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The motor system executes actions in a highly stereotyped
manner despite the high number of degrees of freedom
available. Studies of motor adaptation leverage this fact by
disrupting, or perturbing, visual feedback to measure how
the motor system compensates. To elicit detectable
effects, perturbations are often large compared to trial-to-
trial reach endpoint variability. However, awareness of
large perturbations can elicit qualitatively different
compensation processes than unnoticeable ones can. The
current experiment measures the perturbation detection
threshold, and investigates how humans combine
proprioception and vision to decide whether displayed
reach endpoint errors are self-generated only, or are due
to experimenter-imposed perturbation. We scaled or
rotated the position of the visual feedback of center-out
reaches to targets and asked subjects to indicate whether
visual feedback was perturbed. Subjects detected
perturbations when they were at least 1.5 times the
standard deviation of trial-to-trial endpoint variability. In
contrast to previous studies, subjects suboptimally
combined vision and proprioception. Instead of using
proprioceptive input, they responded based on the final
(possibly perturbed) visual feedback. These results inform
methodology in motor system experimentation, and more
broadly highlight the ability to attribute errors to one’s
own motor output and combine visual and proprioceptive
feedback to make decisions.

Introduction

The motor system is the medium through which we
interact with the world. It is remarkably accurate and
self-correcting despite the large set of factors that affect

a motor plan in the pursuit of a specific goal. These
factors can be external, such as the weight of a heavy
tool, correcting for wind in a field goal attempt, or the
introduction of an uneven reward landscape such as
when reaching around a fragile wine glass. Motor plans
can also be altered due to internal factors, such as
fatigue or becoming more precise through learning.
Through a lifetime of practice, people use visual and
proprioceptive feedback to learn how to achieve a
motor goal by updating motor commands in response
to both external and internal constraints. We investi-
gate how people combine these sensory cues to make
judgments about the outcome of these motor com-
mands.

Studies of movement planning typically examine
the effects of internal and external factors by
artificially manipulating the movement. Often, the
manipulation interferes with the subject’s naturally
learned behavior. For example, to measure how a
subject changes behavior to improve performance, a
reach may be displaced mechanically (Hwang, Smith,
& Shadmehr, 2006; Sanes & Evarts, 1983) or a visual
indicator of the unseen hand is displaced (Held &
Freedman, 1963; Hudson & Landy, 2012a, 2016;
Mazzoni & Krakauer, 2006). These are effective ways
of learning about the properties of the motor system
because of the ease of implementation and the ability
to measure compensation under various contexts and
conditions.

These displacements of the reach or reach feedback,
called perturbations, are often large and potentially
noticeable. Noticing a perturbation of the reach
endpoint may allow subjects to compensate using a
conscious, top-down approach, which may be subject
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to cognitive biases (Harris, 1974) and is more difficult
to accomplish under cognitive load (Ingram et al.,
2000). Hwang et al. (2006) describe explicit and implicit
motor compensation processes (i.e., compensation
when aware or unaware of the manipulation) that work
in parallel and both contribute to maintaining perfor-
mance during perturbed movements. These processes
operate with different learning rates, have different
amounts of savings during subsequent re-adaptation,
and can be weighted asymmetrically in subsequentnt
motor plans (Huberdeau, Krakauer, & Haith, 2015;
Taylor, Krakauer, & Ivry, 2014). Typical studies show
less generalization and transfer of learning to the
contralateral limb during adaptation than during an
explicit change of strategy (e.g., Malfait & Ostry, 2004;
but see also Torres-Oviedo & Bastian, 2012). Further-
more, these systems can operate in opposition to one
another (Mazzoni & Krakauer, 2006) and are sub-
served by different neural circuitry (Galea, Vazquez,
Pasricha, de Xivry, & Celnik, 2011; Taylor, Klemfuss,
& Ivry, 2010). This suggests that motor adaptation is a
qualitatively different process than consciously chang-
ing a motor goal. These processes directly inform real-
world applications, including rehabilitation and skill
learning, underscoring the need to learn more about
how people detect perturbations.

Some studies attempt to avoid subjects noticing
perturbations by increasing the perturbation magnitude
over many smaller steps that build up to a large final
value (Hudson, Lackner, & DiZio, 2005; Kagerer,
Contreras-Vidal, & Stelmach, 1997; Kluzik, Diedrich-
sen, Shadmehr, & Bastian, 2008; Malfait & Ostry, 2004;
Sawers, Kelly, & Hahn, 2013; Werner et al., 2015;
Wong & Shelhamer, 2011), or by using a perturbation
magnitude that fluctuates over trials (Cassanello, Ohl,
& Rolfs, 2016; Hudson & Landy, 2012a). However,
none have directly addressed the issue of perturbation
detection. Werner et al. (2015) attempted to indirectly
estimate detection ability by calculating an awareness
index with the Process Dissociation Procedure (Jacoby,
1991). This allowed Werner et al. to estimate the degree
to which reaches were driven by adaptation versus
explicit strategies, but does not directly address the
question of whether or not participants were able to
detect the perturbation.

