. Looking into the contrasting response of the two genes
under different stress conditions, very interesting is the case of rice exposed to desiccation stress
or anoxia. While TDP1α is highly expressed under anoxic conditions, TDP1β is highly expressed
under desiccation conditions. Transcriptomics studies of rice grown under anoxia revealed that genes
coding enzymes that need oxygen for their activity were substantially downregulated [43]; the authors
illustrate this as an adaptive mechanism to prevent the production of enzymes that cannot operate
under anoxia and save the energy for the activation of the required responsive pathways. Hence,
it may be hypothesized that the TDP1β, unlike TDP1α, may require the presence of oxygen for its
function. Another interesting article discusses the cross-tolerance effects of anoxia and desiccation
caused by heat in Arabidopsis [80]. The results indicated that pretreatments with hypoxia or heat
resulted in better anoxia tolerance but anoxic pretreatment did not result in tolerance to heat stress;
in this particular case, the reasoning behind this behavior involves a differential activity of heat
shock protein (HSP)-coding genes [80,81]. In M. truncatula desiccated (dry) seeds, we observed a
considerably higher expression of TDP1β compared to TDP1αwhile during seed rehydration TDP1α is
more expressed than TDP1β [5,72,82]. This pattern of expression in dry seeds is confirmed also from
the RNA-seq data mining [45] presented for M. truncatula.

In conclusion, this study indicates that this small plant TDP1 subfamily originated from ancient
vascular plants around ~410 million years ago since both TDP1α and TDP1β sequences were found
in A. trichopoda and S. moellendorffii. The gene structure and protein organization are well conserved
showing the presence of the two HKD catalytic sites, along with the HIRAN motif in the case of the
TDP1β sequence. The gene expression data mining comparative analysis pinpoints at tissue- and
stress-specific responses. Notably, the specific expression of TDP1β under desiccation stress may be
indicative of its involvement in desiccation tolerance, an important trait related to avoidance of cellular
damage during drying and rehydration. Taken together, these results encourage further investigations
into this subfamily of genes, including the unique association of HKD-HIRAN-HKD organization
present in the plant TDP1β sequence, along with protein functions and implications in stress tolerance.
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