Detecting a perturbation is a consequence of the
combination of sensory signals that provide informa-
tion about the location of the end effector. The specific
manner in which these signals are combined is an area
of active research. Previous studies have shown that
vision and proprioception are combined optimally in
motor planning (Sober & Sabes, 2003, 2005; van Beers,
Sittig, & van Der Gon, 1999; van Beers, Wolpert, &
Haggard, 2002; van Dam & Ernst, 2013). This suggests
that people may combine the outcome of a forward
model of the reach, proprioception at reach endpoint,

and the (possibly perturbed) visual feedback to make a
statistically optimal inference. Similar results have been
found in the oculomotor system (Collins, Rolfs,
Deubel, & Cavanagh, 2009; Niemeier, Crawford, &
Tweed, 2003; but see also Cavanaugh, Berman, Joiner,
& Wurtz, 2016). Kluzik et al. (2008) found that
inducing a gradual adaptation compels subjects to
update their internal model of the arm rather than their
model of an external tool, suggesting that the central
nervous system (CNS) attributes smaller errors to itself.
Berniker and Körding (2008) theorized that sensori-
motor adaptation and certain instances of generaliza-
tion in motor learning could be explained by a model of
the CNS that selectively attributes motor error to either
errors in self-generated torque or external perturbation
(e.g., from a force field perturbation). However,
empirical tests by Hudson and Landy (2012b) found
that human subjects were unable to compensate for
self-generated torques in a reflexively perturbed reach-
ing task. None of these studies have investigated
sensory integration for the purpose of detecting a
perturbation.

In the current experiment, we tested subjects’
ability to detect perturbations applied to reach
endpoints. Subjects made reaches across a horizontal
table while task information and reach feedback was
provided on a vertical fronto-parallel monitor. Small
circles representing the target and fingertip were
displayed on the screen (Figure 1A). On some trials,
visual feedback of reach endpoint location was
perturbed. Subjects indicated whether feedback was
veridical or perturbed. This task allowed us to
measure the ability to detect perturbation, both in
absolute terms as well as relative to the participant’s
own motor variability. It also allowed us to investi-
gate how people combine sensory signals. For this,
we developed three models of behavior. The first
model optimally combines knowledge of the distri-
butions of noisy proprioceptive and visual signals. A
second, suboptimal model combines point estimates
of each source of information. The third model uses
visual information exclusively. Previous literature
suggests that proprioceptive and visual cues are
combined optimally. Our data are inconsistent with
this prediction: Participants only responded that they
were perturbed when the visual feedback indicated
that the reach error was large.

Methods

Participants

Five right-handed subjects (three female, two male;
mean age 25.6 years) completed the experiment.
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Subjects were naive to the experimental goals, except
for Subject 1, author EGC. All subjects were paid $10
per 45-min session and provided written consent in
accordance with the New York University Institutional
Review Board and the Declaration of Helsinki. Two

additional subjects completed an initial practice session
but did not continue because one failed to properly
implement the task instructions, and one sustained an
injury to the dominant hand in an accident unrelated to
the research program.

Figure 1. Experimental setup. (A) Diagram of the table and monitor. Subjects’ fingers were tracked as they lifted and reached from

one location to another on a horizontal tabletop (objective movement indicated by dotted white line). Visual display of the starting

point (gray circle), target (blue circle), and reach endpoint was on a fronto-parallel display scaled identically to tabletop locations.

Vertical hand movements were not represented on the screen. (B) Trial sequence. There was a 250 ms intertrial interval and a 200 ms

delay before the target appeared. All other durations were controlled by the subject.
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Apparatus

Subjects performed the task in a dimly lit room,
seated against a table that extended 35.3 cm from a
21 00 CRT monitor. Subjects wore a ring on the most
distal knuckle of the right index finger with three
infrared LED markers on both sides of the ring as
part of an Optotrak 3020 dual-camera setup (North-
ern Digital Inc., Waterloo, Canada) to continuously
track fingertip movements at 200 Hz. The horizontal
plane was represented on the monitor such that
viewing the monitor while seated was equivalent to
viewing the table from above (Figure 1A). A
calibration run at the beginning of each session
allowed us to estimate the position of the fingertip
based on the Optotrak markers. Start points, targets,
and the fingertip position were represented on the
display screen. Subjects placed the right index finger
on the tabletop and made pointing movements to
other locations on the table, as instructed by on-
screen targets. Stimulus presentation was performed
using PsychToolbox (Brainard, 1997; Pelli, 1997) and
analyses were carried out using MATLAB (Math-
Works, Natick, MA).

Design

Subjects made reaching motions toward an eccen-
tric target. Subjects completed 4000 total reaches,
split over the eight sessions of 500 trials each
(Subjects 2 and 5 completed one fewer trial due to
premature termination of the program). Subjects who
were unfamiliar with motor tasks in the lab performed
an introductory 500-trial practice session to become
acquainted with the setup and so that their average
motor error would stabilize. All sessions began with
an additional 200-trial warmup period. Trials from
the introductory practice session and warmup periods
had no perturbation and were only used for the
purpose of yoking the perturbation magnitudes to
each subject’s individual motor variability. Each
subject’s motor variability was calculated as the
standard deviation (SD) in gain or direction of finger
endpoint error during the 200 practice trials at the
beginning of the first session. In the main experi-
mental portion of each session, endpoint feedback
was perturbed on half the trials. Perturbation
magnitudes were 1, 1.5, 2.2, 3.3, or 5 times the
participant’s motor SD. Perturbations were applied in
both directions (stretching and shrinking in gain and
clockwise and counterclockwise in direction) so that
there were 10 possible perturbations per session. The
10 perturbations, along with the no-perturbation
trials, were presented in random order to minimize

corrections (i.e., adaptation). In the first four sessions
reach gain was perturbed, and in the next four, reach
direction was perturbed.

Task

An example trial sequence is shown in Figure 1B.
Subjects initiated each trial by moving the dominant
(right) index finger until the finger indicator dot
covered the central start circle. After a 200 ms delay,
an auditory cue indicated the appearance of the
target, a circle (0.4 cm diameter) that appeared 10.1
cm away from the start circle. The target remained on
the screen until the trial was completed. Target
direction was random and uniform across trials.
Reach onset and offset were signaled with an
auditory cue. Subjects were instructed to lift the
finger off the table during the reach to avoid
inhomogeneities in the friction of the tabletop,
completing the reach by landing again on the table.
This requirement made accurately assessing reach
endpoint location easier. Movement onset was
defined as the moment the finger indicator left the
start circle and the vertical position of the finger
elevated 0.2 mm. The location of the finger was not
revealed on the screen during the trajectory to
minimize effects of online feedback. Reach offset
thresholds were developed from analysis of trajectory
kinematics measured in pilot studies and from past
datasets. Reach offset was defined as the moment
when all of the following criteria were satisfied: (a)
The fingertip was vertically lower than 2 mm above
the starting position (note that the starting position
was often based on the finger location after the finger
had lifted up off the table), (b) the instantaneous
vertical velocity had slowed sufficiently (less than 0.1
mm/s downward) or the finger began to rebound
upward, (c) instantaneous vertical acceleration was
greater than 0.01 mm/s2 upwards (i.e., the finger was
decelerating downward), and (d) the reach was
greater than two-thirds of the distance to the target
to prevent egregious reaching errors. Trajectories
were limited to 500 ms; otherwise the trial would end
abruptly, and the subject would be notified of the
timeout by text on the screen and an unpleasant beep.
Trials were also discarded if the reach duration was
less than 100 ms or if the finger data were missing for
more than 50 ms, which indicated a threshold or
tracking issue. Trials with any of these errors were
repeated immediately with the same target.

Once the trajectory concluded, the feedback dot,
either perturbed or veridical, appeared on the screen.
Subjects then had unlimited time to indicate via key
press using the nondominant (left) hand whether they
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believed the feedback had been perturbed. After the
response, subjects received full feedback about the
response and reach endpoint (Figure 1B). The screen
then went blank for a 250 ms intertrial interval before
the start circle reappeared. On practice and warmup
trials, the reach endpoint was shown immediately after
the reach, but there were no perturbations and no
detection task. The experiment was self-paced. Each
45-min session was only a single block of trials and
without experimenter-imposed breaks. However, par-
ticipants could take breaks between trials.

Models

We are interested in how subjects combine sensory
signals to determine whether feedback has been
perturbed. The models have access to similar informa-
tion: vision, proprioception, and the typical distribu-
tion of endpoint errors. They differ in how the
information is combined. The ideal observer combines
this information in a manner that maximizes the
probability of being correct. A suboptimal strategy, the
comparison observer, says Yes if the visual feedback and
proprioceptive estimate of finger location differ suffi-
ciently. Another suboptimal strategy, the visual-cue-
only observer, says Yes only when the visual feedback
indicates a large reach error and ignores propriocep-
tion.

There were two cues about the location of the reach
endpoint, both of which we treated as being unidi-
mensional: visual feedback (x̂v) and proprioceptively
sensed location (x̂p). The proprioceptive signal is an
unbiased estimate of the finger endpoint (xf),
Pðx̂pjxfÞ ¼ PðepÞ, where Gaussian proprioceptive
noise ep ¼ x̂p � xf ;Nð0; r2

pÞ. The visual signal is
modeled as an unbiased estimate x̂v of the visual
feedback location (with perturbation Dxv),
xv ¼ xf þ Dxv, with Pðx̂vjxf;DxvÞ ¼ P evð Þ, where
Gaussian visual noise ev ¼ x̂v � ðxf þ DxvÞ;Nð0; r2

vÞ.
We compared three potential models of subjects’
behavior. Of course, we do not have direct access to
subjects’ proprioceptive signal. Rather, we looked at
how subjects’ decisions were affected by the size of the
perturbation and the reach endpoint position. Reach
endpoints appear to be normally distributed (via a q-q
plot), although hypometric. Hypometria and a
constant rotational error during the gain and direc-
tion sessions can be accounted for by including a bias
term b in the average reach to the target position (xt,
which we define here as 0), and we assume the
observer takes this bias into account. Therefore,
P xf
� �

¼ P ef
� �

, where ef ¼ xf ;Nðb; r2
f Þ. The data were

normalized by the standard deviation of the motor
noise from each session separately, so normalized

motor errors over all sessions have rf ’ 1. Similar to
the observer’s estimate of the visual feedback loca-
tion, the observer’s estimate of the target location (x̂t)
is also corrupted by visual noise, so that
P x̂tð Þ ¼ P evð Þ. We performed a formal model com-
parison to determine which strategy participants
used.

Ideal observer

The ideal observer computes and compares the
probability of a perturbation Dxv 6¼ 0ð Þ and no
perturbation (Dxv ¼ 0) given the sensory signals. The
response is based on whichever was greater. Given that
the probability of a perturbation was 0.5 in our
experiment, the ideal observer detects a perturbation
when the likelihood of the current visual and propri-
oceptive sensory signals is greater on the assumption of
a perturbation than on the assumption of no pertur-
bation:

P x̂p; x̂vjDxv 6¼ 0
� �

.P x̂p; x̂vjDxv ¼ 0
� �

:

The likelihood of the no-perturbation hypothesis is
computed by integrating over all possible finger
endpoint positions:

P x̂p; x̂vjDxv ¼ 0
� �

¼
Z

P x̂vjxf;Dxv ¼ 0
� �

P x̂pjxf
� �

P xfjxt
� �

dxf:

P xfjxt
� �

is the observer’s knowledge of the distribution
of finger endpoints, and introduces the bias, b, the
subject’s expected mean endpoint. Substituting for each
probability, we have

P x̂p; x̂vjDxv ¼ 0
� �

¼
Z

1ffiffiffiffiffiffi
2p
p

rv

exp � x̂v � xf
� �2

=2r2
v

� �

3
1ffiffiffiffiffiffi
2p
p

rp

exp � x̂p � xf
� �2

=2r2
p

� �

3
1ffiffiffiffiffiffi
2p
p

rf

exp � xf � xt � bð Þ
� �2

=2r2
f

� �
dxf:

The likelihood of the perturbation hypothesis is
slightly more complicated, as the observer also needs to
integrate over possible values of the perturbation.

P x̂p; x̂vjDxv 6¼ 0
� �

¼
ZZ

P x̂vjxvð ÞP x̂pjxf
� �

P Dxvð ÞP xfjxt
� �

dDxv dxf:

For the probability of the magnitude of the perturba-
tion, P Dxvð Þ, we simplified by assuming the observer
believes the perturbation values to be normally
distributed. We used a standard deviation rpert equal to
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the true SD of the experimental values, even though we
used the method of constant stimuli with 50% catch

trials, so that Dxv ;N 0;r2
pert

� �
. Taken together:

P x̂p; x̂vjDxv 6¼ 0
� �

¼
ZZ

1ffiffiffiffiffiffi
2p
p

rv

exp � x̂v � xf þ Dxv
� �� �2

=2r2
v

� �

3
1ffiffiffiffiffiffi
2p
p

rp

exp � x̂p � xf
� �2

=2r2
p

� �

3
1ffiffiffiffiffiffi

2p
p

rpert

exp �Dx2v=2r
2
pert

� �

3
1ffiffiffiffiffiffi
2p
p

rf

exp � xf � xt � bð Þ
� �2

=2r2
f

� �
dDxv dxf:

The free parameters in this model are the bias and the

SDs of the visual and proprioceptive noise.

Comparison observer

The next model compares the visual signal to the
proprioceptive signal in order to make a decision. A
perturbation is detected if the difference between the
visual and proprioceptive estimates is sufficiently large,
i.e., if

x̂v � x̂p
�� �� ¼ Dxv þ ev � ep

�� ��.C:

The left hand side of this inequality has combined
proprioceptive and visual variance (r2

v þ r2
p), which

simplifies to the single free parameter r2
combined because

their individual contributions are not discriminable.
The second and final free parameter C is the threshold
perturbation magnitude (in units of motor error SD)
for which the probability of the detection response is
50%. There is no bias parameter in this model because
bias does not enter into the comparison between the
proprioceptive and visual signals.

Visual-cue-only observer

Our final observer’s responses are based on visually
displayed feedback alone, and disregard estimates of
reach endpoint from proprioception. This observer
detects a perturbation when visual feedback of fingertip
position differs sufficiently from the expected endpoint,
or

x̂v � x̂t � bð Þj j.C:

This model is similar to the comparison observer, again
with a combined noise parameter (in this case
effectively doubling the visual noise), except that the
bias parameter b appears here. It has three free
parameters.

We fit the models by evaluating the likelihood at
each point in a parameter grid. For each condition
(gain and direction perturbation), we normalized the
likelihood and multiplied by a weak (standard normal)
prior on the parameters to get the resulting posterior.
We randomly sampled from this posterior 1000 times,
and used the 2.5th and 97.5th percentiles as confidence
bounds on the fit parameters. To compare models
quantitatively, we calculated the Akaike Information
Criterion (Akaike, 1974) using the parameter values
that resulted in maximum posterior probability (MAP).
The priors did not largely affect the best-fitting
parameters, nor did they change the relative AIC
values.

The magnitude of subjects’ variable motor error
decreased over sessions, indicating learning. Therefore,
reach endpoint errors and perturbation magnitudes
used in this analysis were first normalized by the
standard deviation of reach endpoint error from the
sessions in which they were collected. This method also
has the benefit of normalizing across subjects and
describes the perturbations and the errors in both the
gain- and the direction-perturbation sessions using the
same units. All analyses were carried out in these
session-specific SD units.

Results

Subjects made center-out reaches to a visual target.
Reach endpoint feedback was provided. On half of the
trials feedback was perturbed either in gain or
direction. We sought to determine how people use
visual and proprioceptive cues to detect the perturba-
tion.

Reach trajectory kinematics were inspected to ensure
that there were no obvious defects in the data collection
process. Figure 2A shows the first 100 trials from Subject
3 during the first gain-perturbation session. The
trajectories have an arching shape, as instructed, and the
invisible circle on which the targets appeared is
discernible. Figures 2B through D show the median and
95% confidence regions of trajectory positions in each of
the three dimensions relative to the target location.
Trajectories were normalized into 100 time bins using a
linear interpolation of the raw positions. Trajectories
followed a straight path to the target (Figure 2B) with
the typical reach profile, arching up off the table and
then back down (Figure 2C through D). They also
followed a typical velocity profile (Figure 2E).

We first asked if subjects exhibited motor learning by
analyzing trajectory endpoint errors over the course of
the experiment. Specifically, the SD of finger endpoint
errors continued to decrease after the initial learning
session (Figure 3). A Pearson correlation between
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session number (1–8) and SD of gain error, averaged
across subjects (gray boxes in Figure 3), confirms the
presence of motor learning (r¼�0.97, p , 0.0001). This
was initial justification for normalizing the data within
each session, specifying all locations in units of that
session’s motor SD (see Methods).

Using these session-specific perturbation values,
we asked how subjects’ performance varied as a
function of the perturbation. As expected, the ability
to detect the perturbation increased monotonically
with the strength of the perturbation (Figure 4). We
calculated separate d 0 values for each perturbation

Figure 2. Raw data of Subject 3’s gain-perturbation sessions. (A) Trajectories of the first 100 trials. The vertical axis scale is

exaggerated for clarity. Position in the direction lateral to the target (B), in the direction of the target (C), and vertically (D), and

velocity in the direction of the target (E) are plotted as a function of normalized time. Black curve: median for all 2000 trajectories.

Dashed line in C: target distance. Gray: 95% CI.
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level using the hit rate for that perturbation level and
the common no-perturbation false alarm rate. An
additional correction was made to the d 0 value for hit
and false alarm rates of 1 or 0 (Hautus, 1995). Figure
4 includes 20 perturbation values (5 absolute per-
turbation levels by 4 sessions) for each subject and

axis of perturbation, so that each hit rate is based on
50 trials.

We next determined the magnitude of perturbation
that subjects can reliably detect. We wished to
interpolate the data to find the perturbation corre-
sponding to d0¼ 1. By eye, we found that a logarithmic

Figure 3. Reach precision (SD of movement amplitude in mm) as a function of session number. Precision improved across sessions.

Data are from the gain-perturbation sessions. Subject 1 (author EGC) was experienced with the setup. Gray squares: mean across

subjects.

Figure 4. Performance (d0) as a function of perturbation magnitude for the gain- and direction-perturbation sessions. Data are plotted

separately for each subject, session and perturbation level. Perturbation values are plotted in SD units of endpoint error from each

session separately. The colors correspond to subjects, as in Figure 3. Solid curve: logarithmic fit.

Journal of Vision (2019) 19(1):5, 1–18 Gaffin-Cahn, Hudson, & Landy 8



curve of the form y ¼ a logxþ b fit the data well,
although this function has no particular theoretical
significance. Figure 4 shows the fits (ordinary least
squares) separately for the gain- and direction-pertur-
bation sessions. Thresholds were 1.59 and 1.43 SD
units in the gain and direction conditions, respectively.
Individual subject thresholds are shown in Table A1.
Thus, a perturbation is reliably detected (approxi-
mately 69% correct responses if subjects are maximiz-
ing percent correct) when its magnitude is about 1.5
times a typical reach error. We found further justifica-
tion for normalizing data into SD units by fitting a
function to the raw data in millimeters. Fits to the
normalized data were better. For gain and dimension
perturbations, r2 ¼ 0.93 and r2 ¼ 0.92 for the
normalized data, and r2 ¼ 0.76 and r2¼ 0.80 for the
unnormalized data. Therefore, all subsequent analyses
are in SD units.

Next, we analyzed how sensory cues are combined to
make the perturbation-detection decision. Figure 5
shows heatmaps of the proportion of Yes responses for
each combination of perturbation and reach endpoint
error (binned). The axes are in units of SD of the
subject’s own motor noise, as in Figure 4. The raw
data, which are shown binned in Figure 5, were used to
determine which model best captured subjects’ strate-
gies. Figure 6 shows each model with the best-fitting
parameters for one example subject and condition (data
indicated by an asterisk in Figure A1). Intuitively, an
observer should compare the sensed finger endpoint
position (based on proprioceptive signals) with visual
feedback of the finger position, and respond Yes when
the difference between these position measurements is
sufficiently large. In the coordinates of Figures 5 and 6,
this strategy predicts a lower proportion of Yes
responses when the feedback was not perturbed (i.e., a

Figure 5. Response data. The color indicates the proportion of trials in which subjects responded Yes, binned by perturbation value

and reach endpoint error. Data from all subjects are pooled. Axes are in units of reach endpoint SD.
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trough aligned with Perturbation¼ 0). The sub-optimal
comparison observer (middle panel in Figure 6) depicts
this prediction. The visual-cue-only observer, on the
other hand, ignores the proprioceptive signal and
responds Yes based solely on the distance of the
feedback from the target (figuring in expected pointing
bias). The corresponding trough (right panel in Figure
6) is aligned with the diagonal axis, resulting in a
minimum probability of saying Yes when the pertur-
bation is equal and opposite to the endpoint error,
putting the feedback at the location of the target. The

ideal observer (left panel in Figure 6) combines the
sources of sensory noise in a statistically optimal way.
The orientation of the trough falls somewhere in
between the other two models.

The MAP estimates of the parameters and their 95%
CI for each model, subject, and perturbation session
are shown in Figure 7 (see Methods: Models). The
parameter C, used by the comparison and visual-cue-
only observers, represents the number of SDs of motor
noise in the difference between the comparison signals
(i.e., between the visual feedback and the propriocep-

Figure 6. Observer model fits. Probability of a Yes response as a function of perturbation and reach endpoint error as predicted by

each of three models. The parameter values used for each model are from maximum a posteriori fits to the data of Subject 3 in the

gain-perturbation session, indicated in Figure A1 with an asterisk. The color scale matches that of Figure 5.

Figure 7. MAP estimates of the parameters for each subject (indicated by x axis index), perturbation dimension, and model. Error bars:

95% CI (samples from the posterior), some of which are occluded by the MAP marker. Colors correspond to subject, as in Figure 3.
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tively felt hand position for the former, and the visual
feedback and the target position for the latter) before
subjects begin responding Yes. C is the difference in the
comparison signals at which subjects respond Yes half
the time. Because of the reasonable range of parameter
values (approximately 1.5–3 SDs), the remarkable
consistency within subject and between models and
their tiny confidence intervals, we can be confident in
these estimates.

Another interesting feature of the parameters is the
pattern in the observers’ bias. The bias accounts for
subjects’ recognition of the average motor error when
making the detection decision, and therefore this
parameter is a stand-in for subjects’ internal model of
motor error. Across all models and subjects, the
sessions where the perturbation was applied to reach
direction led to a best-fit bias parameter that was zero
or close to zero. This makes sense because reach
endpoint errors were not biased clockwise or counter-
clockwise of the target. However, all subjects exhibited
at least some degree of hypometria, meaning that they
undershot the target. The first evidence in favor of
subjects having an accurate internal model of endpoint
error distribution is the fact that the best-fitting bias
parameters were always negative when the reach
feedback was perturbed in gain. They are negative
because subjects undershot the target, and are only
negative during the gain sessions because undershoot-
ing the target is irrelevant for detecting a perturbation
of reach direction. The best-fitting bias parameters for
the gain-perturbation sessions for the two models that

have this parameter are similar for each subject (Figure
7). The bias parameter will shift each observer’s trough
along the Perturbation¼ 0 axis, which does not change
the shape of the heatmap. More evidence for subjects’
accurate internal model of endpoint error distribution
comes from a quantitative comparison between sub-
jects’ best-fit bias parameter and their actual mean
endpoint error (Figure 8). An accurate internal model
predicts that the bias parameter equals the mean
endpoint error (i.e., the data fall on the identity line).
For both the ideal and the visual-cue-only observers,
there is a high correlation in the gain-perturbation
sessions r¼ 0.966, p , 0.01 and r¼ 0.986, p , 0.01,
respectively). These did not reach significance in the
direction-perturbation sessions (r¼ 0.803, p¼ 0.1 and r
¼ 0.803, p¼ 0.1), for which there was little variance in
either the bias parameters or the mean endpoint errors
across subjects. Additionally, it is primarily the fits
from the direction-perturbation sessions that have
confidence intervals that overlap with the identity line.
For the majority of cases (9/10), the bias parameters
from the gain-perturbation sessions were slightly less
than the actual mean endpoint error. This indicates
that subjects either believed their mean endpoint to be
slightly closer to the target than it actually was, or that
they did not fully incorporate knowledge of their mean
endpoint into their detection decisions.

The visual-cue-only observer was more representative
of subjects’ behavior than either of the other models.
AIC values were consistently lower for that model than
for the others (Figure 9), indicating a better fit, despite

Figure 8. Correlation between endpoint error and bias parameter. This parameter estimates the endpoint error during no-

perturbation trials for which the subject is least likely to respond Yes. Endpoint errors and bias values are plotted in session-specific

SD units. Colors and shapes correspond to subject and session, as in Figure 7. Vertical error bars represent 95% CI of the sampled

posteriors, and some are occluded by the markers. Horizontal error bars are present and represent the SEM, but all are occluded by

the markers. In some cases, vertical errors bars overlap with the identity line, indicating that those subjects had and used an accurate

internal model of mean endpoint error. In the rest of the cases, the bias parameter was less than the endpoint error, indicating that

those subjects did not fully incorporate mean endpoint error into responses.
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the penalty for having more free parameters. For two
of the subjects, data from just one of the dimensions of
perturbation were better fit by the ideal observer. This
means that to a great degree, subjects responded No
when the perturbation was equal and opposite the
reach error (i.e., when the displayed feedback was on
target). We therefore conclude that subjects ignored
proprioception and respond based solely on the final
visual feedback.

Discussion

In this experiment, endpoint feedback of center-out
reaches was perturbed to determine how subjects
combined proprioceptive and endpoint feedback sig-
nals to detect perturbation. We do not have access to
subjects’ proprioceptive estimates of reach endpoints.
Rather, we used perturbation magnitude and endpoint
error to predict subjects’ responses. We found that
subjects are reasonably successful at detecting pertur-
bations (Figure 4), but primarily rely on the displayed

endpoint error (Figure 9). An ideal observer optimally
combines noisy proprioceptive and visual signals and
responds primarily on perturbation magnitude, not on
the displayed magnitude of endpoint error (left panel in
Figure 6). The experimental data more closely resem-
bled a visual-cue-only observer, who responds based
only on the feedback location relative to the target.
This feedback is a combination of the endpoint error
and the perturbation, and ignores information regard-
ing the proprioceptive signal. Our findings corroborate
those of Kluzik et al. (2008), who showed that smaller
errors will update an internal model of the arm rather
than of an external tool, just as our data show that
subjects attributed small visual errors to themselves.

We found that the threshold to detect a perturbation
(i.e., d0 ¼ 1 and approximately 69% correct if
maximizing percent correct) was about 1.5 times the
subject’s intrinsic motor SD. This value is independent
of any Yes/No bias, and is therefore the best subjects
could perform given their suboptimal strategy. The
relationship between perturbation size and detectability
of the perturbation was highly consistent across
sessions (Figure 4 and Table A1). The fact that this

Figure 9. Model comparison. Differences between AIC values for the visual-cue-only and ideal observers, and for the visual-cue-only

and comparison observers. Negative values indicate that the visual-cue-only observer fit the data better, even when including a penalty

for having more free parameters in the case of the ideal observer. By and large, the visual-cue-only observer dominated the other

models. Only in two cases was it not the best fitting model and in those cases, the subject was best fit by the ideal observer for only

one of the perturbation dimension sessions.
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correlation was greater for perturbations in SDs of
motor noise than for perturbations measured in
millimeters suggests that subjects (knowingly or un-
knowingly) incorporated their typical motor error from
each session into their decisions, as measured by d0.

While the findings in the current study can inform
future motor-adaptation experiments, we deliberately
minimized any effects of reach adaptation by applying
perturbations that were random in sign and magnitude.
It might not be possible to prevent subjects from
adapting to perturbed feedback considering the evi-
dence for trial-by-trial correction (Baddeley, Ingram, &
Miall, 2003; Scheidt, Dingwell, & Mussa-Ivaldi, 2001;
van Beers, 2009; Wei & Körding, 2009). It is unclear
how an ideal observer would behave in this task if
adapted to a perturbation, but adaptation should not
play a role for the visual-cue-only observer because it
disregards the proprioceptive signal.

A parsimonious explanation for our findings is that
it was easier for subjects to ignore the proprioceptive
cue. The concept of visual capture is consistent with the
overwhelming contribution of vision to subjects’
decisions (Rock & Victor, 1964). Furthermore, we may
have biased subjects to prioritize vision by providing
veridical visual feedback (Figure 1B) and not propri-
oceptive feedback (for example, by having subjects
touch the correct location of the target after the trial).
Indeed, there are studies of deafferented individuals
that show proprioception is not required to allow
someone to adapt to a visually observed motor
perturbation (Bard, Fleury, Teasdale, Paillard, &
Nougier, 1995; Ingram et al., 2000; Yousif, Cole,
Rothwell, & Diedrichsen, 2015). However, this is
contrary to the typical finding that subjects try to
optimize performance, which requires subjects to use
the proprioceptive signal. More concretely, there is
plenty of evidence that subjects optimally combine
proprioceptive and visual signals in motor tasks (e.g.,
Niemeier et al., 2003; Sober & Sabes, 2003, 2005; van
Beers, Sittig, et al., 1999; van Beers, Wolpert, et al.,
2002; van Dam & Ernst, 2013). Most of the evidence
for optimal integration comes from an analysis of
motor output alone. An exception to this is van Dam
and Ernst (2013), wherein subjects made secondary,
corrective movements to the target, as well as
subsequent verbal reports about the direction of the
residual error after the corrective movement. They
provided evidence that subjects optimally combined the
proprioceptive signal and motor variability in making
the corrective movement. However, they were no better
than chance at discriminating the direction of the
subsequent residual error. Our findings stand in direct
contrast to theirs.

The conflict between findings of optimal integration
and the current results hints at the dissociation between
perception for action and perception for recognition

(e.g., Aglioti, DeSouza, & Goodale, 1995; Goodale,
Pélisson, & Prablanc, 1986). Our results are evidence
that sensory signals (or transformed signals) are not
always accessible to explicit reports. On the other hand,
when sensory signals are used for motor planning, they
are optimally integrated, as in the corrective reaches in
van Dam and Ernst (2013). The fact that van Dam and
Ernst also found evidence for optimal behavior using
explicit reports, while we did not, indicates that
optimality can be achieved easily in some tasks but not
others, even if those tasks and cost functions are
seemingly similar (e.g., Wu, Trommershäuser, Malo-
ney, & Landy, 2006).

To detect a perturbation using the proprioceptive
signal, subjects in our task had to compare visual
feedback with the hand position determined by an
internal model. This necessitates a coordinate trans-
formation between display and tabletop (Figure 1A). It
is possible that carrying out this transformation
involves an additional source of noise that interferes
with the ability to compare the two signals (van der
Graaff, Brenner, & Smeets, 2016). However, Parmar,
Huang, and Patton (2011) found this not to be the case,
and van Dam and Ernst (2013) found that this
transformation merely increased proprioceptive noise
but did not change subjects’ behavior. As in van Dam
and Ernst, the transformation merely adds to the
proprioceptive noise. In our study, additional propri-
oceptive noise would not cause ideal observer perfor-
mance to resemble that of the visual-cue-only observer.
Therefore, we can be confident that our findings are
unchanged by the tabletop-to-monitor transformation.

Some studies explicitly claim that subjects are
unaware of much larger perturbations (e.g., Sawers et
al., 2013; Werner et al., 2015), and it is also common
for there to be no mention of a subject’s awareness of
such perturbations (e.g., Ghez, Scheidt, & Heijink,
2007). A key difference with our study is that the nature
of our task primed subjects to be cognizant of the
potential presence of a perturbation. While many
studies have used small or gradually increasing
perturbations to avoid subjects’ awareness, Kagerer
and colleagues (1997) describe an extreme situation,
where a directional perturbation increased in 108 steps
up to 908. For comparison, during the direction session
of the current study, subjects could reliably detect
perturbations between 3.68 and 6.68. Those authors
report that the perturbation went undetected by the
subjects, presumably because they were not primed to
do so for the task. It seems highly unlikely that even
naive subjects would be completely unaware of a 908
rotation of visual feedback. A more plausible descrip-
tion is that incrementally increasing perturbation
increases the detection threshold by some amount.
Furthermore, in naturalistic settings, people are only
sometimes aware of both internal and external con-
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straints placed on motor plans, such as due to fatigue
or an inaccurate estimation of an object’s weight.
However, our findings are not necessarily in conflict
with Kagerer et al. because of the difference in subjects’
expectations; the differences in these studies emphasize
the qualitative difference between cognitive awareness
and detection threshold. Our findings, in conjunction
with those that describe the differences in motor
compensation to a noticed or unnoticed perturbation
(Huberdeau et al., 2015; Hwang et al., 2006), highlight
the importance of subjects’ expectations and awareness
of perturbation.

One-shot reaches with no online visual feedback, as
performed in this study, are atypical in the natural
world. No movement is performed in isolation, and
knowledge of the end effector’s starting position is
typically crucial for planning a movement. In this
study, the veridical initial position of the reaching
finger was provided on the display. A possible
experimental method for forcing incorporation of
proprioceptive signals into decisions (both verbal and
motor) would be to have subjects make a series of
sequential movements without visual feedback. In this
case, the motor plan for movement nþ 1 is dependent
on noisy proprioceptive information garnered during
movement n.

The current study provides a tool for building an
experimental task to maximize the signal-to-noise ratio
when estimating adaptation despite trial-to-trial end-
point variability. This is important in experiments that
require isolation of implicit (e.g., adaptive compensa-
tion) from explicit (e.g., detection; deliberate correc-
tion) motor processes. Tasks designed to elicit motor
compensation can illuminate the goals and computa-
tions carried out by the sensorimotor system. The role
and contribution of a subject’s awareness of motor
errors in both the formulation and correction of motor
plans is just beginning to be investigated (Benson,
Anguera, & Seidler, 2011; Hwang et al., 2006; Mazzoni
& Krakauer, 2006; Niemeier et al., 2003; van Dam &
Ernst, 2013), and the current study hints at a level of
complexity in these relationships, in light of the
suboptimalities in signal integration demonstrated here.

Conclusions

We measured detection threshold of perturbed visual
feedback of reaches. We found that people can detect
perturbations about 1.5 times their trial-to-trial motor
variability. A model comparison showed that people
ignore proprioception when deciding whether or not
they had been perturbed; they rely solely on the final
visual feedback.

Keywords: sensorimotor, error detection, cue
combination, ideal observer, feedback perturbation
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Appendix

Figure A1. Individual response data. These are the same data as in Figure 5, but split by subject. Some subjects, such as subject 1,

exhibited systematic hypometria, as shown by the shift of data towards negative endpoint errors during the gain perturbation

sessions (top left panel). The asterisk indicates the data whose fitted models are displayed in Figure 6. The daggers indicate the two

cases where the data were best fit by the ideal observer.
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Figure A2. Trials per bin. Horizontal and vertical axes are the same as in Figure 5, but color here indicates the number of trials per bin.

Subject Gain Direction

1 1.42 1.31

2 1.81 1.61

3 1.62 1.52

4 1.67 1.45

5 1.60 1.48

Mean (SEM) 1.62 (0.06) 1.47 (0.05)

Table A1. Perturbation-detection thresholds computed for
subjects individually in the same manner as the group fit in
Figure 4.
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